

Survey of hadronic molecules

Feng-Kun Guo

Institute of Theoretical Physics, Chinese Academy of Sciences

Charmonia and charmonium-like structures

Mass (MeV)

- Abundance of new states from peak hunting
 - \square *b*-hadron (*B*, Λ_b) decays
 - □ Hadron/heavy-ion collisions
 - $\Box \gamma \gamma$ processes
 - $\Box e^+e^-$ collisions

- What are they?
 - $\square Nonperturbative QCD \Rightarrow difficult!$

Many thresholds above 4 GeV

Hadronic molecules

Composite systems of hadrons

 \Box analogues of the deuteron ($\approx pn$ bound state)

 \Box bound by the residual strong force, more extended than $1/\Lambda_{OCD}$

• Compositeness 1 - Z

S. Weinberg (1965); V. Baru et al. (2004); T. Hyodo et al. (2012); F. Aceti, E. Oset (2012); Z.-H. Guo, J. Oller (2016); I. Matuschek et al. (2021); J. Song et al. (2022); M. Albaladejo, J. Nieves (2022); for reviews, see T. Hyodo, IJMPA 28 (2013) 1330045; FKG, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, RMP 90 (2018) 015004

probability of finding the physical state in two-hadron component (S-wave loosely bound)

can be expressed in terms of low-energy observables

> coupling constant $g_{NR}^2 \approx (1-Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$ E_B : binding energy; μ : reduced mass

 \succ ERE parameters (scattering length, effective range) $a \approx -\frac{2(1-Z)}{(2-Z)\sqrt{2\mu E_P}}, r_e \approx -\frac{Z}{(1-Z)\sqrt{2\mu E_P}}$ (for $r_e \leq 0$)

> phase shift $1 - Z = 1 - \exp\left(\frac{1}{\pi}\int_{0}^{\infty} dE \frac{\delta(E)}{E - E_{R}}\right)$ Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

- \checkmark derived with separable T-matrix & pole-dominance approximation of $\delta(E)$
- \checkmark valid independent of the sign of r_e

More discussion on compositeness:

talk by L.-R. Dai, June 8, 17:50, DAD - Room Benvenuto

Hadronic molecules in a NREFT at leading order

• Consider two hadrons in S-wave, near-threshold region \Rightarrow nonrelativistic EFT

 $T_{\rm NR}(E) = C_0 + C_0 G_{\rm NR}(E) C_0 + C_0 G_{\rm NR}(E) C_0 G_{\rm NR}(E) C_0 + \dots$ = $\frac{1}{C_0^{-1} - G_{\rm NR}(E)} = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$

 $\square \text{ Effective coupling: } g_{\text{NR}}^2 = \lim_{E \to -E_B} (E + E_B) T_{\text{NR}}(E) = \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$

□ Recall $g_{NR}^2 \approx (1 - Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$, the pole obtained at LO NREFT with a constant contact term is purely composite

Range corrections: other components at shorter distances

♦ coupling to additional states/channels

energy/momentum-dependent interactions: higher order

Molecular line shapes at LO

• Poles at LO NREFT: bound or virtual state

D Bound and virtual state can hardly be distinguished above threshold (E > 0)

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm\kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

- **\Box** Different below threshold (E < 0)
 - bound state: peaked below threshold

$$|T_{
m NR}(E)|^2 \propto rac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa + \sqrt{-2\mu E})^2}$$

E [MeV]

Im k **bound state pole** $k = i \kappa$ thr. **Re** k **k** = $-i \kappa$

Molecular line shapes at LO

Poles at LO NREFT: bound or virtual state

D Bound and virtual state can hardly be distinguished above threshold (E > 0)

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm \kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

- \square Different below threshold (E < 0)
 - bound state: peaked below threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto rac{1}{(\kappa + \sqrt{-2\mu E})^2}$$

E [MeV]

thr.

NREFT at LO for coupled channels

- Full threshold structure needs to be measured in a lower channel (ch-1) \Rightarrow coupled channels
- Consider a two-channel system, construct a "nonrelativistic" effective field theory (NREFT)
 - \succ Energy region around the higher threshold (ch-2), Σ_2
 - > Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - > Momentum in the lower channel can also be expanded

$$T(E) = 8\pi\Sigma_2 \begin{pmatrix} -\frac{1}{a_{11}} + ik_1 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_2 E - i\epsilon} \end{pmatrix}^{-1} = -\frac{8\pi\Sigma_2}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon} & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik \end{pmatrix}$$
$$\det = \left(\frac{1}{a_{11}} - ik_1\right) \left(\frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon}\right) - \frac{1}{a_{12}^2}$$

- a₂₂: single-ch. scattering length of ch-2
 a₁₁: single-ch. interaction
 - strength of ch-1 at Σ_2

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{q} \leq 0$ $T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1} \qquad \frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2(1 + a_{11}^2 k_1^2)} - i\frac{a_{11}^2 k_1}{a_{12}^2(1 + a_{11}^2 k_1^2)}.$

Distinct line shapes of the same pole

Line shapes of the same pole depend on the production mechanism. Consider production of particles in ch-1

- Dominated by ch-2
 Maximal at threshold
 - for positive $\text{Re}(a_{22,\text{eff}})$ (attraction), FWHM \propto $1/\mu$
 - more pronounced for heavier hadrons and stronger
 - interactions
 - **D** Peaking at pole for negative $\operatorname{Re}(a_{22,eff})$

- Dominated by ch-1
 One pole and one zero
 - Universality for large scattering length: for large $|a_{22}|$, there must be a dip around threshold (zero close to threshold)

Distinct line shapes of the same pole

THE REAL POINT OF THE POINT OF

- Example: $f_0(980)$
 - **T**-matrix for $\pi\pi$ and $K\overline{K}$ coupled channels

$\Box J/\psi \to \phi \pi^+ \pi^-$

 $\Box J/\psi \to \omega \pi^+ \pi^-$

Driving channel: $\pi\pi$ $J/\psi \rightarrow \omega\pi\pi \rightarrow \omega\pi^+\pi^-$

Binding mechanism

• One-boson exchange

□ One-pion exchange

N.A. Tönqvist, ZPC 61 (1994) 525; ...

> systems like $D\overline{D}$, $\Sigma_c\overline{D}$ unbound

Composite	J ^{PC}	Deuson
$Dar{D}^*$	0-+	$\eta_c (\approx 3870)$
$Dar{D}^*$	1++	$\chi_{c1} (\approx 3870)$
$D^*ar{D}^*$	0++	$\chi_{c0} (\approx 4015)$
$D^*ar{D}^*$	0-+	$\eta_c (\approx 4015)$
$D^*ar{D}^*$	1+-	$h_{c0} (\approx 4015)$
$D^*ar{D}^*$	2++	$\chi_{c2} (\approx 4015)$
$Bar{B}^*$	0-+	$\eta_b (\approx 10545)$
$Bar{B}^*$	1++	$\chi_{b1} (\approx 10562)$
$B^*ar{B}^*$	0++	$\chi_{b0} (\approx 10582)$
$B^*ar{B}^*$	0++	$\eta_b (\approx 10590)$
$B^*\bar{B}^*$	1+-	$h_b (\approx 10608)$
$B^*\bar{B}^*$	2++	$\chi_{b2} (\approx 10602)$

One-vector exchange S. Krewald, R. Lemmer, F. Sassen, PRD 69 (2004) 016003; ...

$\rightarrow D\overline{D}$ bound state predicted

Y.-J. Zhang, H.-C. Chiang, P.-N. Shen, B.-S. Zou, PRD 74 (2006) 014013; D. Gamermann et al., PRD 76 (2007) 074016; ...

- Hidden-charm pentaquarks above 4 GeV (including $\Sigma_c \overline{D}$) predicted
 J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL 105 (2010) 232001; ...
 talk by R. Molina, June 6, 11:00
- Soft-gluon exchanges talk by A. Nefediev, June 7, 14:30, DAD Room 4H

Provide a sector of the molecular spectrum in a simple model

♦ light-vector-meson exchanges

 \diamond single channel

♦ neglecting mixing

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65; CTP 73 (2021) 015201

Extension of the survey including more meson exchanges:

F.-Z. Peng, M. Sanchez-Sanchez, M.-J. Yan, M. Pavon Valderrama, PRD 105 (2022) 034028; M.-J. Yan, F.-Z. Peng, M. Pavon Valderrama, arXiv:2304.14855; talk by M. Pavon Valderrama, June 9, 09:30, DAD - Room 4H

For a list of the literature on one-boson exchange models, see, e.g., Y.-R. Liu et al., PPNP 107 (2019) 237

Survey of hadronic molecules: hidden-charm mesons w/ P = +

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

- \checkmark > 200 hidden-charm hadronic molecules
- ✓ X(3872) as a $\overline{D}D^*$ bound state
- $\checkmark \tilde{X}(3872)$ COMPASS, PLB 783 (2018) 334
- ✓ $\overline{D}D$ bound state from lattice S. Prelovsek et al., JHEP06 (2021) 035
 - & other models C.-Y. Wong, PRC 69 (2004) 055202; Y.-J. Zhang et al., PRD 74 (2006) 014013; D. Gamermann et al., PRD 76 (2007) 074016; J. Nieves et al., PRD 86 (2012) 056004; ...

 $\checkmark X(3960) \text{ in } B^+ \rightarrow D_s^+ D_s^- K^+$

pole at $3936.5^{+0.4}_{-0.9} + i (16.1^{+4.2}_{-2.2})$ MeV

Survey of hadronic molecules: hidden-charm mesons w/ P = +

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

✓ $D_s \overline{D}_s^*$, $D_s^* \overline{D}_s^*$ virtual states?

Virtual poles found from the fit in X. Luo, S.X. Nakamura, PRD 107 (2023) L011504

Hidden-charm mesons w/ P = -

- ✓ $Y(4260)/\psi(4230)$ as a $\overline{D}D_1$ bound state ✓ $\psi(4360), \psi(4415): D^*\overline{D}_1, D^*\overline{D}_2$?
- ✓ Evidence for $1^{--} \Lambda_c \overline{\Lambda}_c$ molecular state in BESIII data
 - Sommerfeld factor
 - near-threshold pole
 - different from $Y(4630)_{\odot}$

Data from BESIII, PRL 120 (2018) 132001; see also Q.-F. Cao et al., PRD 100 (2019) 054040

✓ Numerous states with exotic quantum numbers

 $0^{--} [\psi_0], 1^{-+} [\eta_{c1}], 3^{-+} [\eta_{c3}]$

e.g., $e^+e^- \rightarrow \gamma \eta_{c1,3}, \omega \eta_{c1,3}; \eta_{c1,3} \rightarrow D\overline{D}^*\pi, J/\psi \omega, \dots$

 ✓ Many 1⁻⁻ states in [4.8, 5.6] GeV: BEPC-II-Upgrade, Belle-II, LHCb, STCF, PANDA, ...

Closer look at the 0^{--} state

- 0⁻⁻ spin partner $\psi_0(4360) [D^*\overline{D}_1]$ of $\psi(4230), \psi(4360), \psi(4415)$ as $D\overline{D}_1, D^*\overline{D}_1, D^*\overline{D}_2$ hadronic molecules
- Robust against the inclusion of coupled channels and three-body effects

Molecul e	Components	J ^{PC}	Threshold	E_B
$\psi(4230)$	$\frac{1}{\sqrt{2}}(D\bar{D}_1 - \bar{D}D_1)$	1	4287	67 ± 15
$\psi(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 - \bar{D}^*D_1)$	1	4429	62 ± 14
$\psi(4415)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_2 - \bar{D}^*D_2)$	1	4472	49 ± 4
ψ_0	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1 + \bar{D}^*D_1)$	0	4429	63 ± 18

• May be searched for using $e^+e^- \rightarrow \psi_0 \eta$, $\psi_0 \rightarrow J/\psi \eta$, $D\overline{D}^*$, $D^*\overline{D}^*\pi$, ...

 $M = (4366 \pm 18)$ MeV,

 $\Gamma < 10 \; \text{MeV}$

Hidden-charm pentaquarks

X.-K. Dong, FKG, B.-S. Zou, Progr. Phys. 41 (2021) 65

- ✓ P_c states as $\overline{D}^{(*)}\Sigma_c^{(*)}$ molecules
- ✓ The LHCb data can be well described in a pionful EET

✓ $P_{cs}(4459)$: 2 $\overline{D}^*\Xi_c$ molecular states ✓ $P_{cs}(4338)$: $\overline{D}\Xi_c$ molecular state

Double-charm tetraquarks and dibaryons

\checkmark $T_{cc}(3875)$ as D^*D molecule

X.-K. Dong, FKG, B.-S. Zou, CTP 73 (2021) 125201

✓ The LHCb data can be well described in a pionful EFT w/ 3-body effects

M.-L. Du et al., PRD 105 (2022) 014024; Talk by V. Baru, June 8, 15:00, DAD - Room 4H

- \checkmark isoscalar DD^* molecular state
- ✓ It has a spin partner $1^+ D^*D^*$ state
- \checkmark Many (> 100) other similar double-charm molecular states

Summary

- A rich spectrum of hadronic molecules is expected
- General rule for (near-)threshold structures: S-wave attraction, more prominent for heavier particles and stronger attraction
- Pole behavior: distinct line shapes depending on reaction mechanism
- Universality: a dip (for large $|a_{22}|$) at the higher channel threshold in T_{11}

More talks on hadronic molecules:

Plenary	DAD - Room 4H	DAD - Room Benvenuto	DAD - Room 5L
R. Molina, June 6, 11:00 M. Mai, June 6, 11:30 Y. Yamaguchi, June 7, 11:30	 L. Dai, June 5, 14:30 A. Feijoo, June 5, 15:30 MJ. Yan, June 5, 17:25 A. Nefediev, June 7, 14:30; 16:55 E. Oset, June 8, 14:30 V. Baru, June 8, 15:00 LR. Dai, June 8, 15:30 A. Ramos, June 8, 17:00 N. Ikeno, June 8, 18:10 M. Pavon Valderrama, June 9, 09:30 	F. Gil, June 6, 14:30 LS. Geng, June 6, 14:50 M. Albaladejo, June 6, 15:10 LP. He, June 6, 15:30 N. Ikeno, June 6, 16:30 A. Feijoo, June 6, 17:10 J. Nieves, June 7, 14:30 S. Yasui, June 7, 17:45 LR. Dai, June 8, 17:50 A. Asokan, June 8, 18:10	LR. Dai, June 7, 17:10 C. Fernandez-Ramirez, June 7, 17:50

Thank you for your attention!

Reviews in the last few years

● >>10 review articles:

- H.-X. Chen et al., *The hidden-charm pentaquark and tetraquark states*, Phys. Rept. 639 (2016) 1
- A. Hosaka et al., Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016 (2016) 062C01
- J.-M. Richard, *Exotic hadrons: review and perspectives*, Few Body Syst. 57 (2016) 1185
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heavy-quark QCD exotica*, PPNP 93 (2017)143
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1
- FKG, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules, RMP 90 (2018) 015004
- A. Ali, J. S. Lange, S. Stone, Exotics: *Heavy pentaquarks and tetraquarks*, PPNP 97 (2017) 123
- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, RMP 90 (2018) 015003
- □ Y.-R. Liu et al., Pentaquark and tetraquark states, PPNP107 (2019) 237
- N. Brambilla et al., The XYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873 (2020) 154
- Y. Yamaguchi et al., Heavy hadronic molecules with pion exchange and quark core couplings: a guide for practitioners, JPG 47 (2020) 053001
- **FKG**, X.-H. Liu, S. Sakai, *Threshold cusps and triangle singularities in hadronic reactions*, PPNP 112 (2020) 103757
- G. Yang, J. Ping, J. Segovia, Tetra- and penta-quark structures in the constituent quark model, Symmetry 12 (2020) 1869
- C.-Z. Yuan, Charmonium and charmoniumlike states at the BESIII experiment, Natl. Sci. Rev. 8 (2021) nwab182
- H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, An updated review of the new hadron states, RPP 86 (2023) 026201
- L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules, Phys. Rept. 1019 (2023) 2266;

□

+ a book:

A. Ali, L. Maiani, A. D. Polosa, *Multiquark Hadrons*, Cambridge University Press (2019)

$Z_{cs}(3985)$ and $Z_{cs}(4000)$: different or not?

• Line shapes of the same state can strongly depend on reactions

X.-K. Dong, FKG, B.-S. Zou, PRL 126 (2021) 152001

 $RM(K^+)$