Towards a global analysis of absolute v masses

Eligio Lisi (INFN, Bari, Italy)

In perspective, the global analysis of absolute $3 v$ masses from:

involves several issues that are worth discussing,
in the light of (far) future $m_{\beta}, m_{\beta \beta}, \Sigma$ signals
...and of possible new physics

Outline:
 Graphs of $3 v$ osc. bounds
 Towards a Σ signal
 Towards a m_{β} signal
 Towards $\mathrm{m}_{\beta \beta}$ (\& beyond 3v) Epilogue

Graphs of 3 v osc. bounds (1): $\left(m_{\beta}, m_{\beta \beta}, \Sigma\right)$ vs $m_{\text {lightest }}$ in NO/IO

Σ and m_{β} lines

$m_{\beta \beta}$ bands
(construct./destructive interfer.)

Lines and bands somewhat smeared by oscillation parameter uncertainties

Precise oscillometry in next decade \rightarrow Negligible smearing \& NO/IO selection

Only one Σ and m_{β} line

Only one $\mathrm{m}_{\beta \beta}$ band

\rightarrow Progress in these planes will be driven only by absolute mass observables (within the standard 3vframework)

Comment on mass ordering through oscillations

No bump/dip/kink... but small/smooth differences in spectral templates $S(E)$
\rightarrow requires statistical comparison of template shapes vs data
Probes:
Templates:
Oscill. physics:
(1) MBL reactors:
(2) LBL acceler.:
(3) Atmospheric:

In addition, "synergy" or "complementarity" of different probes:
(4) $\geq \mathbf{2}$ probes: \quad Spread of $\left\{+\Delta \mathbf{m}^{\mathbf{2}}\right\}$ vs $\left\{-\Delta \mathbf{m}^{\mathbf{2}}\right\}$

Currently: Some hints from (2-4), sum up to $\sim 2.5 \sigma$ in favor of $+\Delta \mathrm{m}^{2}$ Future: from hints to discovery, as lines of evidence (1-4) grow \& converge

In the meantime... avoid "jargon" and "statistical temptations"
...e.g.:

"IO already rejected by cosmology"

Nature does not care about our "naturalness" criteria or phase-space (under)sampling!
... also notice that $\mathrm{m}_{\text {lightest }}$ is not really measured

It makes sense to project away $\mathrm{m}_{\text {lightest }}$

It makes sense to project away $m_{\text {lightest }} \rightarrow$
But ... keep in mind that the case $\boldsymbol{m}_{\text {lightest }}=\mathbf{0}$ guarantees futuristic implications:

- a relativistic $C v B$ component
- a Ov $\beta \beta$ lower bound in NO
- a v component with $v=c$
up to redshift $z=0\left(m_{\text {lightest }}<T_{v} \sim 0.1 \mathrm{meV}\right.$ suffices $)$ $m_{\beta \beta}>1 \mathrm{meV}$ ($m_{\text {lightest }}<1 \mathrm{meV}$ suffices)
from multimessenger astrophysical sources

Graphs of $3 v$ osc. bounds (2): $\left(m_{\beta}, m_{\beta \beta}, \Sigma\right)$ without $m_{\text {lightest }}$

Only measurable quantities; graphically amplified structures are squeezed away

In perspective:

Some plots may take time to get popular, but eventually...

Fogli, Lisi, Scioscia
Phys.Rev.D 52 (1995) 5334
+later papers in the 90's

IceCube webpage

Towards a Σ signal

Current bounds: freely adapted from PDG quoted values and from 2107.00532 Forecasts: mainly adapted from M. Lattanzi, talks at NOW 2022 and TAUP 2023

Σ signal is guaranteed:

$\min \Sigma \simeq\left\{\begin{array}{rr}60 \mathrm{meV} & \text { (NO) } \\ 100 \mathrm{meV} & \text { (IO) }\end{array}\right.$

But: $\Sigma=$ output of a multi-parameter fit to cosmological data within $\Lambda C D M$,

$$
\mathcal{L}(\Sigma) \rightarrow(\text { roughly }) \Sigma \simeq \Sigma_{0} \pm \sigma
$$

Currently: Variants in \#parameters, datasets, model... \rightarrow various 95\% CL limits:

$$
\Sigma_{\mathrm{i}}<\Sigma_{0 \mathrm{i}}+2 \sigma_{\mathrm{i}}, \quad \mathrm{i} \in\{\text { variants }\}
$$

Cosmological inputs for nonoscillation data analysis			Results: Cosmo only		Cosmo $+m_{\beta}+m_{\beta \beta}$	
\#	Model	Data set	$\Sigma(2 \sigma)$	$\Delta \chi_{10-\mathrm{NO}}^{2}$	$\Sigma(2 \sigma)$	$\Delta \chi_{\text {IO-NO }}^{2}$
0	$\Lambda \mathrm{CDM}+\Sigma$	Planck TT, TE, EE	$<0.34 \mathrm{eV}$	0.9	$<0.32 \mathrm{eV}$	1.0
1	$\Lambda \mathrm{CDM}+\Sigma$	Planck TT, TE, EE + lensing	$<0.30 \mathrm{eV}$	0.8	$<0.28 \mathrm{eV}$	0.9
2	$\Lambda \mathrm{CDM}+\Sigma$	Planck Tt, TE, Ee + BAO	$<0.17 \mathrm{eV}$	1.6	$<0.17 \mathrm{eV}$	1.8
3	$\Lambda \mathrm{CDM}+\Sigma$	Planck TT, TE, $\mathrm{EE}+\mathrm{BAO}+$ lensing	$<0.15 \mathrm{eV}$	2.0	$<0.15 \mathrm{eV}$	2.2
4	Λ CDM $+\Sigma$	Planck TT, TE, EE + lensing + H_{0} (R19)	$<0.13 \mathrm{eV}$	3.9	$<0.13 \mathrm{eV}$	4.0
5	$\Lambda \mathrm{CDM}+\Sigma$	Planck TT, $\mathrm{TE}, \mathrm{EE}+\mathrm{BAO}+H_{0}(\mathrm{R} 19)$	$<0.13 \mathrm{eV}$	3.1	$<0.13 \mathrm{eV}$	3.2
6	$\Lambda \mathrm{CDM}+\Sigma$	Planck $\mathrm{TT}, \mathrm{TE}, \mathrm{EE}+\mathrm{BAO}+$ lensing $+H_{0}(\mathrm{R} 19)$	$<0.12 \mathrm{eV}$	3.7	$<0.12 \mathrm{eV}$	3.8
7	$\Lambda \mathrm{CDM}+\Sigma+A_{\text {lens }}$	Planck TT, $\mathrm{TE}, \mathrm{EE}+$ lensing	$<0.77 \mathrm{eV}$	0.1	$<0.66 \mathrm{eV}$	0.1
8	$\Lambda \mathrm{CDM}+\Sigma+A_{\text {lens }}$	Planck TT, TE, Ee + BAO	$<0.31 \mathrm{eV}$	0.2	$<0.30 \mathrm{eV}$	0.3
9	$\Lambda \mathrm{CDM}+\Sigma+A_{\text {lens }}$	Planck tT, TE, $\mathrm{EE}+\mathrm{BAO}+$ lensing	$<0.31 \mathrm{eV}$	0.1	$<0.30 \mathrm{eV}$	0.2
10	$\Lambda \mathrm{CDM}+\Sigma$	$\mathrm{ACT}+\mathrm{WMAP}+\tau_{\text {prior }}$	$<1.21 \mathrm{eV}$	-0.1	$<1.00 \mathrm{eV}$	0.1
11	$\Lambda \mathrm{CDM}+\Sigma$	ACT + WMAP + Planck lowE	$<1.12 \mathrm{eV}$	-0.1	$<0.87 \mathrm{eV}$	0.1
12	$\Lambda \mathrm{CDM}+\Sigma$	$\mathrm{ACT}+\mathrm{WMAP}+$ Planck lowE + lensing	$<0.96 \mathrm{eV}$	0.0	$<0.85 \mathrm{eV}$	0.1

E.g., Capozzi+ 2107.00532

	Model	95\% CL (eV)	Ref.
CMB alone			
Pl18[TT+lowE]	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	< 0.54	[22]
Pl18[TT,TE,EE+lowE]	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	<0.26	[22]
CMB + probes of background evolution			
Pl18[TT+lowE] + BAO	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	<0.13	[43]
Pl18[TT,TE,EE+lowE]+BAO $\quad \Lambda$ CDM +	$\Lambda \mathrm{CDM}+\sum m_{\nu}+5$ params.	<0.515	[23]
CMB + LSS			
Pl18[TT+lowE+lensing]	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	< 0.44	[22]
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	< 0.24	[22]
CMB + probes of background evolution + LSS			
Pl18[TT,TE,EE+lowE] + BAO + RSD	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	< 0.10	[43]
Pl18[TT+lowE+lensing] + BAO + Lyman $-\alpha$	$\Lambda \mathrm{CDM}+\sum m_{\nu}$	<0.087	[44]
$\underline{\text { Pl18[TT, TE, EE }+ \text { lowE }]+\mathrm{BAO}+\mathrm{RSD}+\text { Pantheon + DES }}$	$n+\mathrm{DES} \quad \Lambda \mathrm{CDM}+\sum m_{\nu}$	<0.13	[45]

Lesgourgues, Verde PDG 2022

Σ signal is guaranteed:
 $$
\min \Sigma \simeq\left\{\begin{aligned} 60 \mathrm{meV} & \text { (NO) } \\ 100 \mathrm{meV} & \text { (IO) } \end{aligned}\right.
$$

But: $\Sigma=$ output of a multi-parameter fit to cosmological data within $\Lambda C D M$,

$$
\mathcal{L}(\Sigma) \rightarrow(\text { roughly }) \Sigma \simeq \Sigma_{0} \pm \sigma
$$

Currently: Variants in \#parameters, datasets, model... \rightarrow various 95\% CL limits:

$$
\Sigma_{\mathrm{i}}<\Sigma_{0 \mathrm{i}}+2 \sigma_{\mathrm{i}}, \quad \mathrm{i} \in\{\text { variants }\}
$$

Strongest current limits [PDG, $\Sigma_{i}<90-130 \mathrm{meV}$ at 2σ] roughly correspond to:

$$
\begin{aligned}
\Sigma_{0 \mathrm{i}} & \sim 0 \mathrm{meV} \\
\sigma_{\mathrm{i}} & \sim 45-65 \mathrm{meV}
\end{aligned}
$$

Weaker limits involve larger uncertainties σ_{i} and/or nonzero best fits $\Sigma_{0 i} \sim O\left(\sigma_{i}\right)$

Implications of a current strong limit, e.g., $\Sigma=0 \pm 60 \mathrm{meV}$:

Unphysical best fit, but ... compatible with $\min (\mathrm{NO})$ at $\sim 1 \sigma$ and $\min (\mathrm{IO})$ at $<2 \sigma$ To some extent, best fit may be an artifact of degenerate mass approximation \rightarrow

For nondegenerate v masses get, e.g., $\Sigma=60 \pm 60 \mathrm{meV}$:

Physical best fit sitting at $\min (\mathrm{NO})$, compatible with $\min (\mathrm{IO})$ at $<1 \sigma$ Note: small but nonzero fit difference by taking $\Sigma=60=0+9+51$ rather than $20+20+20$

More variants can cover up to, say, $\Sigma<270 \mathrm{meV}$ at 1σ (akin to weakest PDG limits)

Rather conservative Σ bound, implying m_{β} and $\mathrm{m}_{\beta \beta}$ (much) below 100 meV Mass ordering undecided by cosmology

Next ~ 10 years: expect a significant reduction of σ from both CMB and LSS data

$\sigma \sim 45-65 \mathrm{meV}$ (now) $\rightarrow \sigma \sim 30 \mathrm{meV}$ (baseline) $\rightarrow \sigma \sim 20 \mathrm{meV}$ (goal)

Different (and very interesting!) implications, depending on central value of Σ, e.g.:
$\Sigma=0 \pm 20 \mathrm{meV}$

Unphysical at 3σ.
A new tension in cosmology?

$\operatorname{Min}(\mathrm{NO})$ signal at 3σ. Mass signal at 5 s . IO disfavored at 2σ. $\mathrm{NO} / \mathrm{IO} \sim$ undecided Consistent with oscill.? by cosmology

Mass signal at $>5 \mathrm{~s}$. $\mathrm{NO} / \mathrm{IO}$ undecided by cosmology

Always useful to compare the degenerate mass approximation with the full-fledged nondegenerate case including oscillation $\Delta m^{2}{ }_{i j}$.

Any such result/implication will emerge gradually, and not without debate. Saga of multi-parameter fit variants is likely to continue (focus: from limits to signals):

- Old tensions (e.g., H_{0}) might not be solved by new data; new tensions may appear
- The $\Lambda C D M$ model might evolve into a richer model as DE and DM get "understood"
- New model parameters (e.g., w $\neq-1$, curvature...) may be correlated with Σ (see below)
-"Statistical temptations" might enhance claims about Σ signal significance

Any such result/implication will emerge gradually, and not without debate. Saga of multi-parameter fit variants is likely to continue (focus: from limits to signals):

- Old tensions (e.g., H_{0}) might not be solved by new data; new tensions may appear
- The $\Lambda C D M$ model might evolve into a richer model as DE and DM get "understood"
- New model parameters (e.g., w $\neq-1$, curvature...) may be correlated with Σ
-"Statistical temptations" might enhance claims about Σ signal significance

What will it take to get a convincing signal $\Sigma \simeq \Sigma_{0} \pm \sigma$?

As for oscill(NO/IO): convergence of $\mathbf{\geq 2}$ quasi-independent lines of evidence helps!

Σ_{1} from dataset ${ }_{1}$ (e.g., mostly CMB or high-z data or else ...)
Σ_{2} from dataset ${ }_{2}$ (e.g., mostly LSS or low-z data or else ...)
especially if robust w.r.t. additional model parameter: demanding requirements!

In any case: for settled NO/IO, any estimate for Σ will be in one-to-one correspondence with a m_{β} estimate

Viceversa, a m_{β} measurement can (dis)confirm Σ and (de)stabilize this corner of cosmology.

Weaker correspondence of Σ with $\mathrm{m}_{\beta \beta}$, due to $x 3$ variation from interference of unknown Majorana phases.

Viceversa: $m_{\beta \beta}>0$ signal with less than x3 error may constrain cases of max constructive vs destructive interfer.

Towards a m_{β} signal
m_{β} signal is guaranteed: $\min m_{\beta} \simeq\left\{\begin{array}{rr}9 \mathrm{meV} & \text { (NO) } \\ 50 \mathrm{meV} & \text { (IO) }\end{array}\right.$

While Σ requires to model the whole universe, m_{β} requires to model source + detector
\rightarrow Instrinsically robust and pivotal role of β decay.
One must find the \mathbf{m}_{β} signal at any cost!
m_{β} signal is guaranteed: $\min m_{\beta} \simeq\left\{\begin{array}{rr}9 \mathrm{meV} & (\mathrm{NO}) \\ 50 \mathrm{meV} & \text { (IO) }\end{array}\right.$

While Σ requires to model the whole universe, m_{β} requires to model source + detector
\rightarrow Instrinsically robust and pivotal role of β decay.

One must find the \boldsymbol{m}_{β} signal at any cost!

There is realistic path to go from $\sim 200 \mathrm{meV}$ (KATRIN) to $\sim 50 \mathrm{meV}$ (PROJECT 8)
Timescale: ~ 10 yrs. Other projects explored, in R\&D phase (J. Formaggio's talk)

If lucky, in 203X we might see up to two absolute mass signals and analyze them in fine details: a new frontier of global fits

If not: path $m_{\beta} \sim 50 \rightarrow \sim 9 \mathrm{meV}$ needs to be envisaged.
Hard but absolutely necessary!

Fine details in future global analyses...

Improvements in m_{β} sensitivity might come with improvements in resol. ΔE_{β} from current $\Delta \mathrm{E}_{\beta} \sim 1 \mathrm{eV}$ (KATRIN) to, hopefully, $\Delta \mathrm{E}_{\beta} \sim \mathbf{O}\left(\mathbf{V} \Delta \mathrm{m}^{2}\right) \sim 50 \mathrm{meV}$ or less \rightarrow possible sensitivity to kink(s) info rather than just overall smeared distortion

Concerning Σ : as noted, it will be worthwhile to check small differences between the degenerate mass approximation and nondegenerate masses

Fine details in future global analyses...

Improvements in m_{β} sensitivity might come with improvements in resol. $\Delta \mathrm{E}_{\beta}$
from current $\Delta \mathrm{E}_{\beta} \sim 1 \mathrm{eV}$ (KATRIN) to, hopefully, $\Delta \mathrm{E}_{\beta} \sim \mathbf{O}\left(\mathbf{V} \Delta \mathrm{m}^{2}\right) \sim 50 \mathrm{meV}$ or less
\rightarrow possible sensitivity to kink(s) info rather than just overall smeared distortion

Concerning Σ : as noted, it will be worthwhile to check small differences between the degenerate mass approximation and nondegenerate masses

There may be a little bit more information than just 2 param. (m_{β} and Σ)! Possible slight sensitivity to the $\boldsymbol{v}_{\mathbf{i}}$ mass distribution, hopefully consistent with the one dictated by the true mass ordering + oscillation splittings.

$$
4
$$

Towards $m_{\beta \beta} \ldots$ and beyond $3 v$

$\mathbf{m}_{\beta \beta}$ signal is not guaranteed: $\min _{\text {(iff Majorana) }} \mathbf{m}_{\beta \beta} \simeq\left\{\begin{array}{rr}0 \mathrm{meV} & (\mathrm{NO}) \\ 18 \mathrm{meV} & \text { (IO) }\end{array}\right.$

But Majorana/Dirac discrimination is of fundamental importance! (talks: M. Agostini, S. Petcov)
Signal estimates depend on nuclear model of $(\mathbf{Z}, \mathbf{A})+$ model of source/detector

$$
i=(Z, A): \quad S_{i}=1 / T_{i}=G_{i} M_{i}^{2} m_{\beta \beta}^{2}
$$

Signal strength \propto decay counts	NME Main source of stat. error for $\mathbf{m}_{\beta \beta}$
Mas dynamics	
syst. error for $\mathbf{m}_{\beta \beta}$	

Signal strength likelihood for latest results

Best fit at (or close to) null signal \rightarrow NME-dependent upper limits on $\mathbf{m}_{\beta \beta}$

A plea to experimentalists: please always publish $\mathcal{L}(S)$, not just S at $90 \% \mathrm{CL}$! Otherwise: impossible to combine independent results, even in same (Z,A)

Realistic path to reach $\geq 3 \sigma$ evidence down to $m_{\beta \beta} \sim 18 \mathrm{meV}$, even for lowest known NME: Ton-scale masses, 10-year time scale $\rightarrow \mathbf{1 0}$ ton yr exposure (talk by M. Agostini)

Signal strength likelihood for prospective 3σ evidence:

In each expt., $\pm 1 \sigma$ stat. spread of $m_{\beta \beta} \propto \sqrt{S}$ smaller than "x3 variation" (even better for $>3 \sigma$ evidence, or by combining ≥ 2 experiments)

In combination with a signal for Σ (of for m_{β}, or both) some constraints on Majorana phases may emerge (even for upper limits only on $\mathrm{m}_{\beta \beta}$)

Unfortunately...
washed out by current x3 spread of NMEs

M_{i} spread dangerous because it's: (1) large; (2) correlated among $i=(Z, A)$

The fully correlated error component $M_{i} \rightarrow M_{i} \xi$ is degenerate with $m_{\beta \beta} \rightarrow m_{\beta \beta} / \xi$ and is not reduced by combining multi-isotope signals (Faesslert, 1103.2504)

New physics beyond $3 v$?

E.g., possible to have both light and heavy v in many theo. models, e.g. see-saw Heavy v

Large and correlated NME spread may also prevent discrimination of new physics contributions (if any)

Light and heavy v exchange may be ~non-interfering*, e.g. in LR-symmetric models: (*simplest case, no extra phases)

Signal strength NME for light neutrinos NME for heavy neutrinos

$$
S_{i}=G_{i}\left(M_{\nu, i}^{2} m_{\nu}^{2}+M_{N, i}^{2} m_{N}^{2}\right)
$$

$$
m_{\nu}=\left|\sum_{k=1}^{3} U_{e k}^{2} m_{k}\right|
$$

Effective Majorana mass (light)

$$
m_{N}=\frac{m_{W}^{4}}{m_{W_{R}}^{4}}\left|\sum_{h} V_{e h}^{2} \frac{m_{p} m_{e}}{M_{h}}\right|
$$

Effective Majorana mass (heavy)

Need two equations (two isotopes i, j) for two mass unknowns:

$$
\left.\begin{array}{c}
\underset{\substack{\text { DATA } \\
S_{i} G_{i}^{-1} \\
S_{j} G_{j}^{-1}}}{\left[\begin{array}{c}
S_{2}
\end{array}\right]}=
\end{array} \underset{\substack{\text { NME } \\
\text { +kinematics }}}{\left[\begin{array}{cc}
M_{\nu, i}^{2} & M_{N, i}^{2} \\
M_{\nu, j}^{2} & M_{N, j}^{2}
\end{array}\right]}\left[\begin{array}{c}
m_{\nu}^{2} \\
m_{N}^{2}
\end{array}\right]\right)\left[\begin{array}{c}
\text { Majorana masses } \\
\text { (particle physics) }
\end{array}\right.
$$

With three (or more) isotopes: can make further checks.
\rightarrow Need multi-isotope $0 v \beta \beta$ decay searches
Non-degenerate solution iff matrix determinant is non-zero:

$$
\frac{M_{N, i}}{M_{\nu, i}} \neq \frac{M_{N, j}}{M_{\nu, j}}
$$

NME heavy/light ratio uncertainties \rightarrow

Large spread of heavy/light ratios of NME around the degeneracy lines:

\rightarrow Difficult to separate heavy v contribution - and new physics in general
[Taming degeneracy by error control will be easier for largely off-diagonal central values]

But...there is a realistic path towards improved NME estimates in the wider context of ab-initio approaches in nuclear physics

2203.12169

Neutrinoless Double-Beta Decay:

A Roadmap for Matching Theory to Experiment

Ab-initio approaches: start from well-motivated $\mathcal{N} \sqrt{\mathcal{N}}$ and $\mathfrak{N} \mathbb{N} \sqrt{ } \mathcal{N}$ forces and solve multi- \mathcal{N} Schroedinger equation with systematically improvable methods

See talks by T. Miyagi at ISPUN 2023
J. Menendez at HADRON 2023
A. Ekstrom at HIRSCHEGG 2023

Benchmark method(s) with a variety of nuclear data and processes (including $2 v \beta \beta$)

E.g., Horoi+ 2302.03664

Obtain probability distribution for calculated NME (not yet correlations etc.)

Already improvements w.r.t. usual x3 spread. Room for significant progress. We may hope in NME (co)variances commensurate to ton-scale requirements.

Epilogue

Conceivable to dream about scenarios like these at NEUTEL 203X:

We may experience some nightmares, as well as surprises...
... but we will learn a lot new from nature at very different scales

Epilogue

Conceivable to dream about scenarios like these at NEUTEL 203X:

We may experience some nightmares, as well as surprises...
... but we will learn a lot new from nature at very different scales

nuclei
10^{-15}
10^{0}
10^{15}
10^{30}
m
[... here, a log scale is appropriate!]

Thank you for your attention!

$\square \quad \beta:$ KATRIN
$0 v \beta \beta$: KL-Zen, Exo, Gerda, Cuore...
[spread: nuclear models]

E.g., spread of upper bounds from $\mathrm{Xe}+\mathrm{Ge}+\mathrm{Te}$ data by using 15 nuclear matrix elements from 4 classes of nucl. models. e-print 2204.09569

β : KATRIN
$0 v \beta \beta$: KL-Zen, Exo, Gerda, Cuore...
[spread: nuclear models]

IO currently disfavored at $\sim 3 \sigma$ by combining oscillation + nonoscillation data

