

Search for hexaquark/di-baryon state at BESIII

HINA

Y OF 500

Bo Zheng (Univ. South China) On behalf of the BESIII Collaboration 2023/06/05 HADRON2023, Genova, Italy

Outline

> Introduction

> Brief history of $d^*(2380)$

BESIII detector

- > Study of $e^+e^- \rightarrow 2(p\overline{p})@4.0-4.6 \text{ GeV}$ PRD 103 (2021) 052003
- > Observation of $e^+e^- \rightarrow pp\overline{p}\overline{p}\pi^- + c.c.$

CPC 47 (2023) 043001

> Prospects

> Summary

Introduction

- > Naïve Quark Model has made great success in particle physics
 - ✓ Meson with two quarks
 - ✓ Baryon with three quarks
- > Any particle beyond it? Not forbidden by QCD!
 - Multi-quark/exotic states

Hybrid

Four quarks

 \oplus

Ð

Five quarks

- > The world was once simple, until 2003(X(3872))
- Story on hexa-quark/di-baryon state...

Brief history of $d^*(2380)$

- > Deuteron is so far the only confirmed six-quark state (*p-n* molecule)
- > Any other baryon-baryon molecule? Does hexa-quark state really exist?
- > Many di-baryon states predicted by theory from 1960s, the ABC effect
 - ΔΔ bound state in 1964, Dyson and Xuong based on SU(6)

Y = 2 STATES IN SU(6) THEORY*

Freeman J. Dyson[†] and Nguyen-Huu Xuong Department of Physics, University of California, San Diego, La Jolla, California (Received 30 November 1964)

Particle	Т	J	SU(3) multiplet	Comment	Predicted mass
<i>D</i> ₀₁	0	1	10*	Deuteron	A
D_{10}	1	0	27	Deuteron singlet state	A
D_{12}	1	2	27	S-wave $N-N^*$ resonance	A + 6B
D_{21}	2	1	35	Charge-3 resonance	A + 6B
D_{03}	0	3	10*	S-wave $N^* - N^*$ resonance	A + 10B
D_{30}	3	0	28	Charge-4 resonance	A + 10B

4

Table I. Y = 2 states with zero strangeness predicted by the <u>490</u> multiplet.

Brief history of $d^*(2380)$

Professor Marek Karliner

Phys. Rev. Lett. 115, no. 12, 122001 (2015) doubly-heavy hadronic molecules: most likely candidates with $Q\bar{Q}', Q = c, b, \bar{Q}' = \bar{c}, \bar{b}$: $D\overline{D}^*$, $D^*\overline{D}^*$, D^*B^* , $\overline{B}B^*$, \overline{B}^*B^* , $\Sigma_c \overline{D}^*$, $\Sigma_c B^*$, $\Sigma_b \overline{D}^*$, $\Sigma_b B^*$, the lightest of new kind $\Sigma_c \overline{\Sigma}_c, \Sigma_c \overline{\Lambda}_c, \Sigma_c \overline{\Lambda}_b, \Sigma_b \overline{\Sigma}_b, \Sigma_b \overline{\Lambda}_b, \text{ and } \Sigma_b \overline{\Lambda}_c.$ $c\bar{c}$ and $b\bar{b}$ states decay strongly to $\bar{c}c$ or $\bar{b}b$ and π -(s) $b\bar{c}$ and $c\bar{b}$ states decay strongly to B_c^{\pm} and π -(s) QQ' candidates – dibaryons $\Sigma_c \Sigma_c$, $\Sigma_c \Lambda_c$, $\Sigma_c \Lambda_b$, $\Sigma_b \Sigma_b$, $\Sigma_b \Lambda_b$, and $\Sigma_b \Lambda_c$

M. Karliner, New Heavy Exotics

M. Karliner and J. L. Rosner.

Brief history of $d^*(2380)$

Several experiments performed the search

- $\checkmark pn/\overline{p}\overline{n}$ scattering experiments
- ✓ Until 2011, WASA-at-COSY firstly observe *d**(2380) in $pn \rightarrow d\pi^0 \pi^0$
- ✓ Confirmed by $pn \to d\pi^+\pi^-$
- ✓ Further evidence from $pn \to pp\pi^0\pi^-$, $pn \to pn\pi^0\pi^0$...

$$m \approx 2.37 \text{ GeV}/c^2, \Gamma \approx 70 \text{ MeV}$$

 $I(J^P) = 0(3^+)$

Other proofs

✓ Non-fusion reactions @COSY

WASA-at-COSY, PLB 743 (2015) 325

\checkmark From $\vec{n}p$ scattering @COSY &SAID DAC

WASA-at-COSY & SAID DAC, PRL 112 (2014) 202301

✓ Also in fusion reactions to helium isotopes

Other evidence

✓ Experiments @ELPH2017/ELPH2019/MAMI/ELSA

$d^*(2380)$ at BESIII

- > Why $d^*(2380)$ exceptional?
- 2464 $\Delta \Delta$ ✓ Exotic state, nature is not known **d*** 2380 Different with other exotic states, unusual narrow width, far \checkmark 2309 ΔΝπ from $\Delta \Delta$ mass threshold and highest known spin 2154 ΝΝππ \checkmark d*(2380) could be a candidate of dark matter? > Why BESIII? \checkmark Unique at τ – Charm region and large data within 4-4.95 GeV 1878 NN ✓ Very clean environment
 - ✓ Unique advantage in $\overline{d}^*(2380)$, which could not be achieved by
 - p-n scattering experiment

 $\Gamma_{d*} \approx 70 \text{ MeV}$

<

Decays of $d^*(2380)$

The observation and measurement are all from nuclear reactions

- \$\overline{d}^*(2380)\$ has never been searched at \$e^+e^-\$ collision experiment, it's necessary to have a cross check, especially the NN mass spectra
- Any other potential hexaquark/ dibaryon candidate?

Branching ratio(%) Channels $d\pi^0\pi^0$ 14(1) $d\pi^+\pi^-$ 23(2) $pn\pi^0\pi^0$ 12(2) $pn\pi^+\pi^-$ 30(5) $pp\pi^{-}\pi^{0}$ 6(1) $nn\pi^+\pi^0$ 6(1) $NN\pi$ 12(3)103(15)Total

Eur. Phys. J. A 51 (2015) 87

BEPCII and BESIII detector

BEPCII and BESIII detector

BESIII data

Total integrated
 Iuminosity > 30 fb⁻¹

 Reach to 4.95 GeV
 Large data samples

taken from 4.0-4.94 GeV

Measurement of $e^+e^- \rightarrow pp\overline{p}\overline{p}$

PRD 103 (2021) 052003

Motivation of $e^+e^- \rightarrow pp\overline{p}\overline{p}$

- Motivated by studying Y(4220), observed only in many open or hidden charm processes, never in light hadrons
- > Nature of Y(4260) remains an open question

Baryon pair mass spectra could be checked for di-baryon searches

Data and signals

> Data taken at 23 c.m. energies, \sqrt{s} =4.0-4.6 GeV

 \succ Signal is extracted with R_E

 $R_E = E_{measure}/E_{cm}$

Almost background free

Cross section results

Cross section results

$$\sigma^{Born} = \frac{N^{net}}{\mathcal{L} \times \epsilon \times (1 + \delta^{\gamma}) \times (\frac{1}{|1 - \Pi|^2})}$$

Fit with four assumptions

- a) Purely continuum production(4 body PHSP)
- b) Exponential function

$$\sigma^{Born}(s) = \frac{1}{s} \times e^{-p_0(\sqrt{s} - M_{th})} \times p_1$$

c) b)+ $\psi(4160)$

$$\sigma^{Born}(s) = |BW(\sqrt{s})e^{i\phi} + \sqrt{f(\sqrt{s})}|^2$$

d) b)+*Y*(4220)

> 0.83 σ for $\psi(4160)$, 1.69 σ for Y(4220)> Disfavor to $2(p\bar{p})$

Baryon-pair spectra

Baryon-pair mass spectra

> No hexa-quark or di-baryon state evidence within current statistics

Observation of $e^+e^- \rightarrow pp\overline{p}\overline{n}\pi^- + c.c.$

CPC 47 (2023) 043001

Data and signals

- > Data with 29 energy points, \sqrt{s} =4.160-4.700 GeV
- Signal is fitted with recoil mass of reconstructed charged particles

$$\boldsymbol{M_{rec}}\boldsymbol{c}^2 = \sqrt{(\boldsymbol{E_{e^+e^-}} - \boldsymbol{E_{pp\bar{p}\pi^-}})^2 - (\boldsymbol{P}_{e^+e^-} - \boldsymbol{P}_{pp\bar{p}\pi^-})^2 \cdot \boldsymbol{c}^2}$$

- \succ Statistical significance of 11.5 σ
- Average observed and Born cross section are determined

$$\overline{\sigma}_{j}^{obs} = \frac{N_{j}^{sig}}{(\Sigma_{i}\varepsilon_{i}\cdot\mathcal{L}_{i})\cdot f_{PID}\cdot f_{trk}} \qquad \overline{\sigma}_{j}^{Born} = \frac{\overline{\sigma}_{j}^{obs}}{(1+\delta^{\gamma})_{j}\cdot(\frac{1}{|1-\Pi|^{2}})_{j}}$$

Cross section results

Cross section results

Seems favor the exponential function curve, but need more precision measurement

Mass spectra

> Mass spectra of $pp\pi^-$ and $\bar{p}\bar{n}$

Consistent with PHSP MC and no significant structure

Prospects of BESIII

- ➤ More data taking proposals in 2024--
 - ✓ BEPCII upgrade scheduled in July, 2024
 - ✓ To 5.6 GeV
 - ✓ 3 times more luminosity

More channels with multi-baryon process could be achieved

- Interesting di-baryon state, d*(2380), never confirmed within e⁺e⁻ colliders
- > With the BESIII data in 4.0-4.7 GeV, cross section of two multibaryon processes are measured, $e^+e^- \rightarrow pp\overline{p}\overline{p}$ and $pp\overline{p}\overline{n}\pi^- + c.c.$
- No evidence of hexaquark or di-baryon state found
- > More searches in the future, with upgrade of BESIII

Thanks for your attention!