HADR 70 N 2023

Progress of Super Tau Charm Facility in China

Zhujun Fang

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Jun 5 – 9, 2023 Genova, Italy On behalf of the STCF working group 08/06/2023

HADRON 2023

Outline

1. Physics motivation

- 2. Accelerator progress
- 3. Detector progress
- 4. Simulation studies
- 5. Summary

Accelerator-based HEP experiments

Complementary and synergistic facilities:

- ➢ B-factory
- τ-Charm factory
- Large Hadron Collider

High intensity frontier

High energy frontier

Physics in τ -Charm energy region

- MLLA/LPHD and QCD sum rule predictions
- Rare/forbidden decays
- Physics with τ lepton
- $D^0 \overline{D}^0$ mixing
- Charm baryons
- Di-charmonium state
- Charm baryons
- Hadron fragmentation

QCD and hadron physics Flavor physics and CP violation Searching for new physics

2023/6/8

The Super Tau-Charm Facility

- Key parameters in STCF:
- Center-of-mass energy: 2-7 GeV
- > Peak luminosity: > 0.5×10^{35} cm⁻²s⁻¹ at 4 GeV
- Collision data: more than 1 ab⁻¹/y
- With potential to further increase luminosity and beam polarization

Timeline

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032-2042	2043-2046
Form collaboration																
Conceptual design (CDR)																
R&D (TDR)																
Construction																
Operation																
Upgrade																

CDR Volume I - Physics & Detector:

arXiv: 2303.15790

- ➢ CDR Volume II − Accelerator:
 - on Preparing

Funding: 0.42 billion RMB on the R&D projects from

local government and USTC (2022-2025)

Physics aims

	Observable	BESIII (2020)	STCF (1 ab ⁻¹)	_
	Charmonium(like) spectroscopy:			_
	Luminosity between 4-5 GeV	20 fb ⁻¹	1 ab ⁻¹	
QCD & Hadron structure	Collins fragmentation functions:			_
	Asymmetry in $e^+e^- \rightarrow KK + X$	0.3 [458]	< 0.002 [459]	
Exotic hadrons	Leptonic decays of $D(s)$:			_
Precision EW	V_{cd}	0.03 [460]	0.0015	
	f_D	0.03	0.0015	
	$\frac{\mathcal{B}(D \to \tau \nu)}{\mathcal{B}(D \to \mu \nu)}$	0.2	0.005	
> CP violation	V_{cs}	0.02 [461]	0.0015	
Now physics	f_{D_s}	0.02	0.0015	
New physics	$\frac{\mathcal{B}(D_s \rightarrow \tau_V)}{\mathcal{B}(D_s \rightarrow \mu_V)}$	0.04	0.0038	
	τ properties:			_
	$m_{\tau} ({\rm MeV/c^{-2}})$	0.12 [463]	0.012	
	d_{τ} (e cm)	-	5.14×10^{-19}	
Sensitivities for some	cLFV decays of $\tau(U.L \text{ at } 90\% C.L.)$:			_
benchmark physics processes	$\tau \rightarrow l l l$	-	$1.4 imes 10^{-9}$	
	$ au ightarrow \gamma \mu$	-	1.2×10^{-8}	
	$J/\psi ightarrow e au$	$7.5 imes 10^{-8}$	7.1×10^{-10}	
				b^{-1}) [459] 15

arXiv: 2303.15790

HADRON 2023

Outline

- 1. Physics motivation
- 2. Accelerator progress
- 3. Detector progress
- 4. Simulation studies
- 5. Summary

Accelerator-related challenges

- **Extreme high luminosity:**
- Low relativistic energy
- Bunch intensity \geq
- Small bunch size
- Hourglass effect
- Large Piwinski Angle and crab waist:
- Developed by BINP and SuperKEKB
- Effectively realize high luminosity

e+ e- source and injector

Storage ring

SSA

Klystron

Cavity

HADRON 2023

Preliminary physical design parameters

Parameters	Value	Unit
Optimize energy E	2.0	GeV
Circumference П	617.06	m
f_{RF}	497.5	MHz
20	60	mrad
$\varepsilon_y/\varepsilon_x$	0.5	%
I	2.0	А
V_{RF}	3.0	MV
σ_s (w.o/w IBS)	7.3/10	mm
ε_x (w.o/w IBS)	2.84/4.29	nm
L_{HG}	$\geq 0.5 \times 10^{35}$	$cm^{-2}s^{-1}$
ξ_x/ξ_y	0.004/0.10	-
$ au_{Touschek}$	180~200	S

- Low Level RF system with domestic electronics
- \geq Hardware: RF Source; Frequency Synthesizer; IF Signal processor
- Software: \triangleright FPGA Firmware: Control Algorithms; EPICS Control

Injector system

Design parameters:

- Symmetric beam: 1-3.5 GeV
- Photocathode microwave

electron source: 1.5nC/5nC

- Positron source: 1.5nC
- Repetition frequency: 50 Hz
- □ Main challenges:
- High positron conversion efficiency
- Overcome CSR effects
- Error compensation
- Lossless injection realization

Electron and positron source

Positron source conceptual design

Parameter	Value
Electron bunch	5 nC
Electron energy	1.5 GeV
Rep. rate	50 Hz
Deposited power	532 W
Magnetic field	5 \ 0.4
Target thickness	13 mm
Target material	Tungsten
e ⁺ yield	0.25

MDI design and background simulation

MDI: machine detector interface Occupancy angle: 15° mmmmmm ¢ = 28mm $\phi = 60mm$ III IIIIIII 111 220mm 633mm Tungsten sheild 1660mm Anti Sol FFQuad QF1 FFQuad QD0 Corr IP chamber Y chamber Cryostat with magnets

- Highest detector background:
- > TID: 3.5 kGy/y,
- > NIEL: 2×10^{11} 1MeV n/cm²/y,
- Counting rate: **1** MHz/cm²

Background simulation:

Luminosity related:

radiative Bhabha scattering di-photon process

 Single-beam related: Touschek scattering

beam-gas interaction

Outline

- 1. Physics motivation
- 2. Accelerator progress
- **3. Detector progress**
- 4. Simulation studies
- 5. Summary

STCF Detector spectrometer

Physics requirements

Charged particle

Neutron/K_L

Photon

µRWELL-based Inner tracker

\square µRWELL (3 layers):

- Tracking efficiency > 90% @100 MeV/c
- \blacktriangleright Low material budget (< 0.01X₀)
- High occupancy
- Cylindrical structure

Hit reconstruction

Manufacturing method research & budget control

MAPS-based Inner tracker

- Monolithic active pixel sensorbased detector (3 layers):
- Tracking efficiency > 90%@100 MeV/c
- > Low material budget ($< 0.01 X_0$)
- Time resolution

Chip framework (in-chip, readout and peripheral circuit)

Chip A

Two independent chips design

Chip B

Main drift chamber progress

□ Wire chamber-based MDC (48 layers):

- > Momentum resolution < 0.5% @1 GeV/c
- \blacktriangleright dE/dx resolution < 6%
- > Low material budget ($<0.05X_0$)
 - High background influence
- Waveform discrimination

Simulated dE/dx resolution, momentum resolution and tracking efficiency

HADRON 2023

Particle Identification in the Barrel

Ring imaging Cherenkov (RICH) detector:

- > π/K misidentification rate < 2%
- > PID efficiency > 97% up to 2 GeV/c
- ➢ 5mm × 5mm readout pads array
- Reconstruction of Cherenkov ring

1st prototype module

Simulated π efficiency and π/K mis-ID rate

Particle Identification in the Endcap

Detection of internal total-reflected Cherenkov light (DIRC)-like TOF:

HADRON 2023

1st full size prototype and the electronics system

2023/6/8

Electromagnetic calorimeter progress

D pCsI scintillator:

- ► Energy resolution ~ 2.5% @1 GeV
- Position resolution ~ 5 mm @1 GeV
- \succ Crystal length = 28 cm (15 X₀)
- ➢ 8670 crystals in total
- Promotion of light yield

Simulated energy resolution@1 GeV γ , spatial and time resolution

Muon detector progress

Hybrid detector design:

- > μ/π suppression power > 30
- → μ detection efficiency > 70%
- \blacktriangleright @ 0.7 > p > 0.5 GeV/c
- μ detection efficiency > 95%
- \sim @ p > 0.7 GeV/c

 μ/π ID performance promotion

Simulated neutron/y ID performance

Software system research

An unified computing environment and platform:

Offline Software System of Super Tau-Charm Facility (OSCAR)

Outline

- 1. Physics motivation
- 2. Accelerator progress
- 3. Detector progress
- 4. Simulation studies
- 5. Summary

 \succ

 \succ

 \succ

J/ψ factory

□ Systematic study of **glueball**, **hybrid and conventional spectroscopy**

- Precision multi-variable analysis
- ► Comprehensive measurement of all possible decay modes, e.g. $J/\psi \rightarrow \gamma \eta \eta'$

Light hadrons η/η' factory : important role in low energy QCD

Decay Mode	$\mathcal{B}(\times 10^{-4})$ [9]	η/η' events
$J/\psi ightarrow \gamma \eta'$	52.1 ± 1.7	5.21×10^{9}
$J/\psi ightarrow \gamma\eta$	11.08 ± 0.27	1.1×10^{9}
$J/\psi ightarrow \phi \eta'$	7.4 ± 0.8	7.4×10^{8}
$J/\psi ightarrow \phi\eta$	4.6 ± 0.5	4.6×10^{8}

Baryon spectroscopy

Hyperon decays : CP asymmetry violation...

Decay mode	$\mathcal{B}(\text{units } 10^{-4})$	Angular distribution parameter α_{ψ}	Detection efficiency	No. events expected at STCF
$J/\psi ightarrow \Lambda ar{\Lambda}$	$19.43 \pm 0.03 \pm 0.33$	0.469 ± 0.026	40%	1100×10^{6}
$\psi(2S) \rightarrow \Lambda \bar{\Lambda}$	$3.97 \pm 0.02 \pm 0.12$	0.824 ± 0.074	40%	130×10^{6}
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	11.65 ± 0.04	0.66 ± 0.03	14%	230×10^{6}
$\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$	2.73 ± 0.03	0.65 ± 0.09	14%	32×10^{6}
$J/\psi ightarrow \Xi^- \bar{\Xi}^+$	10.40 ± 0.06	0.58 ± 0.04	19%	270×10^{6}
$\psi(2S)\to \Xi^-\bar{\Xi}^+$	2.78 ± 0.05	0.91 ± 0.13	19%	42×10^{6}

3T **J**/ψ

 $1T \boldsymbol{J}/\boldsymbol{\psi}$

D_(s) (semi-)leptonic decay

HADRON 2023

Purely leptonic:
$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2}\right)^2 \mathsf{D}_{(s)}^+ \mathsf{V}_{cd(s)}^+ \mathsf{V}_{cd(s)}^$$

Semi-leptonic:

2023/6/8

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{2|4\pi^3|} |V_{cs(d)}|^2 p_{K(\pi)}^3 |f_+^{K(\pi)}(q^2)|^2$$

Directly measurement : $|V_{cd(s)}| \times f_{D(s)}$ or $|V_{cd(s)}| \times FF$

- $\blacktriangleright \text{ Input } f_{D(s)} \text{ or } f^{k(\pi)}(0) \text{ from LQCD } \Rightarrow |V_{cd(s)}|$
- ► Input $|V_{cd(s)}|$ from a global fit $\Rightarrow f_{D(s)}$ or $f^{k(\pi)}(0)$

Source	BESII	II [57]	This work at STCF			
bource	$6 {\rm fb}^{-1}$ at 4	4.178 GeV	1 ab^{-1} at	4.009 GeV		
$\mathcal{B}_{D_{s}^{+} ightarrow au^{+}v_{ au}}$	1.6% _{stat.}	2.4% _{syst.}	0.3% _{stat.}	1.0% _{syst.}		
$f_{D_s^+}$ (MeV)	0.9% _{stat.}	1.4% _{syst.}	0.2% _{stat.}	0.6% _{syst.}		
$ V_{cs} $	0.9% _{stat.}	1.4% _{syst.}	0.3% _{stat.}	0.7% _{syst.}		
$\frac{\mathcal{B}_{D_{\mathcal{S}}^+ \to \tau^+ \nu_{\tau}}}{\mathcal{B}_{D_{\mathcal{S}}^+ \to \mu^+ \nu_{\mu}}}$	2.6%stat.	2.8% _{syst.}	0.5% _{stat.}	1.4% _{syst.}		

W/

 $f_+(q^2$

Outline

- 1. Physics motivation
- 2. Accelerator progress
- 3. Detector progress
- 4. Simulation studies
- 5. Summary

Summary

- **STCF** is proposed with high luminosity: $>0.5 \times 10^{35}$ cm⁻²s⁻¹ @ 4 GeV
- ✤ Large data and high sensitivity
- ✤ Accelerator: detailed conceptual design
- Detector: R&D on prototypes and key technical points
- Physics: performance evaluation for various processes
- Welcome the international collaboration

Thanks for your attention!

Back up

HADRON 2023

	Observable	BESIII (2020)	Belle II (50 ab ⁻¹)	STCF (1 ab^{-1})
-	Charmonium(like) spectroscopy:			
	Luminosity between 4-5 GeV	20 fb ⁻¹	0.23 ab-1	1 ab ⁻¹
-	Collins fragmentation functions:			
	Asymmetry in $e^+e^- \rightarrow KK + X$	0.3 [458]	-	< 0.002 [459]
	CP violations:			
QCD & Hadron structure	A_{cp} in hyperon	0.014 [26]	-	0.00023
	A_{cp} in $ au$	-	$O(10^{-3})/\sqrt{70}$ [251]	0.0009 [250]
Exotic hadrons	Leptonic decays of $D(s)$:			
	V_{cd}	0.03 [460]	-	0.0015
Precision EW	f_D	0.03	-	0.0015
	$\frac{\mathcal{B}(D \rightarrow \tau \nu)}{\mathcal{B}(D \rightarrow \mu \nu)}$	0.2	-	0.005
\succ CP violation	V_{cs}	0.02 [461]	0.005	0.0015
	f_{D_s}	0.02	0.005	0.0015
> New physics	$\frac{\mathcal{B}(D_S \to \tau \nu)}{\mathcal{B}(D_S \to \mu \nu)}$	0.04	0.009	0.0038
	D mixing parameter:			
	x	-	0.03	0.05 [462]
_	y	-	0.02	0.05
arXiv: 2303.15790	τ properties:			
	$m_{\tau} ({\rm MeV/c^{-2}})$	0.12 [463]	-	0.012
_	d_{τ} (e cm)	-	2.02×10^{-19}	5.14×10^{-19}
	cLFV decays of τ (U.L at 90% C.L.):			
	au ightarrow lll	-	1×10^{-9}	1.4×10^{-9}
	$\tau ightarrow \gamma \mu$	-	5×10^{-9}	1.2×10^{-8}
_	$J/\psi ightarrow e au$	$7.5 imes 10^{-8}$	-	7.1×10^{-10}
-				

Storage ring structure

µRWELL-based Inner tracker

- µRWELL: high counting rate,
 low budget, high spatial
 resolution, large area MPGD
- > Low material budget $(0.3\% X_0)$
- 3 layers of detector: R=60mm,
 110mm, 160mm
 - ➢ 400 µm readout strip pitch

Key scientific & technology points:

Large area **resistive layer** realization

Design and manufacture of key **electrode**

Low budget manufacturing process Readout electronics & ASIC design

High occupancy influence study

Cylindrical structure manufacturing

µRWELL-based Inner tracker

Large area Cu-DLC coating & test

Cylindrical detector design

Manufacturing method research & budget control

Hit reconstruction algorithm

Spatial resolution in rφ direction

Spatial resolution in z direction

in beamline direction (µm) 500 400 300 200 resolution pionpion+ 100 kaonkaon-Spatial proton 0 20 40 60 80 100 120 140 160 180 Polar angle (degree) 35

MAPS-based Inner tracker

Monolithic active pixel

sensor-based detector:

- ➢ High vertex resolution
- High counting rate & low occupancy

 $\sim -75 \mu m$ thick silicon wafer

3 layers of detector: R=36mm,
98mm, 160mm

Key scientific & technology points:

MAPS pixel **layout** and sensor **parameters** design

Readout and peripheral circuit design

Low-power, low-noise in-pixel circuit design Support mechanics and cooling system design HADRON 2023 Pile up effect research & optimization

Time resolution optimization

2023/6/8

MAPS-based Inner tracker

Chip framework (in-chip, readout and peripheral circuit)

Two independent chips design

Chip A

Chip B

Cell layout design with 4 pixels

HADRON 2023

Main drift chamber progress

□ Wire chamber-based MDC:

- ▶ 48 layers of wires (8 superlayer)
- \triangleright R_{in}=20cm, R_{out}=85cm
- Working gas He/C_3H_8 (60/40)
- $\Phi=20\mu m$ for Au-coated W

sense wires

• $\Phi=100\mu m$ for Al field wires

Key scientific & technology points:

Detector design and **parameters** optimization

Research and design of low-mass wires

2023/6/8

High density wiring technology

TIA-based readout electronics design High background influence (pile up, tracking...)

Waveform pulse discrimination & time resolution

HADRON 2023

Main drift chamber progress

dE/dx resolution

D_0 and momentum resolution of tracking system

 $\cos\theta = 0.0$

Particle Identification in the Barrel

- Ring imaging Cherenkov(RICH) detector:
- Solid angle: $\cos(\theta) < 0.83$
- ▶ Liquid C_6F_{14} as radiator
- CsI as photocathode
- MPGD as amplifier
- ➢ 5mm × 5mm readout pads array

Key scientific & technology points:

Purity and **cycling** of the liquid radiator

Large area **coating of CsI** photocathode

Compact prototype manufacturing & testing

High density, time and charge resolution needs **of electronics**

Front-End ASIC and electronics research HADRON 2023 **Reconstruction** of the Cherenkov ring

2023/6/8

Particle Identification in the Barrel

1st prototype module

Simulated Cherenkov ring generated by 2GeV/c pion with $\theta=0^{\circ}$ (blue) and $\theta=40^{\circ}$ (red)

2023/6/8

Simulated π efficiency and π/K mis-ID rate

Particle Identification in the Endcap

Detection of internal total-

- reflected Cherenkov light (DIRC)-like TOF:
- Solid angle: $0.81 < \cos(\theta) < 0.93$
 - Quartz as radiator
- Multi-anode MCP-PMTs as

photosensor

Key scientific & technology points:

Optical design of the radiator and photosensor

Readout **electronics** design with high precise time measurement

 \succ ~ 20 ps intrinsic time resolution

High-precision processing and **surface control** of quartz

Radiation resistance and aging of ASIC

Particle Identification in the Endcap

16 channel MCPPMT

16 channe

MCPPMT 16 channel

MCPPMT

16 channel MCPPMT

MCP-PN

16 channel

MCPPMT

16 channe

MCPPMT

672 channe

PXIe Crate

Zero-Board

Clock & Trigger

Fan-out Board

Fiber

Data

Data

Collect

& Control

Board

Front-end

Readout Board

Front-end

Readout Board

Front-end

Readout Board

1st full size prototype and the electronics system Dark Box

The likelihood PID capabilities for π/K separation

Electromagnetic calorimeter progress

pCsI scintillator:

- Short decay time
- Excellent radiation resistance
- $\blacktriangleright \text{ Crystal length} = 28 \text{ cm} (15 \text{ X}_0)$
- Crystal size ~ 5cm × 5cm
- ➢ 8670 crystals in total

Key scientific & technology points:

Crystal **parameters** & **APD** optimization

Effective wave fitting algorithm Prototype detector manufacturing & testing

Promotion of light yield

Large dynamic range electronic system

HADRON 2023

MHz background influence (pile up, $\triangle E...$)

Electromagnetic calorimeter progress

1500

2000

E (MeV

The EMC layout and defocus design

Energy resolution@1 GeV γ

Simulated spatial and time resolution

Muon detector progress

Hybrid detector design:

- ➢ (Inner) 3 layers of RPC
- (Outer) 7 layers of plastic scintillator
- 4 cm width RPC readout and scintillator strips
- ➢ 51 cm of iron yoke in total

Key scientific & technology points:

Hybrid detector **parameters** optimization

High rate and large area RPC develop **Timing** performance optimization

Electronic system suitable for both RPC and scintillator

Large area detector module **manufacturing**

Algorithm optimization for μ/π and neutral hadron

Muon detector progress

Double ended readout scintillator tests

μ/π ID performance promotion

Simulated μ/π ID performance

Simulated neutral hadron/photon ID performance

Trigger system research

Logical evaluation platform for MDC sub-trigger

Simulated trigger efficiency for MDC and EMC

