

The LHCspin project: a polarized target experiment at LHC

L. L. Pappalardo (pappalardo@fe.infn.it)

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- Since 2015 it can also be operated as a fixed-target experiment with the SMOG system, by injecting low pressure noble gases into the VELO vessel.
- Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, highintensity LHC beams!

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- Since 2015 it can also be operated as a fixed-target experiment with the SMOG system, by injecting low pressure noble gases into the VELO vessel.
- Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, highintensity LHC beams!

SMOG2 upgrade (Run3): a 20 cm long storage cell for the target gas has been installed in 2020 upstream of the VELO

- more gas species: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- target density increased by large factor
- Precise density (lumi) determination
- Negligible impact on LHC beam lifetime and LHCb performance

> LHCb is a general-purpose single-arm spectrometer, fully instrumented in $2 < \eta < 5$ and optimised for detection of charmed and beauty hadrons

[JINST 3 (2008) S08005] [IJMPA 30 (2015)1530022]

- Since 2015 it can also be operated as a fixed-target experiment with the SMOG system, by injecting low pressure noble gases into the VELO vessel.
- Unique opportunity to study pA/AA collisions on various targets exploiting the high-energy, highintensity LHC beams!

SMOG2 upgrade (Run3): a 20 cm long storage cell for the target gas has been installed in 2020 upstream of the VELO

- more gas species: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- target density increased by large factor
- Precise density (lumi) determination
- Negligible impact on LHC beam lifetime and LHCb performance

Find more on talk of L.P. Monday 5 (this parallel session)

Types of collisions at LHCb

Collider mode

Types of collisions at LHCb

Fixed-target mode (SMOG/SMOG2)

Types of collisions at LHCb

Fixed-target mode (SMOG/SMOG2)

protons gas (He, Ne, Ar) sigma (He, Ne, Ar) $\sqrt{s_{NN}} = 113 \text{ GeV}$ lead ions gas (He, Ne, Ar) $\sqrt{s_{NN}} = 72 \text{ GeV}$

The SMOG program sets the basis for the development of a future **polarized gas target for LHCb**:

The LHCspin project

The LHCspin project aims to perform spin physics measurements at the LHC through the implementation of a new-generation HERMES-like **polarized gaseous fixed target** in the LHCb spectrometer.

The LHCspin project

The LHCspin project aims to perform spin physics measurements at the LHC through the implementation of a new-generation HERMES-like polarized gaseous fixed target in the LHCb spectrometer.

Motivations and points of strenght

- ✓ **polarized gas target technology well established** (HERMES @ DESY, ANKE @ COSY with high performance)
- ✓ target experts from HERMES and COSY involved in first person in the design of the LHCspin apparatus
- ✓ marginal impact on LHC beam lifetime and LHCb mainstream physics program and performances
- ✓ can run in parallel with collider mode (well displaced interaction regions)
- $\checkmark\,$ can benefit from both protons and heavy-ion beams
- ✓ allows also injection of non-polarized gases (a-la SMOG2): H_2 , D_2 , He, N_2 , O_2 , Ne, Ar, Kr, Xe
- ✓ broad and unique physics program (next slides)

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

The physics goals of LHCspin

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Extend our understanding of the strong force in the non-perturbative regime

The physics goals of LHCspin

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Extend our understanding of the strong force in the non-perturbative regime

- Significant experimental progress in the last 15 years!
- main results from SIDIS (HERMES, COMPASS, JLAB, \rightarrow EIC)
- **Drell-Yan** in h-h collisions offers a complementary approach (COMPASS, RHIC)
- Several extractions already available from global analyses
- Now entering the precision era!

-

		qua	ark pol	•
		U	L	Т
.ind	U	f_1		h_1^\perp
COIL	L		g_{1L}	h_{1L}^{\perp}
IInc	Т	f_{1T}^{\perp}	g_{1T}	$h_1, \ h_{1T}^\perp$

Transv. polarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

Transv. polarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large *x*

Sensitive to unpol. and BM TMDs

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^q + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

Transv. polarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small x
- target valence quarks probed at large *x*

Sensitive to unpol. and BM TMDs

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^q + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

Sensitive to quark TMDs through TSSAs

$$A_N^{DY} = \frac{1}{P} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} \implies A_{UT}^{sin\phi_S} \sim \frac{f_1^q \otimes f_{1T}^{\downarrow q}}{f_1^q \otimes f_1^q}, \quad A_{UT}^{sin(2\phi-\phi_S)} \sim \frac{h_1^{\downarrow q} \otimes h_1^q}{f_1^q \otimes f_1^q}, \dots$$

Transv. polarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$ •
- beam sea quarks probed at small x
- target valence quarks probed at large x

Sensitive to unpol. and BM TMDs

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^q + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

Sensitive to quark TMDs through TSSAs

Transv. polarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small x
- target valence quarks probed at large *x*

Sensitive to unpol. and BM TMDs

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^q + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

Sensitive to quark TMDs through TSSAs

[arXiv:1807.00603]

— EIKV

SIDIS

੶⋥੶੶⋥੶੶⋥੶੶⋥੶੶⋥੶੶⋥੶੶

 $dM = 0.5 \text{ GeV/c}^2$

$$A_N^{DY} = \frac{1}{P} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} \implies A_{UT}^{sin\phi_S} \sim \frac{f_1^q \otimes f_{1T}^{\downarrow q}}{f_1^q \otimes f_1^q}, \quad A_{UT}^{sin(2\phi-\phi_S)} \sim \frac{h_1^{\downarrow q} \otimes h_1^q}{f_1^q \otimes f_1^q}, \dots$$

- Extraction of qTMDs does not require knowledge of FF
- Verify sign change of Sivers func. wrt SIDIS

 $\left.f_{1T}^{\perp}\right|_{DY}=-f_{1T}^{\perp}\big|_{SIDIS}$

Test flavour sensitivity using both H and D targets

χÎ

		gluon pol.	8
	U	Circularly	Linearly
U	f_1^g		$h_1^{\perp g}$
L		g^g_{1L}	$h_{1L}^{\perp g}$
Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

Theory framework well consolidated ...but experimental access still extremely limited!

			gluon pol.	
		U	Circularly	Linearly
pol.	U	f_1^g		$h_1^{\perp g}$
eon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

Theory framework well consolidated ...but experimental access still extremely limited!

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon \overline{Q} s \overline{Q} dynamics inside the proton at LHC is to measure heavy-quark observables

	2		gluon pol.	
		U	Circularly	Linearly
pol.	U	f_1^g		$h_1^{\perp g}$
eon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

Theory framework well consolidated ...but experimental access still extremely limited!

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

nucleon pol

Theory framework well consolidated ...but experimental access still extremely limited!

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

 D^0 , $\overline{D}{}^0$

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

Gluon Sivers function:

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- is sensitive to gluon OAM

nucleon pol

 $P = \begin{array}{c} g_{1} \\ g_{1} \\ f_{1}/\psi, \psi' \\ Y \\ \dots \\ g_{2} \\ \chi \end{array} \left\{ \begin{array}{c} D^{0}, \overline{D}^{0} \\ J/\psi, \psi' \\ Y \\ \dots \\ \dots \\ \end{array} \right\}$

Theory framework well consolidated ...but experimental access still extremely limited!

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

Gluon Sivers function:

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- is sensitive to gluon OAM
- can be accessed through TSSAs in inclusive heavy meson production

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

nucleon pol

Gluon Sivers function:

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- is sensitive to gluon OAM
- can be accessed through TSSAs in inclusive heavy meson production

Theory framework well consolidated ...but experimental access still extremely limited!

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

L. L. Pappalardo

A synergic attack to gTMDs

[D. Boer: Few-body Systems 58, 32 (2017)]

	DIS	DY	SIDIS	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{array}$
$f_1^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark	\checkmark
$f_1^{g[+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×

Can be measured at the EIC

Can be measured at RHIC & LHC (including LHCb+SMOG2/LHCspin)

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \text{ jet } X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{array}$
$h_1^{\perp g [+,+]} (WW)$	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

	DY	SIDIS	$p^{\uparrow} A \rightarrow h X$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	$ \begin{array}{c} p^{\uparrow}p \rightarrow \gamma \gamma X \\ p^{\uparrow}p \rightarrow J/\psi \gamma X \\ p^{\uparrow}p \rightarrow J/\psi J/\psi X \end{array} $	$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$ $e p^{\uparrow} \rightarrow e' j_1 j_2 X$
$f_{1T}^{\perp g [+,+]} (WW)$	×	×	×	×	\checkmark	\checkmark
$f_{1T}^{\perp g [+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×

Can be measured at RHIC and LHCb+LHCspin

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

Unpol. deuterons: the fireball is azimuthally symmetric $\rightarrow v_2 \approx 0$.

L. L. Pappalardo

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

L. L. Pappalardo

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

L. L. Pappalardo

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

- Compact superconductive dipole magnet for static transverse field to maintain polarization inside the cell and avoid beam-induced depolarization
- Required $B = 300 \ mT$ with $\Delta B/B \sim 10\%$

- Compact superconductive dipole magnet for static transverse field to maintain polarization inside the cell and avoid beam-induced depolarization
- Required $B = 300 \ mT$ with $\Delta B/B \sim 10\%$
- Need to modify main flange of VELO vessel (inward)
- No need for additional detectors!

- Compact superconductive dipole magnet for static transverse field to maintain polarization inside the cell and avoid beam-induced depolarization
- Required $B = 300 \ mT$ with $\Delta B/B \sim 10\%$
- Need to modify main flange of VELO vessel (inward)
- No need for additional detectors!
- Possibility to switch from dipole magnet to solenoid to realize a Longitudinal polarized target

Need to develop a new-generation compact ABS and diagnostic system to fit into the limited available space in the VELO alcove

Need to develop a new-generation compact ABS and diagnostic system to fit into the limited available space in the VELO alcove

 $J/\Psi \rightarrow \mu^+\mu^-PV X$ track reconstruction efficiency

Expected performance

Target

- $\begin{array}{l} \bullet \quad I_0 = 6.5 \cdot 10^{16} s^{-1} \text{ (HERMES)} \\ \bullet \quad C_{\text{tot}} = 17.4 \text{ l/s} \quad (20 \text{ cm cell}) \\ \bullet \quad \theta = 3.7 \cdot 10^{13} \text{ atoms/cm}^2 \end{array} \begin{array}{l} \bullet \quad 2.2 \cdot 10^{11} \text{ p/bunch} \\ \bullet \quad 2760 \text{ bunches} \\ \bullet \quad I_{beam} = 6.8 \cdot 10^{18} \text{ p/s} \end{array}$

Beam (Run4)

 $\mathcal{L}_{pH}(300 \ K) \approx 2.5 \cdot 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$ $L_{pH}(Run 4) \approx 5 f b^{-1}$

Expected performance

Target

- $I_0 = 6.5 \cdot 10^{16} s^{-1}$ (HERMES)
- C_{tot} = 17.4 l/s (20 cm cell)
- θ = 3.7 ·10¹³ atoms/cm²

Beam (Run4)

- (• $2.2 \cdot 10^{11}$ p/bunch
- **{•** 2760 bunches
 - $I_{beam} = 6.8 \cdot 10^{18} \ p/s$

$$\mathcal{L}_{pH}(300 \ K) \approx 2.5 \cdot 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

 $L_{pH}(Run \ 4) \approx 5 \ f \ b^{-1}$

L. L. Pappalardo

Expected performance

Target

- $I_0 = 6.5 \cdot 10^{16} s^{-1}$ (HERMES)
- C_{tot} = 17.4 l/s (20 cm cell)
 θ = 3.7 ·10¹³ atoms/cm²

Beam (Run4)

- $(\cdot 2.2 \cdot 10^{11} \text{ p/bunch})$
- **{•** 2760 bunches
 - $I_{heam} = 6.8 \cdot 10^{18} \ p/s$

$$\mathcal{L}_{pH}(300 \ K) \approx 2.5 \cdot 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

 $L_{pH}(Run \ 4) \approx 5 \ f \ b^{-1}$

Channel	Events / week	Total events
$J/\psi ightarrow \mu^+\mu^-$	194k (434k)	23M (75M)
$\psi(2S) \rightarrow \mu^+ \mu^-$	3.5k~(7.7k)	414k (1.3M)
$D^0 o K^- \pi^+$	976k~(2.2M)	117M (380M)
$J/\psi J/\psi ightarrow \mu^+\mu^-\mu^+\mu^-$	77(170)	$930 \ (3000)$
Drell Yan (5 < $M_{\mu\mu}$ < 9 GeV)	$110 \ (250)$	13k (43k)
$\Upsilon o \mu^+ \mu^-$	83(187)	10k (32k)
$\Lambda_c^+ \to p K^- \pi^+$	19k (43k)	2.3M~(7.5M)

- assumptions:
- 120 weeks/RUN
- 84h/week
- $Stat(Run5) \sim \sqrt{5} Stat(Run4)$

L. L. Pappalardo

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

 \rightarrow ensure low Secondary Elecron Yield (SEY)

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ minimize H depolarization due to wall collisions

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ minimize H depolarization due to wall collisions

Eley-Rideal Mechanism

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ **minimize H depolarization** due to wall collisions

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ **minimize H depolarization** due to wall collisions

Eley-Rideal Mechanism

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ **minimize H depolarization** due to wall collisions

Eley-Rideal Mechanism

ightarrow can be monitored through measurement of H recombination with a TGA

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ minimize H depolarization due to wall collisions

Eley-Rideal Mechanism

ightarrow can be monitored through measurement of H recombination with a TGA

✓ Studies are ongoing in order to understand if carbon films with low SEY cope with the required recombination rate of polarized H atoms injected in the storage cell

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

✓ **minimize e-cloud** related beam instabilities

- \rightarrow ensure low Secondary Elecron Yield (SEY)
- ✓ minimize H depolarization due to wall collisions

Eley-Rideal Mechanism

- Studies are ongoing in order to understand if carbon films with low SEY cope with the required recombination rate of polarized H atoms injected in the storage cell
- Carbon coated cell prototypes have been produced at CERN and are being analysed at Juelich Forschungszentrum.

ightarrow can be monitored through measurement of H recombination with a TGA

The jet target option

Alternative solution with **jet target** also under evaluation:

- lower density (~ 10^{12} atoms/ cm^2) \rightarrow about a factor of 40 smaller
- higher polarization (up to 90%)
- lower systematics in P measurement (virtually close to 0)
- Compatible with SMOG2 setup

The IR3 area is a straight sector of LHC, presently free from instrumentation

- Explore the possibility to use this site for an in-depth **on-beam R&D for LHCspin**
- Installation of existing setup (ABS and polarimeter from COSY) during LS3
- Possibility to realize **proof-of-principle prototype experiment** during Run4

Rendering view of the LHCspin setup installed on the LHC beam pipe at IR3

The existing equipment (ABS & polarimeter) requires some modification to fit into the available space in the tunnel

Rendering view of the LHCspin setup installed on the LHC beam pipe at IR3

The existing equipment (ABS & polarimeter) requires some modification to fit into the available space in the tunnel

- In the next years, the IR3 site will be exploited for proof-of-principle test for the charm-baryon dipole-moment experiment with bent crystals.
- Discussions are already ongoing to address possible synergies and interferences.

Rendering view of the LHCspin setup installed on the LHC beam pipe at IR3

Need to develop a simple detector setup with a few tracking stations and possibly a dipole magnet (one is already available at IR3).

Possible measures that we could perform at IR3 include:

- **1) study of beam-target interactions**: beam-induced depolarization, impedance, aperture, etc...
- 2) absolute calibration of the Breit-Rabi polarimeter with polarimetry measurements based on Coulomb beam-target scattering (this would require the installation of two small Si (strip/pixel) detectors within the primary vacuum of LHC);
- **3)** study of recombination/depolarization at the cell walls (in case we can install a cell);
- 4) measurement of basic left-right asymmetries in inclusive light-hadron production (in case we can use the dipole magnet), as a proof of principle of the future (large-scale) experiment with LHCb. This does not strictly require a target cell and can be performed with a jet target provided by the ABS.

Possible measures that we could perform at IR3 include:

- **1) study of beam-target interactions**: beam-induced depolarization, impedance, aperture, etc...
- 2) absolute calibration of the Breit-Rabi polarimeter with polarimetry measurements based on Coulomb beam-target scattering (this would require the installation of two small Si (strip/pixel) detectors within the primary vacuum of LHC);
- **3)** study of recombination/depolarization at the cell walls (in case we can install a cell);
- 4) measurement of basic left-right asymmetries in inclusive light-hadron production (in case we can use the dipole magnet), as a proof of principle of the future (large-scale) experiment with LHCb. This does not strictly require a target cell and can be performed with a jet target provided by the ABS.

- Several internal (LHCb) and external groups have shown interest in contributing to this venture
- A kick-off meeting with all the interested actors will be organized in the upcoming months in view of building a protocollaboration with all the necessary expertise (detectors, DAQ, vacuum, polarimetry, magnets, etc.)

Conclusions

- > The Fixed-Target program at LHCb is active since Run 2, now greatly enriched with SMOG2
- LHCspin is the natural evolution: a polarized fixed target at LHCb will bring spin-physics for the first time at the LHC and will open the way to a broad and unique physics program
- > Novel approaches and reactions will be exploited for studies of the 3D nucleon structure
- First insights into the yet unknown gluon TMDs (such as the GSF) will be possible thanks to the excellent capabilities of LHCb in reconstructing quarkonia states and heavy mesons.
- Cutting-edge unpolarized physics will also be at reach (cold nuclear matter effects, intrinsic charm, QGP studies, etc.)
- The R&D calls for a new generation and compact polarized gas target. Very challenging but worth the effort!

Conclusions

- > The Fixed-Target program at LHCb is active since Run 2, now greatly enriched with SMOG2
- LHCspin is the natural evolution: a polarized fixed target at LHCb will bring spin-physics for the first time at the LHC and will open the way to a broad and unique physics program
- > Novel approaches and reactions will be exploited for studies of the 3D nucleon structure
- First insights into the yet unknown gluon TMDs (such as the GSF) will be possible thanks to the excellent capabilities of LHCb in reconstructing quarkonia states and heavy mesons.
- Cutting-edge unpolarized physics will also be at reach (cold nuclear matter effects, intrinsic charm, QGP studies, etc.)
- The R&D calls for a new generation and compact polarized gas target. Very challenging but worth the effort!

If approved, LHCspin will make LHCb the first experiment simultaneously running in collider and fixed-target mode with unpolarized and polarized targets, opening a whole new range of explorations at the LHC!

Kinematic coverage

Reconstruction efficiencies

 $J/\Psi \rightarrow \mu^+\mu^- \in_{rec}(PV)$ vs cell position

 $J/\Psi \twoheadrightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} PV$ X track reconstruction efficiency

Theory framework well consolidated ...but experimental access still extremely limited! Similar naming/notation of quark TMDs, but there are important differences!

- the **linearity gTMD** (h_1^g) is completely unrelated to the quark transversity (h_1^q) , and has no collinear counterpart
- different naïve-time-reversal properties

	T-even	T-odd
q	$\mathbf{h_1^q}$	$\mathbf{h_1^{\perp q}}$
g	$h_1^{\perp g}$	h ^g

- Also the gTMD phenomenology is enriched by the **process dependence** originating by ISI/FSI encoded in the **gauge links**.
- The gluon correlator depends on 2 path-dependent gauge links, resulting in a more complex process dependence

- Depending on their combinations, there are 2 independent versions of each gTMD that can probed in different processes and can have different magnitude and width and different x and k_T dependencies!
- E.g. there are 2 types of f_1^g and $h_1^{\perp g}$: [++] = [--] Weizsacker-Williams (WW) ; [+-] = [-+] DiPole (DP)
- 2 indep. GSF: $f_{1T}^{\perp g[+,+]}$ "f-type" \rightarrow antisymm. colour structure ; $f_{1T}^{\perp g[+,-]}$ "d-type" \rightarrow symm. colour structure

Probing the gluon TMDs

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

• TMD factorization requires $q_T(Q) \ll M_Q$. Can look at **associute quarkonia production**, where only the relative q_T needs to be small:

E.g.: $pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X$

• Due to the larger masses this condition is more easily matched in the case of **bottomonium**, where TMD factorization can hold at larger q_T (although very challenging for experiments!)

Predictions based on CSM + TMD evolution for $x_1 \sim x_2 \sim 10^{-3}$ at forward rapidity [EPJ C 80, 87 (2020)] \implies Azimuthal amplitudes $\sim 5\%$!!

UPC and gGPDs

3D maps of parton densities in coordinate space

Can be accessed at LHC in Ultra-Peripheral collisions (UPC)

- Impact parameter larger than sum of radii
 - Process dominated by EM interaction
 - Gluon distributions probed by pomeron exchange
 - Exclusive quarkonia prod. sensitive to gluon GPDs [PRD 85 (2012), 051502]

LHCspin could allow to access the GPD E^g (a key ingredient of the Ji sum rule)

$$J^{g} = \frac{1}{2} \int_{0}^{1} dx \Big(H^{g}(x,\xi,0) + E^{g}(x,\xi,0) \Big)$$

5

р

GPDs

photon $flux \propto Z^2$

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

More physics reach with unpolarized FT reactions

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- pA collisions (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x)
 - studies of parton energy-loss and absorption phenomena in the cold medium
 - reactions of interest for cosmic-ray physics and DM searches
- PbA collisions at √s_{NN} ≈ 72 GeV (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 Study of QGP formation (search for predicted sequential quarkonium suppression)

Different binding energies, different dissociation temperatures \rightarrow medium thermometer

L. L. Pappalardo

20th International Conference on Hadron Spectroscopy and Structure (HADRON 2023) - Genova, Italy - June 5-9 2023

A preliminary analysis tool for pseudo-data

A pseudo-data set based on a Transversely Pol. H target has been generated to study the interplay between statistical and systematic uncertainties (due to the measurement of the polarization).

Similar approach used at HERMES (Appendix C of [JHEP, 12:010, 2020]):

- Use official LHCb MC data for inclusive production of $J/\psi \rightarrow \mu^+\mu^-$ in fixed-target configuration (PYTHIA8 + EPOS)
- Introduce a spin-dependence in the simulation: assign to each simulated event a target polarization state (↑ or ↓) using a random extraction modulated with a model for the cross section
- The model assumes a dominant sin φ modulation (e.g. sensitive to the gluon Sivers) plus a suppressed sin 2φ modulation (to account e.g. for possible higher-twist contributions). Both terms depend mildly on the kinematics (x, p_T):

$$p = \frac{1}{2} \left[1 + \left(a_1 + a_2 \frac{x - \overline{x}}{x_{max}} + a_3 \frac{p_T - \overline{p_T}}{p_{T max}} \right) \sin \phi + \left(b_1 + b_2 \frac{x - \overline{x}}{x_{max}} + b_3 \frac{p_T - \overline{p_T}}{p_{T max}} \right) \sin 2\phi \right]$$

• Using these pseudo-data the TSSA is computed in the usual way:

$$A_N = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

and the uncertainties on $N^{\uparrow(\downarrow)}$ (Poisson) and P (systematic) propagated accordingly.

A preliminary analysis tool for pseudo-data

• The data points are binned in x_F and p_T (2D binning), represented vs. ϕ and fitted with $f = a_1 \sin \phi + a_2 \sin 2\phi$ where the free parameters a_1 and a_2 represent the amplitude of the corresponding azimuthal modulation

- The extracted parameters a_1 and a_2 are consistent with those used to generate the model (no bias is observed)
- With the available MC statistics (corresponding to 2 weeks of data-taking) there is no sensitivity for the $\sin 2\phi$ term
- The amplitudes a_1 are the reported vs. x_F in bins of p_T (and vice-versa)
- A mild kinematic dependence is observed consistent with the model

Statistical vs Systematics uncertainties

• The analysis tool described above allows to study the interplay between statistical uncertainties and systematic uncertainties (due to the measurement of the polarization) under different data-taking scenarios

$p_T ~({ m MeV})$	x_F	$a_1 \ (\Delta P = 0\%)$	$a_1 \ (\Delta P = 5\%)$	$a_1 \ (\Delta P = 20\%)$	$a_1 \ (\Delta P = 50\%)$
[0, 1500]	[-0.70, -0.09]	0.090 ± 0.013	0.089 ± 0.013	0.087 ± 0.014	0.087 ± 0.022
[0, 1500]	[-0.09, -0.06]	0.104 ± 0.011	0.104 ± 0.012	0.103 ± 0.016	0.100 ± 0.027
[0, 1500]	[-0.06, -0.04]	0.098 ± 0.012	0.098 ± 0.013	0.097 ± 0.016	0.094 ± 0.027
[0, 1500]	[-0.04, 0.05]	0.118 ± 0.014	0.117 ± 0.014	0.114 ± 0.017	0.113 ± 0.030
$[1500,\!6000]$	[-0.70, -0.09]	0.093 ± 0.010	0.092 ± 0.010	0.090 ± 0.013	0.089 ± 0.023
$[1500,\!6000]$	[-0.09, -0.06]	0.108 ± 0.011	0.108 ± 0.011	0.108 ± 0.015	0.107 ± 0.027
[1500, 6000]	[-0.06, -0.04]	0.105 ± 0.012	0.105 ± 0.012	0.104 ± 0.015	0.103 ± 0.026
$[1500,\!6000]$	[-0.04, 0.05]	0.105 ± 0.011	0.105 ± 0.012	0.102 ± 0.015	0.102 ± 0.026

- A 5% systematic uncertainty on P has no impact on the total uncertainty on a_1
- For $\Delta P = 20\%$ the systematic uncertainty amounts to 30-40% of the statistical uncertainty
- For $\Delta P = 50\%$ the systematic uncertainty approximately equals the statistical uncertainty
- We expect $\Delta P pprox 10-15\%$ for the storage cell hypothesis (and close to 0 for the jet target hypothesis)