

Sterile Neutrino Searches at Reactors

Neutrino Telescopes 2023, Venice

Neutrinos @ Reactors

Fission of heavy, neutron rich, nuclei leads to unstable fission products de-exciting by β^{-} decay

- Most intense man-controlled source of neutrinos.
- ▶ IBD detection process: $\overline{\nu_e} + p \rightarrow e^+ + n$

Reactor Fuel Evolution

cea

- > Production of the $^{239-41}$ Pu fissile isotopes by n-capture on 238 U.
- Time evolution of low-enriched cores (commercial reactors, 4% ²³⁵U), inducing a ~10% decrease of detected v flux over 1 reactor cycle.
- Highly enriched cores (research reactors, 20-90% ²³⁵U) give access to the pure ²³⁵U fission spectrum.

Sterile Neutrino Signal

No interaction with matter by definition

ightarrow search for an oscillation pattern induced by the mixing with the active flavors

- Atmospheric and solar oscillation sectors accurately probed by reactor neutrinos.
- Pure v_e source and pure v_e IBD detection process \rightarrow disappearance measurements.
- Control of the absolute normalization is challenging.
- Look for spectrum shape distortions: development of relative, model independent, measurements between identical detectors or detector segments.

Predicted Fission Neutrino Spectra

K. Schreckenbach et al.

RAA : Reactor Antineutrino Anomaly

Need complementary data to disentangle sterile neutrino and prediction bias hypotheses

→ Search for unambiguous oscillation signal with few meters wavelength

cea

Spectrum Shape "Anomaly"

Nature Physics 558–564 (2020)

- Accurate spectra measured few 100 m from commercial reactors by the Double Chooz, Daya Bay and Reno experiments
- Unexplained local shape distortion, the "5 MeV bump", on top of the global deficit
- Contribution of this bump to the global deficit is sub-%

Worldwide Very Short Baseline Experiments

- Low stat
- Compact core
- Pure ²³⁵U

Commercial reactors

High stat

- Extended core
- Mixed ²³⁵U ²³⁹Pu

DANSS

Kalininskaya NPP - Russia

• 3 GW_{th} extended core

PMT

WLS

fibers

SiPMs

- Movable detector (10-12 m baseline)
- Energy scale constrained by radioactive sources and ¹²B β-spectrum (2% systematics). E_{resolution} = 34% / √E

WLS fibers

DANSS

 High statistics, low background and robust analysis of spectra ratios at ≠ detector positions compensate the damping of oscillations induced by the core size.

cea

- No oscillation signal from 5M detected neutrinos
- Best fit point of the initial RAA+Gallium anomaly rejected at >5 σ

- Upgrade plan with large target volume and better resolution.
- Significant gain in sensitivity at higher ∆m2

See M. Danilov's talk on Wednesday

PROSPECT

- High Flux Isotope Reactor Oak Ridge
- 85 MW_{th} very compact core (ϕ 44 cm)
- HEU fuel \rightarrow pure ²³⁵U fission spectrum

Breakthrough in the rejection of background using a Li-doped LS

- Refined control of the detector response
- 5% resolution @ 1 MeV

Model independent oscillation analysis by searching for relative spectrum distortions between groups of detector cells at different baselines (L=6.7–9.2 m)

Event topology

Floor

PROSPECT

- Data compatible with no-oscillation
- RAA+Gallium best fit rejected at 2.5 σ level

- Updated analysis provides a reference ²³⁵U neutrino spectrum
- S/B=1.6 → 4.1

PRL 131 (2023) 2, 021802

<u>cea</u>

STEREO

- ILL Reactor Grenoble
- HEU fuel \rightarrow pure ²³⁵U fission spectrum
- S/B~1.1, compensated by long OFF periods and detector stability

6 cells filled with Gd-loaded LS

Model-independent analysis: a free average spectrum "\u03c6_i" is fitted to the 6 detection cells

$$\chi^2 = \sum_{l=1}^{N_{\text{cells}}} \sum_{i=1}^{N_{\text{Ebins}}} \left(\frac{A_{l,i} - \phi_i M_{l,i}}{\sigma_{l,i}} \right)^2$$

 Fine tuned MC reaching % level description of energy reconstruction and neutron detection efficiency

STEREO

- Data compatible with no-oscillation
- RAA+Gallium best fit is rejected at $>4 \sigma$ level

Reference neutrino spectrum

×10⁻⁴²

0.25

0.2

0.15

0.1

0.05

Ratio to Huber 8.0 R

0.6

3

IBD Yield [cm²/fission/MeV]

of ^{235}U fission in $\overline{\nu_{e}}$ energy

²³⁵U Huber Model (filtered) ²³⁵U Summation Model (filtered)

STEREO-II-III dataset

0 2 4 6 8 10 12 14 16 18 20 Bin index

4

Best-fit bump (filtered)

5

6

Antineutrino Energy [MeV]

Best absolute normalization among pure ²³⁵U measurements

Worldwide Sterile Neutrino Searches

- Low stat
- Compact core
- Pure ²³⁵U

Commercial reactors

High stat

- Extended core
- Mixed ²³⁵U ²³⁹Pu

Θ₁₃ measurements at commercial reactors

- Impressive accuracy on θ_{13} from ratios of near/far detectors
- Paved the way for VSB experiments

cez

Θ_{13} Experiments

 Model independent analysis searching for an extra oscillation pattern in near and far detectors, on top of the θ₁₃ oscillation.

PRL 125 (2020) 7, 071801

Near detectors few 100 m from cores
 → Sensitivity in the 0.01-0.1 eV2 range, complementary to VSB.

Combined contours

- %-level oscillations sensitivity!
- Rejection contours cover a large fraction of the RAA, missing Δm^2 >5-10 eV2.
- Initial region of interest around 1 eV2 is rejected with high C.L.
- Strong tension with the latest gallium result from the BEST collaboration...

Positive Signals (?)

- Model independent analysis by combining NEOS & RENO detectors
- Covers a large range in Δm^2

Low significance of the oscillation signal: 1.7 σ

NEUTRINO4

- Discussions on analysis and simulation
- 2.7σ significance of the oscillation signal with FC
- Upgrade with larger volume & PSD capability

Combined contours

STEREO

21

Positive Signals (?) – BEST Experiment

3.4 MCi ⁵¹Cr source in two concentric volumes of Gallium: 71 Ga(v,e) 71 Ge

Ratio of observed/measured events:

 $R_{in} = 0.79 \pm 0.05$ $R_{out} = 0.77 \pm 0.05$

- 20% deficit confirming GALLEX and SAGE results with >5σ significance.
- Very large mixing angle.
- Rate only, no oscillation pattern → intensive search for possible normalization biases, so far unfruitful.

Anchoring of the v-capture cross section on the 71 Ge decay:

W. Hampel, L.P. Remsberg PRC, 31 (1995)

Combined Contours & Perspectives

- Global picture of reactor experiments: rejects the sterile neutrino hypothesis as explanation of the RAA.
- Complementary constraints from Katrin in the high mass range.
- 3σ tension with the Gallium result.
- Full coverage of the BEST and RAA contours by upcoming data from Katrin, Prospect-II, DANSS, JUNO-TAO, ...

Origin of the RAA

- HEU, pure ²³⁵U, measurements confirm the global picture of ²³⁵U being mainly responsible for the Reactor Antineutrino Anomaly.
- Absolute normalizations of the ²³⁵U and ²³⁹Pu fission β-spectra, on which is anchored the HM model, were actually independent.
- The rate of e-conversion from ¹⁹⁷Au(n,e-)¹⁹⁸Au was initially used for both isotopes. Then another ²³⁵U run was taken and considered as the reference, normalized with the ²⁰⁷Pb(n, e⁻)²⁰⁸Pb process...

→ A bias in the 207 Pb(n, e⁻) 208 Pb cross section is the best candidate – to be proven by a new direct measurement(?)

Reference Fission Spectra

PRL 123 (2019)

6

Prompt Energy / MeV

5

DYB

DYB

Huber × 0.92

- U-Pu separation using high stat and fuel evolution at commercial reactors (DB, Reno, Neos)
- Complementary pure ²³⁵U spectra from research rectors

- Spectra corrected for detection effects made available to the community
- Local distortion confirmed with high significance in all spectra preferred scenario of a similar bump of ~11% amplitude in U and Pu spectra (arXiv:2212.10669)

10⁻⁴³ cm² / fission / MeV

DYB/Huber

0.5

0.8

0.6

3

JUNO-TAO

2209.10387 CLS ACU Plastic Scintillator Top Shield (HDPE) OF 3"PMT Water Tank H Overflow Tank LAB Buffer GdLS Cooling Pipe 0 Cu Shell and SiPM Array 0 HDPE Support -Acrylic Vessel

0

SS Tank

Insulation (PU)

Bottom Shield

(Lead)

Ultimate accuracy expected from the Taishan Antineutrino Observatory (TAO):

- 2.8 ton Gd-loaded LS detector at 30 m from the 4.6 GW_{th} core, JUNO very near detector
- High resolution: <2% @ 1MeV
- 4500 p.e./MeV obtained with full coverage of the targe volume by SiPMs operated at -50°C
- Data taking to start next year

0

Benchmark for nuclear data

Shift of paradigm: model independent and accurate neutrino measurements constrains the nuclear data.

Steady improvement of the ab-initio predictions with the TAGS measurements

Phenomenological model of GT decay-strength applied to all fission products

Hints of a dominant role of the correction of the Pandemonium effect in β^{-} spectra Another candidate is the impact of shape factors of forbidden transitions

Origin of the 5 MeV Bump (?)

A similar bump in the β -spectra would naturally propagate in the converted neutrino spectra

- A slight kink in the energy scale can induce the observed shape distortion
- Such bias in the E scale of all neutrino experiments has ruled out by the many complementary measurements.
- ILL research reactor (Grenoble, France)
- Could we have a similar effect in the control of the amplitude of the magnetic field used to analyze the β fission spectra? Magnet power supply, range of Hall probe,

Conclusion

- □ High precision experiments at reactors. Coherent measurements of neutrino fluxes confirming the deficit of the RAA.
- No oscillation to sterile neutrino observed with high significance. The Sterile neutrinos hypothesis is unlikely to explain the RAA.
- □ Combination of all reactor measurements with Katrin covers most of the RAA contour with high C.L. Full coverage of the large ∆m² range expected with the upcoming data from Danss, Neutrino4, Prospect-II, Katrin,...
- Reference fission neutrino spectra, corrected for detection effects are provided. Benchmark for future neutrino experiment and for nuclear data. Increased accuracy expected from the TAO detector.

Contours

cea

Forbidden transitions

Dominant contribution of forbidden β -decays above ~4 MeV

- Shell-model calculation of the shape of forbidden β -decays, included in the conversion method.
- Combination of this correction with the correction of the pandemonium effect could reach a good agreement with the experimental neutrino spectrum shapes.

