Effective Field Theories for Hadron Spectroscopy

R. Molina, T. Branz, F. Gil-Dominguez, L.R. Dai and E. Oset

Table of contents

- 1. Introduction
- 2. Local-Hidden-Gauge Formalism
- 3. New exotic hadrons

Pentaquark states

- 4. D^*D^* and $D^*D^*_s$ states
- 5. The $X_0(2866)$ or $T_{cs}(2900)$
- 6. The $T_{c\bar{s}}(2900)$
- 7. $D_{s0}(2317)$ quark mass dependence
- 8. Conclusions

Intro

Hadrons

• 'Regular' hadrons: qq, qqq

• Exotics: $q\bar{q}q\bar{q}$, $qqqq\bar{q}$, qqg,... Not $q\bar{q}$: $J^{PC} = 0^{+-}$, 1^{-+} , 2^{+-} , 3^{-+} ,...

Light hadrons

Close to ...

$$\longrightarrow \mathsf{PP} \text{ th. } \pi\pi, \, K\bar{K}... \, \mathsf{PB} \, K\Lambda, \pi\Sigma, \, \bar{K}N...$$

$$\longrightarrow \mathsf{PV} \text{ th. } K\bar{K}^*, \, \pi\rho, \, \pi\omega, \, \eta\omega... \, \mathsf{SB} \, \sigma N...$$

$$\longrightarrow \mathsf{VV} \text{ th. } \rho\rho, \, K^*\bar{K}^*... \, \mathsf{VB} \, \rho(\omega)N,$$

$$K^*N...$$

 \longrightarrow Hybrid, Glueball candidate

Particle	J^P	overall
N	$1/2^{+}$	****
N(1440)	$1/2^+$	****
N(1520)	$3/2^{-}$	****
N(1535)	$1/2^{-}$	8484
N(1650)	$1/2^{-}$	****
N(1675)	$5/2^{-}$	****
N(1680)	$5/2^{+}$	8484
N(1700)	3/2-	***
N(1710)	$1/2^{+}$	****
N(1720)	$3/2^{+}$	****
N(1860)	$5/2^{+}$	8-6
N(1875)	$3/2^{-}$	***
N(1880)	$1/2^{+}$	***

		Overall		Stati	1s as seen in —
Particle	J^P	status	$N\overline{K}$	$\Sigma \pi$	Other channels
A(1116)	$1/2^+$	****			$N\pi$ (weak decay)
A(1380)	$1/2^{-}$	**	**	**	
(1405)	$1/2^{-}$	****	****	****	
A(1520)	$3/2^{-}$	****	****	****	$A\pi\pi, A\gamma$
A(1600)	$1/2^{+}$	****	***	****	$A\pi\pi, \Sigma(1385)\pi$
A(1670)	$1/2^{-}$	****	****	****	$A\eta$
(1690)	$3/2^{-}$	****	****	***	$A\pi\pi, \Sigma(1385)\pi$
A(1710)	$1/2^{+}$	+	+	+	
4(1800)	$1/2^{-}$	***	***	**	$A\pi\pi, \Sigma(1385)\pi, N\overline{K}^*$
A(1810)	$1/2^+$	***	**	**	$N\overline{K}_{2}^{*}$
A(1820)	$5/2^{+}$	****	****	****	$\Sigma(1385)\pi$
A(1830)	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$
A(1890)	$3/2^{+}$	****	****	**	$E(1385)\pi, N\overline{K}^{+}$
A(2000)	$1/2^{-}$	+	+	+	

 h₁(1415) 	0~(1
was h ₁ (1380)	
a1(1420)	17(1
 f₁(1420) 	0+(1
 ω(1420) 	0~(1
$f_2(1430)$	0+(2
 a₀(1450) 	17(0
 ρ(1450) 	1+(1
 η(1475) 	0+(0
 f₀(1500) 	0+(0

LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I = 1 (π, b, ρ, a) : $u \overline{d}$, $(u \overline{u} - d \overline{d}) \sqrt{2}$, $d \overline{u}$; for I = 0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u} + d\overline{d}) + c_2(s\overline{s})$

See related reviews:

Form Factors for Radiative Pion and Kaon Decays Scalar Mesons below 2 GeV

$\rho(770)$

Pseudoscalar and Pseudovector Mesons in the 1400 $\rho(1450)$ and $\rho(1700)$

 π[±] 	1~(0~)	$f_1(1510)$
 π⁰ 	$1^{-}(0^{-+})$	 f₂(1525)
• 11	0+(0^++)	$f_2(1565)$
 <i>f</i>₀(500) 	0+(0++)	$\rho(1570)$
aka a; was (600)		$h_1(1595)$
 ρ(770) 	1+(1)	 π₁(1600)
 ω(782) 	0-(1)	• a ₁ (1640)
 η'(958) 	$0^+(0^{-+})$	$f_2(1640)$
 f₀(980) 	0+(0++)	• $\eta_2(1645)$
 a₀(980) 	1-(0++)	 ω(1650)
 <i> </i>	0-(1)	 ω₃(1670)
 h₁(1170) 	0-(1+-)	 π₂(1670)
 b₁(1235) 	1+(1+-)	 \$\phi(1680)\$
 a₁(1260) 	1-(1++)	• $\rho_3(1690)$
 f₂(1270) 	0+(2++)	 ρ(1700)
 f₁(1285) 	0+(1++)	 a₂(1700)
 η(1295) 	0+(0-+)	 f₀(1710)
 π(1300) 	1^(0^+)	$\eta(1760)$
 a₂(1320) 	1-(2++)	 π(1800)
 f₀(1370) 	0+(0++)	$f_2(1810)$
	1-(1-+)	X(1835)
 π₁(1400) 	1 (1 .)	 φ₁(1850)
 η(1405) 	$0^+(0^{-+})$	

Methods: EFT's, Chiral symmetry, Unitarity

General properties of the scattering amplitudes: Analyticity, Unitarity, Crossing symmetry, applied often in combination with EFT (chiral symmetry)

- Unitarized Chiral Perturbation Theory. Oller, Oset, Pelaez (1997)
- Inverse Amplitude Method. Truon, Herrero, Dobado, Pelaez (1988)
- Roy-Steiner equations based on dispersion relations. Roy, Steiner, Hite (1971)
- N/D method, Oller (1998)
- Bethe-Salpeter ...

and LQCD!

Example of Application in combination with LQCD data σ meson. Guo, Alexandru, Molina, Mai, Döring, PRD98 (2018)

Dynamically generated resonances

Many suggestions of dynamically generated resonances...

 Oller, Oset, Pelaez, Ramos, Hanhart, Krewald, Speth, Nieves, Inoue, Ruiz-Arriola, Meissner, Vicente-Vacas, Garcia-Recio, Molina, Roca, Geng, Alvarez-Ruso, Alarcon, Albaladejo, Nícola ...
 ... and a very long list of authors!...´

However, no clear statement for them in the light sector since ...

• Most of these exotic candidates can overlap with $q\bar{q}/qqq$ except for those with non- $q\bar{q}$ quantum numbers like $\pi_1(1400)$, $\pi_1(1600)$...

Clear evidence of exotic states!

- Hidden-charm charged tetraquarks $Z_c^+ \sim c \bar{d} u \bar{c} (D^{(*)} \bar{D}^{(*)})$. Hidden-strange candidate? $a_0(980)$? ... more?
- Hidden-charm (strange) pentaquarks P⁺_{c(s)} ~ cc̄uud(s), (D̄^(*)Σ^(*)_c(Ξ^(*)_c)). Hidden-strange candidate? N^{*}(1535), (strange) Λ(1405), ...more?

LHCb (2020)

Two states $J^P = 0^+, 1^-$ decaying to $\overline{D}K$. First clear example of an heavy-flavor exotic tetraquark, $\sim \overline{c}\overline{s}ud$.

$$\begin{split} X_0(2866) &: M = 2866 \pm 7 \quad \text{and} \quad \Gamma = 57.2 \pm 12.9 \, \mathrm{MeV}, \\ X_1(2900) &: M = 2904 \pm 5 \quad \mathrm{and} \quad \Gamma = 110.3 \pm 11.5 \, \mathrm{MeV}. \end{split}$$

R. Aaij et al. (LHCb Collaboration), PRL125(2020), PRD102(2020)

LHCb (2022)

One state decaying $T_{c\bar{s}}(2900)$ decaying to $D_s^+\pi^-$ and $D_s^+\pi^+$ has been observed $\sim c\bar{s}u\bar{d}$.

- The analysis favors $J^P = 0^+$
- Mass, $m = 2908 \pm 11 \pm 20$ MeV
- Width, $\Gamma = 136 \pm 23 \pm 11$ MeV

arXiv:2212.02717 D^*K^* th.: 2903 MeV $D_s^*\rho$ th.: 2890 MeV

Local-Hidden-Gauge Formalism

The hidden gauge formalism

Bando, Kugo, Yamawaki, PRL54,1215

Lagrangian

$$\mathcal{L} = \mathcal{L}^{(2)} + \mathcal{L}_{III} \tag{1}$$

$$\mathcal{L}^{(2)} = \frac{1}{4} f^2 \langle D_\mu U D^\mu U^\dagger + \chi U^\dagger + \chi^\dagger U \rangle$$

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle + \frac{1}{2} M_V^2 \langle [V_\mu - \frac{i}{g} \Gamma_\mu]^2 \rangle$$

$$D_\mu U = \partial_\mu U - ieQA_\mu U + ieUQA_\mu, \qquad U = e^{i\sqrt{2}P/f}$$
(2)

Upon expansion of $[V_{\mu} - \frac{i}{g}\Gamma_{\mu}]^2$, $\mathcal{L}'s$

$$\mathcal{L}_{V\gamma} = -M_V^2 \frac{e}{g} A_{\mu} \langle V^{\mu} Q \rangle, \\ \mathcal{L}_{VPP} = -ig \langle V^{\mu} [P, \partial_{\mu} P] \rangle, \\ \mathcal{L}_{\gamma PP} = ie A_{\mu} \langle Q[P, \partial_{\mu} P] \rangle, \\ \dots$$

$$\frac{F_V}{M_V} = \frac{1}{\sqrt{2}g}, \qquad \frac{G_V}{M_V} = \frac{1}{2\sqrt{2}g}, \qquad F_V = \sqrt{2}f, \qquad G_V = \frac{f}{\sqrt{2}}, \qquad g = \frac{M_V}{2f}$$

Vector-vector scattering Bando, Kugo, Yamawaki

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle \longrightarrow \mathcal{L}_{III}^{(3V)} = ig \langle (\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \rangle$$
$$\mathcal{L}_{III}^{(c)} = \frac{g^{2}}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle$$

11

PB and VB interaction

$$\begin{split} \mathcal{L}_{BBV} &= g(\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle) \\ t_{P_1 P_2 V} &= g_{15_F} \, C_{15_F} (15 \otimes 15) \, (q_1 + q_2)_{\mu} \epsilon^{\mu} \\ t_{B_1 \bar{B}_2 V} &= \{ g_{15_1} \, C_{15_1} (20' \otimes \bar{20}') + g_{15_2} \, C_{15_2} (20' \otimes \bar{20}') \\ + g_1 \, C_1 (20' \otimes \bar{20}') \} \bar{u}_{r'} (p_2) \gamma \cdot \epsilon \, u_r (p_1) \end{split}$$

with $g_{15_F} = -2\sqrt{2}g$. g_{15_1} , g_{15_2} and g_1 are evaluated demanding

The couplinga pp̄ → J/ψ, pp̄ → φ should be zero by OZI rules,
 The coupling pp̄ → ρ⁰ should be the one obtained in SU(3).

$$g_{15_1} = -g;$$
 $g_{15_2} = 2\sqrt{3}g;$ $g_1 = 3\sqrt{5}g.$

Bethe-Salpeter equation

$$T = [I - VG]^{-1}V$$

New exotic hadrons

Wu, Molina, Oset, Zou (2010)

$$V_{ab(P_1B_1 \to P_2B_2)} = \frac{C_{ab}}{4f^2} (q_1^0 + q_2^0)$$
$$V_{ab(V_1B_1 \to V_2B_2)} = \frac{C_{ab}}{4f^2} (q_1^0 + q_2^0)\vec{\epsilon_1} \cdot \vec{\epsilon_2}$$

PB resonances (units in MeV)

(I, S)	М	Г			Г	i		
(1/2, 0)			πN	ηN	$\eta' N$	KΣ		$\eta_c N$
	4261	56.9	3.8	8.1	3.9	17.0		23.4
(0, -1)			ĒΝ	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	KΞ	$\eta_c \Lambda$
	4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8
	4394	43.3	0	10.6	7.1	3.3	5.8	16.3

VB resonances

(1, 5)	М	Г			Г	i		
(1/2, 0)			ρN	ωN	K*Σ			$J/\psi N$
	4412	47.3	3.2	10.4	13.7			19.2
(0, -1)			<i>¯¯</i> [∗] <i>N</i>	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	к*Ξ	$J/\psi\Lambda$
	4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
	4544	36.6	0	8.8	9.1	0	5.0	13.8

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	К*Λ	$K^*\Sigma$	ϕN	ωN	ρN	$\bar{D}^* \Lambda_c^+$	$\bar{D}^*\Sigma_c$	
$\bar{D}^* \Lambda^+$ 1 -3/2 - $\sqrt{3}/2$ 0 0	0	1	0	$\sqrt{3}/2$	-1/2	0	-1	$\bar{D}^*\Sigma_c$
6	1	Ō	0	$-\sqrt{3}/2$	-3/2	1		$\bar{D}^* \Lambda_c^+$

 C_{ab} for the VB system in the sector I = 1/2, S = 0.

	$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^* \Xi_c$	$\bar{D}^* \equiv_c'$	ρΣ	ωΛ	$\phi \Lambda$	<i>Ē</i> ∗N	<i>κ</i> *Ξ
$\bar{D}_s^* \Lambda_c^+$	0	$-\sqrt{2}$	0	0	0	$^{-1}$	$-\sqrt{3}$	0
$\bar{D}^* \equiv_c$		-1	0	-3/2	-1/2	0	0	$\sqrt{3/2}$
$\bar{D}^* \equiv_c'$			$^{-1}$	$\sqrt{3}/2$	$\sqrt{3}/2$	0	0	$1/\sqrt{2}$

 C_{ab} for the VB system in the sector I = 0, S = -1.

 $\Lambda_b \rightarrow p + J/\psi + K^-$

Experimental Pc states (LHCb, 2019)

M (MeV)	Γ (MeV)						
$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7 \substack{+3.7 \\ -4.5}$						
$4440.3 \pm 1.3 \substack{+4.1 \\ -4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$						
$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4 \pm 2^{+5.7}_{-1.9}$						
P _{CS} states (LHCb, 2020)							
$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5 \substack{+8.0 \\ -5.7}$						

LHCb 2015.

 $P_c^+(4380), M = (4380 \pm 8 \pm 29)$ MeV, $\Gamma = (205 \pm 18 \pm 86)$ MeV, and P_c^+ (4450), $M = (4449.8 \pm 1.7 \pm 2.5)$ MeV, $\Gamma = (39 \pm 5 \pm 19)$ MeV Assignments: $(3/2^+, 5/2^-)$ and $(5/2^+, 3/2^-)$ are possible.

5+ D 5+ D+0 (7 MeV) 8 (2 MeV) - data LHCb heckaroun P_(4440)* LP_(4457 P (4312) 200 4200 4250 4300 4350 4400 4450

FIG. 2: Results for the K^-p and $J/\psi p$ invariant mass distri-

The theoretical analysis of the $\Lambda_b \rightarrow J/\psi K^- p$ Roca, Nieves, Oset, PRD92 (2015) supports the $J^P = 3/2^-$ assignment of the pentaquark state, and its nature as $\bar{D}^* \Sigma_c$. $\bar{D}^* \Sigma_c^*$ molecule.

In 2019 the new experimental analysis shows one more pentaquark, $P_c(4312)$ and $P_c(4450)$ splits into two

• Generalized HGF formalism with HQSS Xiao, Nieves, Oset (2013,2019)

Mass	Width	Main channel	JР	Experiment
4306.4	15.2	DΣc	$1/2^{-}$	P _c (4312)
4453.0	23.4	$\bar{D}^* \Sigma_c$	$1/2^{-}$	P _c (4440)
4452.5	3.0	$\bar{D}^* \Sigma_c$	$3/2^{-}$	P _c (4457)

Heavy quarks act as spectators if we exchange light vectors. Heavy quark spin symmetry is automatically fulfilled.

- OMEP, Interaction given by One-Meson-Exchange Potential, Yamaguchi, Santopinto, PRD96 (2017)
- Coupling meson-baryon with compact 5*q* state, Hosaka, Tacheuchi, Takizawa, Yamaguchi, Santopionto (2017)
- Analysis of the J/ψ data with coupled-channel involving both one-pion exchange as well as short-range interaction, Du, Baru, Guo, Hanhart, Meissner, Wang PRL124 (2020)

Flavour exotic states

• 2010. Prediction of several flavour exotic states

PHYSICAL REVIEW D 82, 014010 (2010)

New interpretation for the $D_{s2}^{*}(2573)$ and the prediction of novel exotic charmed mesons

R. Molina,1 T. Branz,2 and E. Oset1

¹Departamento de Física Teórica and IFIC, Centro Misto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain ²Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany (Received 4 May 2010): published 21 July 2010)

In this manuscript we study the vector-vector interaction within the hidden-gauge formalism in a coupled channel unitary approach. In the sector C = 1, S = 1, J = 2 we get a pole in the *T* matrix around 2572 MeV that we identify with the $D_{22}^*(2573)$, coupling strongly to the $D^*K^*(D^*_{22}\phi(au))$ channels. In addition we obtain resonances in other exotic sectors which have not been studied before such as C = 1, S = -1, C = 2, S = -1 and C = 2, S = -1. These "flavor-exotics" states are interpreted as D^{**}_{12}, D^*_{12} and $D^{**}_{12}D^*_{12}$ molecular states but have not been observed yet. In total we obtain nine states with dufterent spin, isospin, charm, and strangeness of non-C = 0, S = 0 and C = 1, S = 0 character, which have been reported before.

DOI: 10.1103/PhysRevD.82.014010

PACS numbers: 14.40.Rt, 12.40.Vv, 13.75.Lb, 14.40.Lb

- Free parameter fixed with $D_{s2}(2573)$; couples to D^*K^* , $c\bar{q}q\bar{s}$
- Flavour exotic states with I = 0, $J^P = \{0, 1, 2\}^+$ coupling to $D^*\bar{K}^*$ are predicted, $c\bar{q}s\bar{q}$
- Doubly charm states, I = 0; $J^P = 1^+$, close to D^*D^* are predicted, $c\bar{q}c\bar{q}$, and I = 1/2; $J^P = 1^+$, close to $D^*D_s^*$ $c\bar{q}c\bar{s}$

Flavour exotic states

Molina, Branz, Oset, PRD82(2010)

C, S	Channels	$I[J^P]$	\sqrt{s}	$\Gamma_{\rm A}(\Lambda=1400)$	$\Gamma_{\rm B}(\Lambda=1200)$	State	$\sqrt{s_{exp}}$	$\Gamma_{\rm exp}$
1, -1	D*	0[0+]	2848	23	59	$X_0(2866)$ or $T_{cs}(2900)$	2866	57
		0[1+]	2839	3	3			
		0[2+]	2733	11	36			
1,1	$D^*K^*, D_s^*\omega$	0[0+]	2683	20	71			
	$D_s^* \phi$	0[1 ⁺]	2707	4×10^{-3}	4×10^{-3}			
		0[2 ⁺]	2572	7	23	D _{s2} (2573)	2572	20
1,1	$D^*K^*, D_s^*\rho$	1[0+]	Cusp stru	cture around $D_s^* \rho$,	, D*K*	new T _{CS} (2900)	2908	136
1, 1		1[1+]	Cusp stru	cture around $D_s^* \rho$,	, D* K*			
1, 1		1[2+]	2786	8	11			
2,0	D* D*	0[1+]	3969	0	0			
2,1	$D^*D_s^*$	$1/2[1^+]$	4101	0	0			

Table 1: All the quantities here are in MeV. Repulsion in C = 0, S = 1, I = 1/2; C = 1, S = -1, I = 1; C = 1, S = 2, I = 1/2; C = 2, S = 0, I = 1 and C = 2, S = 2, I = 0 is found. Form factors in the $D^*D\pi$ vertex; Model A: $F_1(q^2) = \frac{\Lambda_b^2 - m_\pi^2}{\Lambda_b^2 - q^2}$. Titov, Kampfer EPJA7, PRC65 with $\Lambda_b = 1.4, 1.5$ GeV and $g = M_p/2 f_{\pi}$. Model B: $F_2(q^2) = e^{q^2/\Lambda^2}$ Navara, Niesen, Bracco PRD65 (2002), $\Lambda = 1, 1.2$ GeV and $g_D = g_{D^*D\pi}^{exp} = 8.95$ (experimental value). Subtraction constant $\alpha = -1.6$.

D^*D^* and $D^*D^*_s$ states

T_{cc} states from D^*D^* , $D^*D^*_s$ Dai, Molina, Oset, PRD105(2022)

 DD^* : $T_{cc}(3875)$, LHCb, Nature(2022), $\delta m = -360 \pm 40^{+4}_{-0}$ KeV, $\Gamma = 48 \pm 2^{+0}_{-14}$ KeV

Signature in LQCD Virtual bound state, $m_\pi \simeq 280$ MeV, Padmanath, Prelovsek PRL129(2022)

See Eulogio's talk on Thursday, 2.30pm

Feijoo, Liang, Oset, PRD104 (2021) Local Hidden-Gauge Approach D^0D^{*+} , D^+D^{*0} correlation functions; Inverse problem, Vidana, Feijoo, Albaladejo, Oset, Nieves, 2303.06079, 2304.01870 (2023)

J	Amplitude	Contact	V-exchange	\sim Total
1	$D^*D^* \to D^*D^*$	0	$\frac{g^2}{4}\left(\frac{2}{m_{1/ab}^2}+\frac{1}{m_{\omega}^2}-\frac{3}{m_{\rho}^2}\right)\left\{(p_1+p_3).(p_2+p_4)+(p_1+p_4).(p_2+p_3)\right\}$	-25.4g ²
1	$D_s^* D^* \to D_s^* D^*$	0	$-\frac{g^2(\rho_1+\rho_4)(\rho_2+\rho_3)}{m_{K^*}^2}+\frac{g^2(\rho_1+\rho_3)(\rho_2+\rho_4)}{m_J^2/\psi}$	-19.5g ²

 T_{cc} states from $D^*D^*/D^*D_s^*$

The $X_0(2866)$ or $T_{cs}(2900)$

Local Hidden Gauge Approach

Figure 1: $D^*\bar{K}^* \to D^*\bar{K}^*$ interaction

Potential V: contact + vector-meson exchange (ρ , ω)

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*\bar{K}^* \to D^*\bar{K}^*$	4g ²	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	-9.9g ²
1	$D^*\bar{K}^* \rightarrow D^*\bar{K}^*$	0	$\frac{g^2(\rho_1+\rho_4).(\rho_2+\rho_3)}{m_D^2*} + \frac{1}{2}g^2(\frac{1}{m_\omega^2} - \frac{3}{m_\rho^2})(\rho_1+\rho_3).(\rho_2+\rho_4)$	-10.2g ²
2	$D^*\bar{K}^* \to D^*\bar{K}^*$	-2g ²	$-\frac{g^2(\rho_1+\rho_4).(\rho_2+\rho_3)}{m_{D_e^*}^2}+\frac{1}{2}g^2(\frac{1}{m_{\omega}^2}-\frac{3}{m_{\rho}^2})(\rho_1+\rho_3).(\rho_2+\rho_4)$	-15.9g ²

Table 2: Tree level amplitudes for $D^*\bar{K}^*$ in I = 0.

Attractive for I = 0 and repulsive for I = 1.

Decay of the $T_{cs}(2900)$ to $D^*\bar{K}$

Molina, Oset PLB811 2020, $\alpha = -1.474$, $\Lambda = 1300$.

$I(J^P)$	$M[{ m MeV}]$	$\Gamma[{\rm MeV}]$	Coupled channels	state
0(2+)	2775	38	$D^*ar{K}^*$?
$0(1^{+})$	2861	20	$D^*ar{K}^*$?
0(0^+)	2866	57	$D^*ar{K}^*$	$T_{cs}(2900)$

Table 3: New results including the width of the D^*K channel.

Amo Sanchez et al. (BABAR), PRD83(2011). The $\bar{B}^0 \rightarrow D^{*+}\bar{D}^{*0}K^-$ reaction:

- It proceeds via external emission (favoring the decay)
- It has the largest branching fraction (1.06%)
- It can produce the $D^{*+}K^-$ in I = 0 (decay mode of the 1^+ state).

Figure 2: Diagrammatic decay of the $\bar{B}^0 \rightarrow \bar{D}^{*0} D^{*+} K^{*-}$ at the quark level.

How can we observe the $J^P = 1^+ T_{cs}(2900)$ state?

Hadronization + decay; $\bar{B}^0 \rightarrow D^{*+} \bar{D}^{*0} K^-$

Figure 3: (a) Rescattering of $D^{*+}K^{*-}$ to produce R_1 ; (b) Decay of R_1 to $D^{*+}K^-$. Dai, Molina and Oset, PLB832 (2022)

 $\begin{bmatrix} \frac{d\Gamma}{dM_{\text{inv}}(D^{*+}K^{-})} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\text{inv}}(D^{*+}K^{-})} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\text{inv}}(D^{*+}K^{-})} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{B}0}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \tilde{\rho}_{K^{-}} \sum |t'|^{2} \\ \frac{dV}{dM_{\tilde{D}^{*}}} = \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \sum \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \sum \frac{1}{(2\pi)^{3}} \frac{1}{4M_{\tilde{D}^{*}}^{2}} \rho_{\tilde{D}^{*0}} \sum \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \sum \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)^{3}} \sum \frac{1}{(2\pi)^{3}} \frac{1}{(2\pi)$

The $T_{c\bar{s}}(2900)$

Phys. Rev. D 82 (2010), Molina, Branz, Oset

3.5 C = 1; S = 1; I = 1

In this sector the potential is attractive for the $D^*K^* \to D_s^*\rho$ reaction. For J = 0 and 1 this potential is around $-Tg^2$ whereas it is by a factor of two bigger $-13g^2$ for J = 2 (see Table 14). In fact, we only obtain a pole for J = 2 For J = 0 and 1 we only observe a cusp in the $D_{s\rho}^*\rho$ threshold. In Table 5 we show the pole position and couplings to the different channels. Both channels, D^*K^* and $D_s^*\rho$, are equally important as one can deduce from the corresponding couplings. The broad width of the ρ meson has to be taken into account

lpha = -1.6 ho width not included $D^*K^* \rightarrow DK$ considered Cusp around $D^*_s
ho$, D^*K^* th. separated only by 14 MeV

Local Hidden Gauge Approach

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*K^* \to D^*K^*$	0	$\frac{g^2}{2}(\frac{1}{m_0^2}-\frac{1}{m_{c_1}^2})(p_1+p_3).(p_2+p_4)$	0
0	$D^*K^*\to D^*_s\rho$	$4g^2$	$-\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2}-\frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-6.8g^{2}$
0	$D_s^* \rho \to D_s^* \rho$	0	0	0
1	$D^*K^* \to D^*K^*$	0	$rac{g^2}{2}(rac{1}{m_o^2}-rac{1}{m_\omega^2})(p_1+p_3).(p_2+p_4)$	0
1	$D^*K^*\to D^*_s\rho$	0	$\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2} - \frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-6.6g^{2}$
1	$D_s^* ho o D_s^* ho$	0	0	0
2	$D^*K^* o D^*K^*$	0	$rac{g^2}{2}(rac{1}{m_ ho^2}-rac{1}{m_\omega^2})(p_1+p_3).(p_2+p_4)$	0
2	$D^*K^*\to D^*_s\rho$	$-2g^2$	$-\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2}-\frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-12.8g^{2}$
2	$D_s^* \rho \to D_s^* \rho$	0	0	0

Table 4: Tree level amplitudes for D^*K^* , $D_s^*\rho$ in I = 1. C = 1; S = 1; I = 1. The interaction is attractive for both I = 0 and I = 1, favoring a $J^P = 2^+$ state. (see PRD82 (2010) Molina, Branz, Oset, for I = 0) New results, $\alpha = -1.474$ to obtain the $T_{cs}(2900)$ state in $D^*\bar{K}^*$.

Convolution due to the vector meson mass distribution ρ , K^*

$$\tilde{G}(s) = \frac{1}{N} \int_{(M_1-4\Gamma_1)^2}^{(M_1+4\Gamma_1)^2} d\tilde{m}_1^2(-\frac{1}{\pi}) \mathcal{I}m \frac{1}{\tilde{m}_1^2 - M_1^2 + i\Gamma(\tilde{m})\tilde{m}_1} G(s, \tilde{m}_1^2, M_2^2) ,$$

$I(J^P)$	$M[{ m MeV}]$	$\Gamma[{\rm MeV}]$	Coupled channels	state
$1(0^{+})$	2920	130	$D^*K^*, D_s ho$	$T_{c\bar{s}}(2900)$
$1(1^+)$	2922	145		?
$1(2^{+})$	2835	20		?

Table 5: PRD107(2023), Exp. $(m, \Gamma) = (2908 \pm 11 \pm 20, 136 \pm 23 \pm 11)$ MeV

Production of the $T_{\bar{c}s}(2900)$

 $ar{B}^0
ightarrow D_s^- D^0 \pi^+$ in B decays

The $T_{\bar{c}s}(2900)$ can be produced by means of external emission

Production of the $T_{\bar{c}s}(2900)$ in *B* decays

$$T(E) = aG(E)_{D_{s}^{*}\rho} t_{D_{s}^{*}\rho \to \bar{D}^{*}\bar{K}^{*}}(E) t_{L}(E) + b$$
(3)

 $E = M_{inv}(\pi^+ D_s^-)$; a, b parameters; t_L amplitude for the triangle loop.

$$\frac{d\Gamma}{dM_{Inv}} = \frac{1}{(2\pi)^3} \frac{1}{4M_B^2} p_D \tilde{p}_{\pi} |T|^2$$

 $D_{s0}(2317)$ quark mass dependence

Quark mass dependence of the $D(D^*)$ mesons

Heavy Hadron Chiral Perturbation Theory (HH χPT)

E. Jenkins, NPB412 (1994)

$$\begin{split} \frac{1}{4}(D+3D^*) &= m_H + \alpha_a - \sum_{X=\pi,K,\eta} \beta_a^{(X)} \frac{M_X^3}{16\pi f^2} + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)} \alpha_a \right) \frac{M_X^2}{16\pi^2 f^2} \log\left(M_X^2/\mu^2\right) + c_a \\ (D^* - D) &= \Delta + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)} \Delta \right) \frac{M_X^2}{16\pi^2 f^2} \log\left(M_X^2/\mu^2\right) + \delta c_a \end{split}$$

 $\mu =$ 770 MeV; $g^2 =$ 0.55 MeV (Decay of the D^* meson)

$$\frac{1}{4}(D+3D^*) = m_H + f(\sigma, a, b, c, d)$$

$$(D^* - D) = \Delta + g(\Delta^{(\sigma)}, \Delta^{(a)})$$
9 parameters, but different collaborations/scale settings, 7 + 2 × 7 = 21 parameters, ~ 80 data points

ETMC, PACS, HSC, CLS, RQCD, S.Prelovsek, MILC

Quark mass dependence of the $D(D^*)$ mesons

LASSO + information criteria;

$$\chi_P^2 = \chi^2 + \lambda \sum_{i}^{n} |p_i|; \quad \text{Data} = \text{Training}(70\%) + \text{Test}(30\%)$$
(4)

$$\frac{1}{4}(m_D + 3m_{D^*}) = m_H + f(\sigma, a, \beta, c, d)$$
$$m_{D^*} - m_D = \Delta + g(\Delta^{(\sigma)}, \Delta^{(a)})$$

$D(D^*)$ quark mass dependence

Figure 5: Extrapolation to the physical point of the ETMC data.

Quark mass dependence of the $D_{s0}(2317)$ resonance in DK

Potential V(s) consistent with HQSS, See Fernando's talk at 2.30pm See also L.S. Geng and Albaladejo's talk about $D_{s0}(2317)$ (Femtoscopy)

$$V(s) = V_{DK}(s) + V_{ex}(s); \qquad 1 - Z \simeq 0.7 - 0.8$$

2306.01848
$$V_{DK} = -\frac{s - u}{2f^2} \quad ; V_{ex} = \frac{V_{c\bar{s}}^2}{s - m_{c\bar{s}}^2}$$
(5)

 $m_{\pi} = 236 \text{ MeV}; a_t^{-1} = 5.667 \text{ GeV}; a_t M_{\eta_c} = 0.2412, M_{\eta_c} = 2986 \text{ MeV};$ $m_{\pi} = 391 \text{ MeV}; a_t^{-1} = 6.079 \text{ GeV}; a_t M_{\eta_c} = 0.2735; M_{\eta_c} = 2963 \text{ MeV};$

Decay width of the $D_{s0}^*(2317)$ **to** $D_s^+\pi^0$

Figure 6: Feynman diagrams of the $D_s^{*0} \rightarrow D_s^+ \pi^0$.

 $\pi^0 - \eta$ mixing

$$\begin{aligned} \tilde{\pi}^0 &= \pi^0 \cos \tilde{\epsilon} + \eta_8 \sin \tilde{\epsilon} \\ \tilde{\eta} &= -\pi^0 \sin \tilde{\epsilon} + \eta_8 \cos \tilde{\epsilon} \\ \text{with } \eta_8 &= \frac{2\sqrt{2}}{3}\eta - \frac{1}{3}\eta' \\ g_X &= \frac{g_{DK}^{(l=0)}}{\sqrt{2}} \end{aligned}$$

$$\Gamma_X = |\vec{p}_f| \frac{|t|^2}{8\pi m_X^2}$$
(6)

$$\label{eq:Gamma-state} \boxed{ \begin{array}{l} \Gamma_{D_{s0}^*} = 100 \pm 30 \ {\rm KeV} \end{array} } \\ \mbox{H. L. Fu et al., } 120^{+18}_{-4} \ {\rm MeV}, \\ \mbox{EPJA58(2022), M. Cleven,} \\ \mbox{$c\bar{s}$ state: $\Gamma = 7.83^{+1.97}_{-1.55} \ {\rm KeV} $ \\ \mbox{M. Han et al., } 2305.04250 \ (2023) $ \end{array} } } \end{array} }$$

Conclusions

Conclusions

- The HGF has predicted many exotic states. Some of them discovered. A new table of exotic particles is coming ...
- The X₀(2866) or T_{cs}(2900) is compatible with a D*K̄* resonance decaying to DK̄. Proposed reactions to observe the 1⁺ state: B⁰ → D*+D̄*⁰K⁻, PLB832 (2022), Dai, Molina, Oset, B⁰ → D*+K⁻K̄*⁰, PRD105 (2022); and the 2⁺ state: B⁺ → D⁺D⁻K⁺, PLB833 (2022), Bayar and Oset.
- The *T_{cs}*(2900) is more likely to be a failed bound state, or cusp structure around the *D*^{*}*K*^{*}, *D*^{*}_sρ thresholds.
- The combination of LQCD with EFT's is a usefool tool to extract the properties or esonances with high accuracy
- The study of the pion mass dependence of the $D_{s0}(2317)$ supports the DK molecular picture