

Recent measurements and prospects from analysis of fixed-target collisions at LHCb

L. L. Pappalardo (on behalf of the LHCb Collaboration)

The LHCb detector

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- → Excellent particle identification and momentum resolution: $\sigma_p/p \le 1.0$ % ($p \in [2,200]$ GeV)
- Precise primary and secondary vertex reconstruction

The LHCb detector

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- ► Excellent particle identification and momentum resolution: $\sigma_p/p \le 1.0 \%$ ($p \in [2,200]$ GeV)
- Precise primary and secondary vertex reconstruction
- During LS2 major hardware upgrade to cope with the factor of 5 increase in luminosity starting from the Run 3 [http://arxiv.org/abs/2305.10515]

The LHCb detector

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- → Excellent particle identification and momentum resolution: $\sigma_p/p \le 1.0$ % ($p \in [2,200]$ GeV)
- Precise primary and secondary vertex reconstruction
- During LS2 major hardware upgrade to cope with the factor of 5 increase in luminosity starting from the Run 3 [http://arxiv.org/abs/2305.10515]

Types of collisions (Collider mode):

Since 2015 LHCb can also be operated as a **fixed-target** experiment with the SMOG system

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel
- Gas pressure ($\sim 10^{-7}$ mbar) 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude

Since 2015 LHCb can also be operated as a **fixed-target** experiment with the SMOG system

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel
- Gas pressure ($\sim 10^{-7}$ mbar) 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, high-intensity LHC beams!

Since 2015 LHCb can also be operated as a **fixed-target** experiment with the SMOG system

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel
- Gas pressure ($\sim 10^{-7}$ mbar) 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, high-intensity LHC beams!

Types of collisions (Fixed-Target mode):

L. L. Pappalardo

Since 2015 LHCb can also be operated as a **fixed-target** experiment with the SMOG system

SMOG: System for Measuring Overlap with Gas:

- Low density noble gas injected in the VELO vessel
- Gas pressure ($\sim 10^{-7}$ mbar) 2 orders of magnitude higher than LHC vacuum
- Beam-gas collision rate increased by 2 orders of magnitude
- Conceived for precise luminosity determination (beam-gas imaging)

Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, high-intensity LHC beams!

gas (He, Ne, Ar)

Types of collisions (Fixed-Target mode):

lead ions

L. L. Pappalardo 20th Inte

 $\sqrt{s_{NN}} = 113 \text{ GeV}$

protons

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

Considering pA collisions with $E_p = 6.8 TeV \implies \sqrt{s_{NN}} \approx 113 GeV$

Considering pA collisions with $E_p = 6.8 TeV \implies \sqrt{s_{NN}} \approx 113 GeV$

In the fixed-target configuration LHCb allows to cover mid-to-large x at intermediate Q^2 and negative x_F

Considering pA collisions with $E_p = 6.8 TeV \implies \sqrt{s_{NN}} \approx 113 GeV$

constrain PDFs in poorly explored high x-region

In the fixed-target configuration LHCb allows to cover mid-to-large x at intermediate Q^2 and negative x_F

[Eur. Phys. J. C76 (2016) 383]

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

Considering pA collisions with $E_p = 6.8 TeV \implies \sqrt{s_{NN}} \approx 113 GeV$

- constrain PDFs in poorly explored high x-region
- explore intrinsic charm content in the proton and nucleus

In the fixed-target configuration LHCb allows to cover mid-to-large x at intermediate Q^2 and negative x_F

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Considering pA collisions with $E_p = 6.8 TeV \implies \sqrt{s_{NN}} \approx 113 GeV$

- constrain PDFs in poorly explored high x-region
- explore intrinsic charm content in the proton and nucleus
- probe nuclear anti-shadowing and EMC region

In the fixed-target configuration LHCb allows to cover mid-to-large x at intermediate Q^2 and negative x_F

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

Recent charm production analyses

LHCb-PUB-2018-015

Charm production in pNe @ $\sqrt{s_{NN}} = 68.5$ GeV

Data: pNe at $\sqrt{s_{NN}} = 68.5 \text{ GeV} \ (\mathcal{L}_{pNe} = 21.7 \pm 1.4 \text{ } nb^{-1})$

Data: pNe at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$ ($\mathcal{L}_{pNe} = 21.7 \pm 1.4 \text{ } nb^{-1}$)

Selection criteria:

• $0 < p_T < 8 \text{ GeV/c}$; $-2.29 < y^* < 0$

 $\frac{d\sigma_{D^0}}{dy^*} \begin{bmatrix} \mu b/nucleon \end{bmatrix}$ 60 LHCb $\frac{d\sigma_{D^0}}{d\sigma_{D^0}}$ [µb/nucleon] [GeV/c]50 $\left[-\sqrt{s_{NN}}\right] = 68.5 \text{ GeV } p \text{ Ne}$ $\sqrt{s_{\rm NN}} = 68.5 \, {\rm GeV} \, p \, {\rm Ne}$ - Data 10 Vogt no IC Vogt 1% IC FONLL \overline{dp}_{T} - PHSD - MS 20 10^{-1} 10 $p_{\tau} \in [0,8] \text{ GeV/}c$ y*∈[-2.29,0] 10^{-2} 0 -1.5-0.5 -2-1 2 0 v*

D⁰ differential cross section [arXiv:2211.11633]

- FONLL and PHSD predictions describe well the y^* dependence but fail to reproduce the p_T dependence of data.
- A reasonably good agreement is found for Vogt and MS predictions:
- Vogt (w/wo 1% IC) include shadowing effects.
- MS includes 1% IC and 10% recombination contributions.

LHCb

Data Vogt no IC

- PHSD

Vogt 1% IC FONLL

 p_{T}^{6} [GeV/c]

 $\frac{d\sigma_{D^0}}{dy^*} \left[\frac{hb/nucleon}{0} \right]^{0}$ 60 LHCb $d\sigma_{D^0}$ [µb/nucleon LHCb [GeV/c]50 $\left[-\sqrt{s_{NN}}\right] = 68.5 \text{ GeV } p \text{ Ne}$ $\sqrt{s_{NN}} = 68.5 \text{ GeV } p \text{Ne}$ - Data 10 Data Vogt no IC Vogt no IC Vogt 1% IC Vogt 1% IC FONLL FONLL $\overline{\mathrm{d}p}_{\mathrm{T}}$ - PHSD - PHSD - MS 20 10^{-1} 10 $p_{\rm T} \in [0,8] \, {\rm GeV}/c$ 10^{-2} y*∈[-2.29,0] 0 -0.5 p_{T}^{6} [GeV/c] -2-1.52 J/ψ differential cross section [arXiv:2211.11645] $\begin{bmatrix} 450 \\ 400 \\ 350 \\ 300 \\ 250 \\ \frac{\hbar}{p} \\ 200 \\ 150 \end{bmatrix}$ 450 300 [nb/nucleon] LHCb = 68.5 GeV p Ne[GeV/c] 200 200 LHCb 🕂 Data 250 350 $\sqrt{s_{\rm NN}} = 68.5 \, {\rm GeV} \, p \, {\rm Ne}$ Shao - Data 300 - 7777 Vogt no IC Vogt 1% IC Shao $d\sigma_{J/\psi}$ r ap Vogt no IC Vogt 1% IC 150 100 100 y*€[-2.29,0] 50 50 $p_{\tau} \in [0,8] \text{ GeV/}c$ 0 0 -2-1.5-0.5-1 2 6 0 p_{T} [GeV/c]

 D^0 differential cross section [arXiv:2211.11633]

- FONLL and PHSD predictions describe well the y^* dependence but fail to reproduce the p_T dependence of data.
- A reasonably good agreement is found for Vogt and MS predictions:
- Vogt (w/wo 1% IC) include shadowing effects.
- MS includes 1% IC and 10% recombination contributions.
- Shao: based on **HELAC-ONIA** with CT14NLO and nCTEQ15 PDF sets. Fails to reproduce data.
- Vogt (w/wo 1% IC) predictions based on EPPS16 nPDFs and include nuclear absorption and multiple scattering effects. Provide a reasonably good agreement with data.

L. L. Pappalardo

Charm production in PbNe @ $\sqrt{s_{NN}} = 68.5 \text{ GeV}$

Motivation: search for QGP formation signals

Data: PbNe at $\sqrt{s_{NN}} = 68.5 \text{ GeV} \quad (\mathcal{L}_{pNe} \sim 0.3 \ nb^{-1})$

Selection: same kinematic as in pNe ($0 < p_T < 8 \text{ GeV/c}; -2.29 < y^* < 0$)

Challenges: larger detector occupancy, larger background than in pNe, but clean J/ψ and D^0 signals

Motivation: search for QGP formation signals

Data: PbNe at $\sqrt{s_{NN}} = 68.5 \text{ GeV} \ (\mathcal{L}_{pNe} \sim 0.3 \ nb^{-1})$

Selection: same kinematic as in pNe ($0 < p_T < 8 \text{ GeV/c}; -2.29 < y^* < 0$)

Challenges: larger detector occupancy, larger background than in pNe, but clean J/ψ and D^0 signals

Comparing charm production in pNe and PbNe @ $\sqrt{s_{NN}} = 68.5$ GeV

- No evident *y*^{*} dependence
- Significant p_T dependence
- $\psi(2S)$ to J/ψ ratio = $(1.67 \pm 0.27 \pm 0.10)\%$

Comparing charm production in pNe and PbNe @ $\sqrt{s_{NN}} = 68.5$ GeV

- No evident y^* dependence
- Significant p_T dependence

$$\psi(2S)$$
 to J/ψ ratio = $(1.67 \pm 0.27 \pm 0.10)\%$

Comparing charm production in pNe and PbNe @ $\sqrt{s_{NN}} = 68.5$ GeV

The SMOG2 upgrade

[SMOG2 TDR]

Project approved in Nov. 2019

Main hardware implementations:

- 20 cm **storage cell** for the target gas installed upstream of the VELO
- Brand new, more flexible and sophisticated Gas Feed System (GFS)

The SMOG2 upgrade

[SMOG2 TDR]

Project approved in Nov. 2019

Main hardware implementations:

- 20 cm **storage cell** for the target gas installed upstream of the VELO
- Brand new, more flexible and sophisticated Gas Feed System (GFS)

SMOG2 vs. SMOG:

- ✓ Well **defined interaction region** upstream of the collider IP (limited to cell length/position: -541 < z < -341 mm)
- ✓ Increase of target density (luminosity) by factor 8-35 using the same gas load
- ✓ Possibility to inject more gas species: H_2 , D_2 , He, N_2 , O_2 , Ne, Ar, Kr, Xe
- ✓ New Gas Feed System allows to measure target density (→ luminosity) with much higher precision (few % uncert.)
- ✓ Well displaced int. regions: possibility to **run in parallel with collider mode**

The SMOG2 target Cell

The SMOG2 target Cell

L. L. Pappalardo

The SMOG2 target Cell

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

The SMOG2 gas feed system

SMOG Gas Feed System

The SMOG2 gas feed system

SMOG Gas Feed System

SMOG2 Gas Feed System

1%

SMOG2 expected perfor

- Beam-beam and beam-gas interaction ٠
- Full reconstruction efficiency (PV + Ti and the different event topology
- No impact in pp efficiency due to sir

L. L. Pappalardo

25000 gidates

20000 Cgl

15000

10000

5000

PV reconstruction eff.

0.8 0.6

0.4

-400

-pp+pHe

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

on-

om LO

one

oed

the

SMOG2 expected perfor

- Beam-beam and beam-gas interaction
- Full reconstruction efficiency (PV + Ti and the different event topology

LHCb Upgrade simulation

beam-beam collisions

beam-gas collisions

25000 E

25000

20000

15000

10000

didates

distribut

sed

-pHe

p He rec.ble η

1.4

1.2

2×10⁻

- pp

egion despitet the distance from the VETO

 $\bigotimes pp$ rec.ble $\eta p > 5 \text{ GeV}/c$

LHCb Upgrade simulation

BestLong eff. on Long part.

Pseudorapidity

200 PVz [mm]

on-

om

LO

one

 \mathbf{ped}

the

SMOG2 commissioning

First gas injection in RUN3 (June 22): low pressure Ne injection with cell OPEN, circulating beams

Vacuum recovery after the gas injection stop

SMOG2 commissioning

First gas injection in RUN3 (June 22): low pressure Ne injection with cell OPEN, circulating beams

L. L. Pappalardo

SMOG2 commissioning

First gas injection in RUN3 (June 22): low pressure Ne injection with cell OPEN, circulating beams

Vacuum recovery after the gas injection stop

- Luminosity increase seen by the LHCb luminometer Plume
- CALO, RICH and Muon systems recorded activity

Extremely useful also for the LHCb commissioning

First gas injection with closed VELO and SMOG2 cell, with circulating beams (Nov. 22)

- Injected Ar at 1.6×10^{-8} mbar (a factor 6.5 lower than SMOG, but density x5.5 higher)
- A steep increase of pressure followed by a stable plateau
- Simultaneous beam-beam and beam-gas data taking with full LHCb detector ON and running

L. L. Pappalardo

First SMOG2 date for the commissioning

- The two interaction regions are clearly visible and well separated!
- PV distributions consistent with simulations
- LHCb is now the first (unique) LHC experiment with two simultaneous interaction regions!

Figure 6: Primary vertex reconstruction efficiency (top), resolution (middle) and fake rate (bottom) as a function of the z coordinate for minimum-bias (in blue) stand-alone pp, (in green) stand-alone pHe, (in red) overlapped pp and pHe and (in orange) pp and pAr events simulated considering the Run3 pp conditions ($\nu \sim 7.6$, $L \simeq 2 \cdot 10^{36} \, \mathrm{cm}^{-2} s^{-1}$) and one fixed per-bunch beam-gas collision. Similar efficiencies and fake rates between beam-beam and beam-gas collisions and no pp performance loss when injecting the gas are observed. A steep evolution with z of the resolution in the SMOG2 cell is found instead, as a consequence of the larger uncertainty when extrapolating low-aperture VELO tracks upstream of the nominal LHCb interaction point. $z \, [mm]$

First SMOG2 date the one commissioning

- The two interaction regions are clearly visible and well separated!
- PV distributions consistent with simulations
- LHCb is now the first (unique) LHC experiment with two simultaneous interaction regions!

- K_S^0 mass reconstructed using pp (blue) and p-Ar collisions (red)
- Mass resolution found to be comparable!

First SMOG2 data from commissioning

- Data collected for the SMOG2 commissioning in short periods (~ 20 min) of gas injection
- Clean D^0 and J/ψ samples obtained in just 18 min of data taking with p-Ar collisions at $\sqrt{s_{NN}} = 113 \ GeV$

First SMOG2 data from commissioning

- Data collected for the SMOG2 commissioning in short periods (~ 20 min) of gas injection
- Clean D^0 and J/ψ samples obtained in just 18 min of data taking with p-Ar collisions at $\sqrt{s_{NN}} = 113 \ GeV$

- First data from p-H collisions at $\sqrt{s_{NN}} = 113 \ GeV$
- Very well reconstructed K_S^0 and Λ^0 masses

First SMOG2 data from commissioning

- Data collected for the SMOG2 commissioning in short periods (~ 20 min) of gas injection
- Clean D^0 and J/ψ samples obtained in just 18 min of data taking with p-Ar collisions at $\sqrt{s_{NN}} = 113 \ GeV$

- First data from p-H collisions at $\sqrt{s_{NN}} = 113 \ GeV$
- Very well reconstructed K_S^0 and Λ^0 masses

More details and commissioning figures:

- <u>LHCb-FIGURE-2023-001</u>
- <u>LHCb-FIGURE-2023-008</u>

L. L. Pappalardo

Future physics perspectives with SMOG2 (find more in backup slides!)

Heavy-ion physics:

- New measurements of prompt charm production in p-gas and Pb-gas collisions with a significantly increased statistical precision.
- Study of cold nuclear matter effects (baseline to understand QGP signals)
- > Measurements of excited charmonium states (including $\psi(2S)$ and χ_c) relevant for studying the **sequential charmonia suppression** due to **color screening**.
- > Possibility to measure also charmed baryons (Λ_c^+) as well as prompt beauty production
- > Measurement of QGP-related flow observables and correlations in Pb-A collisions at $\sqrt{s_{NN}} \sim 70$ GeV

different binding energies lead to different dissociation temperatures J.Phys.G32:R25,2006

Future physics perspectives with SMOG2 (find more in backup slides!)

Heavy-ion physics:

- New measurements of prompt charm production in p-gas and Pb-gas collisions with a significantly increased statistical precision.
- Study of cold nuclear matter effects (baseline to understand QGP signals)
- > Measurements of excited charmonium states (including $\psi(2S)$ and χ_c) relevant for studying the **sequential charmonia suppression** due to **color screening**.
- > Possibility to measure also charmed baryons (Λ_c^+) as well as prompt beauty production
- > Measurement of QGP-related flow observables and correlations in Pb-A collisions at $\sqrt{s_{NN}} \sim 70$ GeV

Nucleon structure:

- SMOG2 operated with H₂ and D₂ targets offers unique conditions to probe quark and gluon PDFs in nucleons and nuclei, especially at high-x and moderately-high Q², where present experimental data are largely missing.
- > Measurements of quark and gluon transverse-momentum-dependent (TMD) PDFs, respectively in Drell-Yan and inclusive production of quarkonia $(J/\psi, \psi', \Upsilon, \text{ etc.})$, will significantly improve our understanding of the 3D structure of the nucleon.
- > Possibility to precisely test contributions from Intrinsic charm in the proton at high-x.

different binding energies lead to different dissociation temperatures J.Phys.G32:R25,2006

Future physics perspectives with SMOG2 (find more in backup slides!)

Heavy-ion physics:

- New measurements of prompt charm production in p-gas and Pb-gas collisions with a significantly increased statistical precision.
- Study of cold nuclear matter effects (baseline to understand QGP signals)
- > Measurements of excited charmonium states (including $\psi(2S)$ and χ_c) relevant for studying the **sequential charmonia suppression** due to **color screening**.
- > Possibility to measure also charmed baryons (Λ_c^+) as well as prompt beauty production
- > Measurement of QGP-related flow observables and correlations in Pb-A collisions at $\sqrt{s_{NN}} \sim 70$ GeV

Nucleon structure:

L. L. Pappalardo

- SMOG2 operated with H_2 and D_2 targets offers unique conditions to probe quark and gluon **PDFs in nucleons and nuclei**, especially at high-x and moderately-high Q^2 , where present experimental data are largely missing.
- > Measurements of quark and gluon transverse-momentum-dependent (TMD) PDFs, respectively in Drell-Yan and inclusive production of quarkonia $(J/\psi, \psi', \Upsilon, \text{ etc.})$, will significantly improve our understanding of the 3D structure of the nucleon.
- > Possibility to precisely test contributions from Intrinsic charm in the proton at high-x.

Cosmic-ray and DM physics: anti-hadrons production cross sections in p-H, p-D and p-He (see backup slides).

different binding energies lead to different dissociation temperatures <u>J.Phys.G32:R25,2006</u>

Conclusions

- The Fixed-Target program at LHCb with SMOG, active since 2015, has already produced lots of interesting physics results:
 - prompt and detached antiproton production in pHe collisions (\rightarrow cosmic-ray physics, DM search)
 - charm production in pHe, pAr, pNe and PbNe (\rightarrow heavy-ion physics, cold nuclear matter effects, QGP form.)
- Many ongoing analyses on different topics (CNM effects, strangeness and charm production, hyperon polarization, etc.)

Conclusions

- The Fixed-Target program at LHCb with SMOG, active since 2015, has already produced lots of interesting physics results:
 - prompt and detached antiproton production in pHe collisions (\rightarrow cosmic-ray physics, DM search)
 - charm production in pHe, pAr, pNe and PbNe (\rightarrow heavy-ion physics, cold nuclear matter effects, QGP form.)
- Many ongoing analyses on different topics (CNM effects, strangeness and charm production, hyperon polarization, etc.)
- Starting from the RUN3, with the SMOG2 implementation, the LHCb fixed-target program is greatly enhanced and enriched
- Plenty of interesting fixed-target physics measurements at unique kinematic conditions are in program

Conclusions

- The Fixed-Target program at LHCb with SMOG, active since 2015, has already produced lots of interesting physics results:
 - prompt and detached antiproton production in pHe collisions (\rightarrow cosmic-ray physics, DM search)
 - charm production in pHe, pAr, pNe and PbNe (\rightarrow heavy-ion physics, cold nuclear matter effects, QGP form.)
- Many ongoing analyses on different topics (CNM effects, strangeness and charm production, hyperon polarization, etc.)
- Starting from the RUN3, with the SMOG2 implementation, the LHCb fixed-target program is greatly enhanced and enriched
- Plenty of interesting fixed-target physics measurements at unique kinematic conditions are in program
- With SMOG2, LHCb has become the first experiment with two simultaneous interaction regions (fixed-target and collider modes), allowing for a new range of exploration at the LHC!

LHCb published analyses with SMOG

✓ Prompt antiproton production in pHe collisions at $\sqrt{s_{NN}} = 110 \text{ GeV}$ [Phys. Rev. Lett. 121 (2018) 222001]

✓ Antiproton production from antihyperon decays in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV [arXiv:2205.09009] (acc. by EPJC)

✓ Charm Production in Fixed-Target pHe and pAr collisions

[Phys. Rev. Lett. 122 (2019) 132002]

- Charmonium production in pNe collisions [arXiv:2211.11645]
- ✓ Open charm production in pNe collisions [arXiv:2211.11633]
- ✓ J/ψ and D^0 production in PbNe collisions [arXiv:2211.11652]

Relevant for

- Study of cold nuclear matter effects in pNe collisions (no QGP)
- Study of sequential suppression of charmonia states in PbNe as signal of QGP formation
- Cross section measurements in a unique kinematic domain

$$\mathcal{A}_{\text{prod}} = \frac{Y_{\text{corr}}(D^0) - Y_{\text{corr}}(\overline{D}^0)}{Y_{\text{corr}}(D^0) + Y_{\text{corr}}(\overline{D}^0)}$$

- Probe charm hadronization at high-*x*
- Asymmetry of $\sim 15\%$ in most negative y^* bin
- Available models fail to simultaneously describe y^* and p_T distributions

SMOG2 projected performances for LHC Run3

LHCb-PUB-2018-015

System	$\sqrt{s_{ m NN}}$ (GeV)	< pressure > (10^{-5} mbar)	$\begin{array}{c} \rho_S \\ (\mathrm{cm}^{-2}) \end{array}$	\mathcal{L} (cm ⁻² s ⁻¹)	Rate (MHz)	Time (s)	$\int \mathcal{L}$ (pb ⁻¹)
pH_2	115	4.0	$2.0 imes 10^{13}$	$6 imes 10^{31}$	4.6	2.5×10^6	150
pD_2	115	2.0	1.0×10^{13}	3×10^{31}	4.3	0.3×10^6	9
pAr	115	1.2	0.6×10^{13}	1.8×10^{31}	11	2.5×10^6	45
pKr	115	0.8	0.4×10^{13}	1.2×10^{31}	12	2.5×10^{6}	30
p Xe	115	0.6	0.3×10^{13}	0.9×10^{31}	12	2.5×10^{6}	22

	SMOG	SMOG	SMOG2
	published result	largest sample	example
	$p \mathrm{He} @87~\mathrm{GeV}$	p Ne@69 ~GeV	pAr@115 GeV
Integrated luminosity	7.6 nb^{-1}	$\sim 100 \text{ nb}^{-1}$	$\sim 45 \text{ pb}^{-1}$
syst. error on J/ψ x-sec.	7%	6 - 7%	2 - 3 %
J/ψ yield	400	15k	$15\mathrm{M}$
D^0 yield	2000	100k	$150\mathrm{M}$
Λ_c^+ yield	20	1k	$1.5\mathrm{M}$
$\psi(2S)$ yield	negl.	150	150k
$\Upsilon(1S)$ yield	negl.	4	$7\mathrm{k}$
Low-mass Drell-Yan yield	negl.	5	9k

L. L. Pappalardo

Opportunities with SA INFN smic rays and DM

> Thanks to the possibility to use also a H_2 target, it will be possible to precisely measure the ratio:

$$\frac{\sigma(pHe \to \bar{p}X)}{\sigma(pH \to \bar{p}X)}$$

 $\sigma(pHe \rightarrow \bar{p}X)$

 $\sigma(pH \to \bar{p}X)$

where many systematic uncertainties cancel

By injecting H_2 and D_2 it will be possible to test isospin symmetry in the ratio:

$$\frac{\sigma(pD \to \bar{p}X)}{\sigma(pH \to \bar{p}X)}$$

which can allow to put constraints on the unknown production ratio

$$\frac{\sigma(pH \to \bar{n}X)}{\sigma(pH \to \bar{p}X)}$$

- Possibility to measure cross sections at different CM energies
- ▶ Light anti-nuclei production: pp, $pHe \rightarrow \overline{d}$, $\overline{H_e}$
- \succ *pp*, *pHe* → π, *K* to model positron source term

M. Boudaud et. al., PoS (ICRC2019) 038

Opportunities with SMOG2: cold nuclear matter effects

Heavy Ions studies and Cold Nuclear Matter Effects

Study and disentangle effects arising from the structure of the initial state of the collision and medium-induced effects

- Modification of the nucleon PDFs in nuclear matter
- High-x parton PDFs
- antishadowing, EMC effects
- Cronin effect
- nuclear absorption

Opportunities with SMOG2: strangeness production in PbA vs. pA

Ratio of yields to (π⁺+ 더

10-2

Strange/non-strange hadron ratios vs. event multiplicity p_T and η

- $(K^+ + K^-)/(\pi^+ + \pi^-)$
- $K_s^0/(\pi^+ + \pi^-)$
- $(\Lambda + \bar{\Lambda})/(\pi^+ + \pi^-)$
- $(\Xi^- + \bar{\Xi}^+)/(\pi^+ + \pi^-)$
- $(\Omega^{-} + \bar{\Omega}^{+})/(\pi^{+} + \pi^{-})$

Strangeness enhancement is expected due to:

 $\Lambda + \overline{\Lambda} (\times 2)$

Ξ[−]+Ξ⁺ (×6)

 $\Omega^{-}+\overline{\Omega}^{+}(\times 16)$

 $\langle dN_{cb}/d\eta \rangle_{bb} < 0$

ALICE

pp, √s = 7 TeV p-Pb, √s_{NN} = 5.02 TeV

EPOS LHC

 10^2

10

Pb-Pb, Vs_{NN} = 2.76 TeV

- high gluon density in the QGP
- dominance of the gluonic production channel for strangeness in the QGP ($gg \rightarrow s\bar{s}$)
- mass of the s quark being similar to the critical temperature T for the QCD phase transition ($\sim 150 \ MeV$)
- strangeness formation time similar to the expected lifetime of the QGP. Therefore strangeness chemical equilibration in QGP is possible, leading to abundant strange quark density in QGP

Baryon/meson ratios: p/π , Λ/K , Λ/ϕ , Ω/ϕ ,...

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

Opportunities with SMOG2: quark TMDs

Unpolarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\overline{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

- Lattice QCD: $\bar{s}(x) \neq s(x)$ [arXiv:1809.04975]
- proton sea more complex than originally thought!
- intrinsic heavy quarks?
- Still a lot to be understood
- H & D targets allow to study the **antiquark content of the nucleon**
- SeaQuest (E906): $\overline{d}(x) > \overline{u}(x) \implies$ sea is not flavour symmetric!

Opportunities with SMOG2: gluon TMDs

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

E.g.: $pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X$

• Due the larger masses this condition is more easily matched in the case of **bottomonium**, where TMD factorization can hold at larger q_T (although very challenging for experiments!)

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

Opportunities with SMOG2: UPC and GPDs

Gluon GPDs can be accessed at LHC in Ultra-Peripheral collisions (UPC)

- Process dominated by EM interaction
- Gluon distributions probed by pomeron exchange
- Exlcusive quarkonia prod. sensitive to gluon GPDs [PRD 85 (2012), 051502]

3D maps of parton densities in coordinate space

Opportunities with SMOG2: intrinsic charm

Intrinsic heavy-quark

- 5-quark Fock state of the proton may contribute at high x!
- **charm PDFs** at large *x* could be larger than obtained from conventional fits

- Significant contributions of IC expected at large x
- First search performed with SMOG [PRL 122 (2019)]
- New intriguing LHCb results with pp collisions at large rapidity [arXiv:2109.08084]
- Still to be investigated!

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

g QQQQ