Towards a global analysis of absolute ν masses

Eligio Lisi (INFN, Bari, Italy)

XX Int. Workshop on Neutrino Telescopes – Palazzo Franchetti, Venezia, 27 Oct 2023

In perspective, the global analysis of absolute 3v masses from:

involves several issues that are worth discussing, in the light of (far) future m_{β} , $m_{\beta\beta}$, Σ signals ...and of possible new physics

Outline:

Graphs of 3v osc. bounds Towards a Σ signal Towards a m_{β} signal Towards $m_{\beta\beta}$ (& beyond 3v) Epilogue

Graphs of 3v osc. bounds (1): $(m_{\beta}, m_{\beta\beta}, \Sigma)$ vs m_{lightest} in NO/IO

Lines and bands somewhat smeared by oscillation parameter uncertainties

Figure from Strumia & Vissani, hep-ph/0606054

Precise oscillometry in next decade → Negligible smearing & NO/IO selection

ightarrow Progress in these planes will be driven only by absolute mass observables

(within the standard *3v* framework)

Comment on mass ordering through oscillations

No bump/dip/kink... but small/smooth differences in spectral templates S(E) → requires statistical comparison of template shapes vs data

Probes:	Templates:	Oscill. physics:
(1) MBL reactors:	S(E)	$\pm \Delta m^2$ vs δm ²
(2) LBL acceler.:	S(E, flavor)	$\pm \Delta m^2$ vs MSW, δm ²
(3) Atmospheric:	S(E, flavor, zenith)	$\pm \Delta m^2$ vs MSW, δm ²

In addition, "synergy" or "complementarity" of different probes:

(4) \geq 2 probes: Spread of $\{+\Delta m_i^2\}$ vs $\{-\Delta m_i^2\}$ smaller for true ordering

Currently: Some hints from (2-4), sum up to $\sim 2.5\sigma$ in favor of $+\Delta m^2$ Future: from hints to discovery, as lines of evidence (1 - 4) grow & converge

See also talk by S. Parke

In the meantime... avoid "jargon" and "statistical temptations" ...e.g.:

Nature does not care about our "naturalness" criteria or phase-space (under)sampling!

... also notice that m_{lightest} is not really measured

It makes sense to project away $m_{lightest} \rightarrow$

It makes sense to project away $m_{lightest} \rightarrow$

But ... keep in mind that the case $m_{lightest} = 0$ guarantees futuristic implications:

- a relativistic CvB component
- a 0vββ lower bound in NO
- a v component with v=c

up to redshift z=0 ($m_{lightest} < T_v \sim 0.1 \text{ meV suffices}$) $m_{\beta\beta} > 1 \text{ meV} (m_{lightest} < 1 \text{ meV suffices})$ from multimessenger astrophysical sources

Graphs of 3v osc. bounds (2): $(m_{\beta}, m_{\beta\beta}, \Sigma)$ without m_{lightest}

Only measurable quantities; graphically amplified structures are squeezed away

Figure from Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra and Silk, hep-ph/0408045

Current bounds: freely adapted from PDG quoted values and from 2107.00532 Forecasts: mainly adapted from M. Lattanzi, talks at NOW 2022 and TAUP 2023 See also talks by O. Mena and R. Laureijs at this Workshop Σ signal is guaranteed: min $\Sigma \simeq \begin{cases} 60 \text{ meV} (\text{NO}) \\ 100 \text{ meV} (\text{IO}) \end{cases}$

But: Σ = **output** of a multi-parameter **fit** to cosmological data within Λ CDM,

$\mathcal{L}(\Sigma) \rightarrow \text{(roughly)} \Sigma \simeq \Sigma_0 \pm \sigma$

Currently: Variants in #parameters, datasets, model... \rightarrow various 95% CL limits:

 $\Sigma_i < \Sigma_{0i} + 2\sigma_i$, $i \in \{variants\}$

	-					
Cos	osmological inputs for nonoscillation data analysis Results: Cosmo only		$Cosmo + m_{\beta} + m_{\beta\beta}$			
#	Model	Data set	Σ (2 σ)	$\Delta\chi^2_{\rm IO-NO}$	Σ (2 σ)	$\Delta\chi^2_{ m IO-NO}$
0	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE	$< 0.34~{\rm eV}$	0.9	$< 0.32 \ \mathrm{eV}$	1.0
1	$\Lambda \mathrm{CDM} + \Sigma$	Planck TT, TE, EE + lensing	$< 0.30~{\rm eV}$	0.8	$< 0.28~{\rm eV}$	0.9
2	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO	$< 0.17~{\rm eV}$	1.6	$<0.17~{\rm eV}$	1.8
3	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO + lensing	$< 0.15~{\rm eV}$	2.0	$<0.15~{\rm eV}$	2.2
4	$\Lambda \mathrm{CDM} + \Sigma$	Planck TT, TE, EE + lensing + $H_0(R19)$	$< 0.13 \ {\rm eV}$	3.9	$<0.13~{\rm eV}$	4.0
5	$\Lambda \mathrm{CDM} + \Sigma$	Planck TT, TE, EE + BAO + H_0 (R19)	$< 0.13~{\rm eV}$	3.1	$<0.13~{\rm eV}$	3.2
6	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO + lensing + H_0 (R19)	$< 0.12~{\rm eV}$	3.7	$<0.12~{\rm eV}$	3.8
7	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + lensing	$< 0.77~{\rm eV}$	0.1	$< 0.66~{\rm eV}$	0.1
8	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + BAO	$< 0.31~{\rm eV}$	0.2	$< 0.30~{\rm eV}$	0.3
9	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + BAO + lensing	$< 0.31~{\rm eV}$	0.1	$< 0.30~{\rm eV}$	0.2
10	$\Lambda {\rm CDM} + \Sigma$	$ACT + WMAP + \tau_{prior}$	$< 1.21~{\rm eV}$	-0.1	$< 1.00~{\rm eV}$	0.1
11	$\Lambda {\rm CDM} + \Sigma$	ACT + WMAP + Planck lowE	$< 1.12~{\rm eV}$	-0.1	$< 0.87~{\rm eV}$	0.1
12	$\Lambda \mathrm{CDM} + \Sigma$	ACT + WMAP + Planck lowE + lensing	$< 0.96~{\rm eV}$	0.0	$< 0.85~{\rm eV}$	0.1

	Model	95% CL (eV)	Ref.				
CMB alone							
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	[22]				
Pl18[TT,TE,EE+lowE]	$\Lambda CDM + \sum m_{\nu}$	< 0.26	[22]				
CMB + probes of background evolution							
Pl18[TT+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[43]				
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda CDM + \sum m_{\nu} + 5$ params.	< 0.515	[23]				
$\overline{\text{CMB} + \text{LSS}}$							
Pl18[TT+lowE+lensing]	$\Lambda CDM + \sum m_{\nu}$	< 0.44	[22]				
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda CDM + \sum m_{\nu}$	< 0.24	[22]				
CMB + probes of background evolution + LSS							
P118[TT, TE, EE + lowE] + BAO + RSD	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.10	[43]				
$Pl18[TT+lowE+lensing] + BAO + Lyman-\alpha$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.087	[44]				
Pl18[TT,TE,EE+lowE] + BAO + RSD + Pantheon	+ DES $\Lambda CDM + \sum m_{\nu}$	< 0.13	[45]				

E.g., Capozzi+ 2107.00532

Lesgourgues, Verde PDG 2022

+talk by Olga Mena

Σ signal is guaranteed: min $\Sigma \simeq \begin{cases} 60 \text{ meV} (\text{NO}) \\ 100 \text{ meV} (\text{IO}) \end{cases}$

But: $\Sigma =$ **output** of a multi-parameter **fit** to cosmological data within Λ CDM,

$$\mathcal{L}(\Sigma) \rightarrow$$
 (roughly) $\Sigma \simeq \Sigma_0 \pm \sigma$

Currently: Variants in #parameters, datasets, model... → various 95% CL limits:

$$\Sigma_i < \Sigma_{0i} + 2\sigma_i$$
, $i \in \{variants\}$

Strongest current limits [PDG, $\Sigma_i < 90-130$ meV at 2σ] roughly correspond to:

$$\Sigma_{0i} \sim 0 \text{ meV}$$

 $\sigma_i \sim 45-65 \text{ meV}$

Weaker limits involve larger uncertainties σ_i and/or nonzero best fits $\Sigma_{0i} \sim O(\sigma_i)$

Implications of a current strong limit, e.g., $\Sigma = 0 \pm 60$ meV:

Unphysical best fit, but ... compatible with min(NO) at $\sim 1\sigma$ and min(IO) at $< 2\sigma$ To some extent, best fit may be an artifact of degenerate mass approximation \rightarrow For nondegenerate v masses get, e.g., $\Sigma = 60 \pm 60$ meV:

Physical best fit sitting at min(NO), compatible with min(IO) at $<1\sigma$ Note: small but nonzero fit difference by taking Σ =60=**0**+**9**+**51** rather than **20**+**20**+**20** More variants can cover up to, say, $\Sigma < 270$ meV at 1σ (akin to weakest PDG limits)

 $\begin{array}{l} \mbox{Rather conservative Σ bound, implying m_{β} and $m_{\beta\beta}$ (much) below 100 meV} \\ \mbox{\it Mass ordering undecided by cosmology} \end{array}$

 $\sigma \sim 45-65 \text{ meV} (\text{now}) \rightarrow \sigma \sim 30 \text{ meV} (\text{baseline}) \rightarrow \sigma \sim 20 \text{ meV} (\text{goal})$

Different (and very interesting!) implications, depending on central value of Σ , e.g.:

the full-fledged **nondegenerate** case including oscillation Δm^2_{ij} .

Any such result/implication will emerge gradually, and not without debate. Saga of multi-parameter fit variants is likely to continue (focus: from limits to signals):

- Old tensions (e.g., H₀) might not be solved by new data; new tensions may appear
- The Λ CDM model might evolve into a richer model as DE and DM get "understood"
- New model parameters (e.g., $w \neq -1$, curvature...) may be correlated with Σ (see below)
- "Statistical temptations" might enhance claims about Σ signal significance

Any such result/implication will emerge gradually, and not without debate. Saga of multi-parameter fit variants is likely to continue (*focus: from limits to signals*):

- Old tensions (e.g., H₀) might not be solved by new data; new tensions may appear
- \bullet The ΛCDM model might evolve into a richer model as DE and DM get "understood"
- New model parameters (e.g., w \neq -1, curvature...) may be correlated with Σ
- "Statistical temptations" might enhance claims about Σ signal significance

What will it take to get a convincing signal $\Sigma \simeq \Sigma_0 \pm \sigma$?

In any case: for settled NO/IO, any estimate for Σ will be in one-to-one correspondence with a m_{β} estimate

Viceversa, a m_{β} measurement can (dis)confirm Σ and (de)stabilize this corner of cosmology.

Weaker correspondence of Σ with m_{$\beta\beta$}, due to x3 variation from interference of unknown Majorana phases.

Viceversa: $m_{\beta\beta} > 0$ signal with less than x3 error may constrain cases of max constructive vs destructive interfer.

\mathbf{m}_{β} signal is guaranteed: min $\mathbf{m}_{\beta} \simeq \begin{cases} 9 \text{ meV} (\text{NO}) \\ 50 \text{ meV} (\text{IO}) \end{cases}$

While Σ requires to model the whole universe, \mathbf{m}_{β} requires to model source + detector \rightarrow Instrinsically robust and pivotal role of β decay.

One must find the \mathbf{m}_{β} signal at any cost!

\mathbf{m}_{β} signal is guaranteed: min $\mathbf{m}_{\beta} \simeq \begin{cases} 9 \text{ meV} & (\text{NO}) \\ 50 \text{ meV} & (\text{IO}) \end{cases}$

While Σ requires to model the whole universe, m_{β} requires to model source + detector \rightarrow Instrinsically robust and pivotal role of β decay.

One must find the \mathbf{m}_{β} signal at any cost!

There is realistic path to go from ~ 200 meV (KATRIN) to ~ 50 meV (PROJECT 8)

Timescale: ~10 yrs. Other projects explored, in R&D phase (J. Formaggio's talk)

If lucky, in **203X** we might see **up to two absolute mass signals** and analyze them in fine details: **a new frontier of global fits**

If not: **path** $m_{\beta} \sim 50 \rightarrow \sim 9 \text{ meV}$ needs to be envisaged. Hard but absolutely necessary!

Fine details in future global analyses...

Improvements in \mathbf{m}_{β} sensitivity might come with improvements in resol. ΔE_{β} from current $\Delta E_{\beta} \sim 1 \text{ eV}$ (KATRIN) to, hopefully, $\Delta E_{\beta} \sim O(\sqrt{\Delta m^2}) \sim 50 \text{ meV}$ or less \rightarrow possible sensitivity to kink(s) info rather than just overall smeared distortion

Concerning Σ : as noted, it will be worthwhile to check small differences between the **degenerate** mass approximation and **nondegenerate** masses

Fine details in future global analyses...

Improvements in \mathbf{m}_{β} sensitivity might come with improvements in resol. ΔE_{β} from current $\Delta E_{\beta} \sim 1 \text{ eV}$ (KATRIN) to, hopefully, $\Delta E_{\beta} \sim O(v\Delta m^2) \sim 50 \text{ meV}$ or less \rightarrow possible sensitivity to **kink(s) info** rather than just overall smeared distortion

Concerning Σ : as noted, it will be worthwhile to check small differences between the **degenerate** mass approximation and **nondegenerate** masses

There may be a little bit more information than just 2 param. (m_{β} and Σ)! Possible slight sensitivity to the v_i mass distribution, hopefully consistent with the one dictated by the true mass ordering + oscillation splittings.

$\mathbf{m}_{\beta\beta}$ signal is not guaranteed: $\min \mathbf{m}_{\beta\beta} \simeq \begin{cases} 0 \text{ meV} & (NO) \\ 18 \text{ meV} & (IO) \end{cases}$

But Majorana/Dirac discrimination is of fundamental importance! (talks: M. Agostini, S. Petcov)

Signal estimates depend on nuclear model of (Z,A) + model of source/detector

Signal strength likelihood for latest results

Best fit at (or close to) null signal \rightarrow NME-dependent upper limits on $m_{\beta\beta}$

A plea to experimentalists: please always publish $\mathcal{L}(S)$, not just S at 90% CL! Otherwise: impossible to combine independent results, even in same (Z,A)

Lisi, Marrone, Nath, 2306.07671

Realistic path to reach $\geq 3\sigma$ evidence down to $m_{\beta\beta} \sim 18$ meV, even for lowest known NME: Ton-scale masses, 10-year time scale $\rightarrow 10$ ton yr exposure (talk by M. Agostini)

Signal strength likelihood for prospective 3σ evidence:

In each expt., $\pm 1\sigma$ stat. spread of $m_{\beta\beta} \propto \sqrt{S}$ smaller than "x3 variation" (even better for >3 σ evidence, or by combining ≥ 2 experiments) In combination with a signal for Σ (of for m_{β}, or both) some constraints on Majorana phases may emerge (even for *upper limits only* on m_{$\beta\beta$})

Unfortunately... washed out by <u>current</u> x3 spread of NMEs

M_i spread dangerous because it's: (1) large; (2) correlated among i=(Z,A)

and is not reduced by combining multi-isotope signals (Faessler+, 1103.2504)

New physics beyond 3v?

E.g., possible to have both light and heavy v in many theo. models, e.g. see-saw

Large and correlated NME spread may also prevent discrimination of **new physics contributions** (if any)

Light and heavy v exchange may be ~non-interfering*, e.g. in LR-symmetric models: (*simplest case, no extra phases)

$$m_{
u} = \left| \sum_{k=1}^{3} U_{ek}^2 m_k \right|$$

$$m_N = \frac{m_W^4}{m_{W_R}^4} \left| \sum_h V_{eh}^2 \frac{m_p m_e}{M_h} \right|$$

Effective Majorana mass (light) Effective Majorana mass (heavy) Need two equations (two isotopes i,j) for two mass unknowns:

$$\begin{bmatrix} S_i G_i^{-1} \\ S_j G_j^{-1} \end{bmatrix} = \begin{bmatrix} M_{\nu,i}^2 & M_{N,i}^2 \\ M_{\nu,j}^2 & M_{N,j}^2 \end{bmatrix} \begin{bmatrix} m_{\nu}^2 \\ m_{\nu}^2 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{DATA} \\ \mathbf{NME} \\ \mathbf{hinematics} \end{array} \quad \begin{array}{c} \mathbf{NME} \\ \mathbf{Majorana\ masses} \\ (\text{nuclear physics}) \end{array} \quad \begin{array}{c} \text{Majorana\ masses} \\ (\text{particle physics}) \end{array}$$

With three (or more) isotopes: can make further checks. \rightarrow Need multi-isotope $0\nu\beta\beta$ decay searches

Non-degenerate solution iff matrix determinant is non-zero:

$$\frac{M_{N,i}}{M_{\nu,i}} \neq \frac{M_{N,j}}{M_{\nu,j}}$$

NME heavy/light <u>ratio</u> uncertainties \rightarrow

Large spread of heavy/light ratios of NME around the degeneracy lines:

→ Difficult to separate heavy v contribution - and new physics in general [Taming degeneracy by error control will be easier for largely off-diagonal central values]

But...there is a realistic path towards improved NME estimates in the wider context of ab-initio approaches in nuclear physics

2203.12169

Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment

Ab-initio approaches: start from well-motivated NN and NNN forces and solve multi-N Schroedinger equation with systematically improvable methods

See talks by T. Miyagi at ISPUN 2023 J. Menendez at HADRON 2023 A. Ekstrom at HIRSCHEGG 2023 Benchmark method(s) with a variety of nuclear data and processes (including $2\nu\beta\beta$)

E.g., Horoi+ 2302.03664

Obtain probability distribution for calculated NME (not yet correlations etc.)

E.g., Belley+ 2308.1564 for ⁷⁶Ge

Already improvements w.r.t. usual x3 spread. Room for significant progress. We may hope in NME (co)variances commensurate to ton-scale requirements.

Epilogue

Conceivable to dream about scenarios like these at **NEUTEL 203X**:

We may experience some nightmares, as well as **surprises**...

... but we will learn a lot new from nature at very different scales

Epilogue

Conceivable to dream about scenarios like these at **NEUTEL 203X**:

We may experience some nightmares, as well as surprises...

... but we will learn a lot new from nature at very different scales

10⁻¹⁵

[... here, a log scale is appropriate!]

Thank you for your attention!

Work supported by PRIN 2022 "PANTHEON" (Italian MUR) & Network "TASP" (INFN)

0 ν ββ: KL-Zen, Exo, Gerda, Cuore...

[spread: nuclear models]

E.g., spread of upper bounds from Xe+Ge+Te data by using 15 nuclear matrix elements from 4 classes of nucl. models. e-print 2204.09569

IO currently disfavored at ~ 3σ by combining oscillation + nonoscillation data