

Giovanni De Lellis University "Federico II" and INFN, Naples, Italy

with contributions from the FASER, SHiP and SND@LHC Collaborations

- Neutrino experiments running at the LHC: FASER and SND@LHC
- Detectors and first results from the data taking

 $\overline{\mathcal{W}_{\nu\nu}}\mathcal{W}_{\nu\nu}\mathcal{W}_{\nu\nu}\mathcal{W}_{\nu\nu}\mathcal{W}_{\nu\nu}$

• Future plans: SHiP at the SPS and experiments at the HL-LHC

XX International Workshop on Neutrino Telescopes, Venice, October 26th 2023

Neutrino physics at the LHC: motivation

- A. De Rujula and R. Ruckl, Neutrino and muon physics in the collider mode of future accelerators, CERN-TH-3892/84 LHC
- Klaus Winter, 1990, observing tau neutrinos at the LHC
- F. Vannucci, 1993, neutrino physics at the LHC
- <u>http://arxiv.org/abs/1804.04413 April 12th 2018</u>, First paper on feasibility of studying neutrinos at LHC

Scattering and Neutrino Detector

at the LHC

 $\frac{VN}{N} = Q1 \text{ in S45 at 25m}$ $\frac{N}{N} = UJ53 \text{ and } UJ57 \text{ at 90-120m}$ $\frac{F}{F} = RR53 \text{ at 237m}$ $\frac{VF}{VF} = TI18 \text{ at 480m} (FASER\nu \text{ measurements})$

Journal of Physics G 46 (2019) 115008

Injection tunnels used at LEP

E.g. the TI18 tunnel in 2020

The LHC seen from the TI18 tunnel

Detectors ready for the run in March 2022

ForwArd Search ExpeRiment

-25er

Comparison of the neutrino fluxes and sources

Felix Kling, Laurence J. Nevay, Phys. Rev. D 104 (2021) 11, 113008 <u>https://arxiv.org/pdf/2105.08270.pdf</u>

Courtesy of F. Kling, normalised to $250 \, fb^{-1}$

Generators		$FASER\nu$			SND@LHC		
	heavy hadrons	$ u_e + ar u_e $	$ u_{\mu} + ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au} $	$ u_e + \bar{\nu}_e $	$ u_{\mu} + ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$
	SIBYLL	1501	7971	24.5	223	1316	12.6
	DPMJET	5761	11813	161	658	1723	31
	Pythia8 (Hard)	2521	9841	57	445	1871	19.2
	Pythia8 (Soft)	1616	8918	26.8	308	1691	12
Combination (all)		2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5_{-43}^{+94}	408^{+248}_{-185}	1651^{+220}_{-333}	$18.8^{+12}_{-6.6}$

Two complementary LHC ν experiments

		SND@LHC	FASER	
	Location	Off-axis : 7.2 < η < 8.4 Enhances charm parentage	On-axis : η > 9.2 Enhances statistics	
	Target	800 kg of tungsten	1100 kg of tungsten	
11.	Detector technology	Emulsion vertex detector , electromagnetic and hadronic calorimeters	Emulsion vertex detector and spectrometer	
	Neutrino	Charged particles	Charged particles Neutrinos	LHC tunnel
	0 m rock Residual hadrons	LHC magnets	LHC Residual hadrons 100	m rock
unnel	480	m ATLAS pp collisions	480 m	Ĭ112

SN

Physics goals

- Study neutrino interactions (cross-section, LFU, ..) in a new energy domain
- Systematic uncertainty on the cross-section measurement dominated by the uncertainty on the neutrino flux
- Studying the neutrino source, i.e. using neutrinos as probes, e.g. in some angular region ve production dominated by charm decays → measuring charm production in pp collisions in the forward region
- Manyfold interest for the charm measurement in pp collision at high η
- Prediction of very high-energy neutrinos produced in cosmic-ray interactions → experiments also acting as a bridge between accelerator and astroparticle physics

IceCube Collaboration, six years data, Astrophysics J. 833 (2016) 3, https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf

7+7 TeV *p-p* collisions correspond to 100 PeV proton interaction for a fixed target

 E_{ν}/GeV

at the LHC

SND@LHC main physics goals

Measurement	Uncertainty		
	Stat.	Sys.	
$pp \rightarrow \nu_e X$ cross-section	5%	15%	
Charmed hadron yield	5%	35%	
ν_e/ν_{τ} ratio for LFU test	30%	22%	
ν_e/ν_μ ratio for LFU test	10%	10%	

Expectations in 290 fb⁻¹ (43/57 upward/downward crossing angle)

	CC neutrino interactions		NC neutrino interactions		
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	
$ u_{\mu}$	450	1028	480	310	
$ar{ u}_{\mu}$	480	419	480	157	
$ u_e$	760	292	720	88	
$ar{ u}_e$	680	158	720	58	
$ u_{ au}$	740	23	740	8	
$ar{ u}_{ au}$	740	11	740	5	
TOT		1930		625	

$\sim 30 \nu_{\tau}$ CC interactions expected

 $\eta_{\rm ref} = [4, 4.5]$

 $R = \frac{d\sigma/d\eta (13 \, TeV)}{d\sigma/d\eta_{ref} (7 \, TeV)}$

Lepton flavour universality test in ν interactions

• The identification of 3 ν flavours offers a unique possibility to test LFU in ν interactions

- ves produced in the decay of all charmed hadrons (D^0 , D, D_s , Λ_c)
- The ratio depends only on charm hadronisation fractions Sensitive to v-nucleon cross-section ratio

14

16

Lepton flavour universality test in v interactions

15

- v_{μ} spectrum at low energies dominated by neutrinos produced in π/k decays
- For E>600 GeV the contamination of neutrinos from π/k keeps constant (~35%) with the energy

- $N(\nu_{\mu} + \overline{\nu}_{\mu})[E > 600 \, GeV] = 294$ in 150 fb-1 $N(\nu_e + \overline{\nu}_e)[E > 600 \, GeV] = 191$ in 150 fb⁻¹
- v_e/v_μ as a LFU test in ν int for E>600 GeV
- No effect of uncertainties on f_c (and Br) since charmed hadrons decay almost equally in v_{μ} and v_{e}

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}.$$

Systematic uncertainty from the

v in SND@I HC acceptance

Statistcal error: 10%

10%

contamination from
$$\pi/k$$

 $R_{12} =$

Observation of collider neutrinos

Analyses of SND@LHC and FASER electronic detector data collected in 2022

FASER: PRL 131 (2023) 031801

SND@LHC: PRL 131 (2023) 031802

- Both experiments operating since the start of LHC Run 3
- Successful data-taking campaigns in 2022: electronic detectors uptime of ~95%
- Three emulsion detector exchanges in SND@LHC and two in FASER.

Additional ~30 fb⁻¹ collected in 2023

SND@LHC event selection

Fiducial volume

- Neutral vertex 3th or 4th wall.
- Reject side-entering backgrounds.
- Signal acceptance: 7.5%

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex:
- Signal selection efficiency: 36%

Number of ν_{μ} CC events expected in 36.8 fb⁻¹ after cuts: 4.2

SND@LHC background

Entering muons

- Incoming μ track missed due to detector inefficiency.
- Shower induced by DIS or EM activity.
- Number of muons in acceptance: 5 x 10⁸ SNDLHC-NOTE-2023-001
- Veto rejection power: 5 x 10⁻¹²
 - Two veto and two scintillating fibre planes.
- Negligible background with tight fiducial volume.

Neutral hadrons

- Neutral hadrons produced in μ DIS upstream of detector.
- μ from π decay-in-flight or charm production.
- (8.6 ± 3.8) x 10^{-2} background events

19

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802

FASER event selection

- Event in time with collision and good data quality.
- No signal in the two front veto scintillators.
- Signals (> 40 pC) in all the scintillators downstream of FASER ν .
- Exactly one good fiducial track:
 - p > 100 GeV/c
 - \circ r < 95 mm in the IFT
 - \circ r < 120 mm at the front veto

Number of ν_{μ} CC events expected in 35.4 fb⁻¹ after cuts: 151 ± 41

FASER background

- Incoming muon track missed due to detector inefficiency.
- Expect $(3.7 \pm 2.5) \times 10^{-7}$ events.
 - Estimated from events with only one scintillator plane firing.

Scattered muons

- Muon scattered in the target misses the veto planes.
- Expect 0.08 ± 1.83 events.
 - \circ Estimated from control sample (90 < r_{IFT} < 95 mm)

Neutral hadron interaction

- Neutral hadrons produced in muon DIS in materials upstream of the detector.
- Expect O(300) hadrons with E > 100 GeV.
 - Most are absorbed in the target.
- Expect 0.11 ± 0.06 events.

:= within FASER target

FASER ν_{μ} CC observation

Observed 153 neutrino event candidates with a statistical significance of 16σ

FASER

 $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$ $\overline{\mathcal{V}}_{\nu\nu}$

-**ASE**h

Muon flux measurement and emulsion analysis by SND@LHC

10⁵ tracks/cm² in 10 fb⁻¹ exposure

SND@LHC measure muon flux in 3 different detector systems (emulsion, SciFi and Muon System).
Flux seen to increase with vertical distance from LOS.
FLUKA simulation estimate of flux ~20-25% lower than measurement.

The muon flux per integrated luminosity through an $18 \times 18 \text{ cm}^2$ area in the emulsions is $1.5 \pm 0.1(\text{stat}) \times 10^4 \text{ fb/cm}^2$. The measured muon flux per integrated luminosity through a $31 \times 31 \text{ cm}^2$ central SciFi area is

 2.06 ± 0.01 (stat) ± 0.12 (sys) $\times 10^4$ fb/cm²,

while for the downstream muon system the flux is

 $2.35 \pm 0.01 ({
m stat}) \pm 0.10 ({
m sys}) imes 10^4 \, {
m fb/cm^2}$

for a 52×52 cm² central detector region.

Multi- μ events in SND@LHC: resonances and tridents

25

• Run 4964: $\int Ldt = 0.31 f b^{-1}$, $\sigma_{inelastic} = 80 \ mb$, 2448 bunch crossings of 3564, $N_{collisions} = 25 \times 10^{12}$,

 $T = 26 \times 10^3 s$, $N_{xings} = 0.72 \times 10^{12}$; Efficiency corrected average over this run: 300 tracks/s

• Single muon per bunch crossing: $\mu = 1.1 \times 10^{-5}$, Probability for k-track event from pile-up: $\frac{\mu^{\kappa} e^{-\mu}}{\nu}$

Beyond Run 4: Forward Physics Facility FASERv2 and AdvSND

27

FPF White paper: J. Phys. G: Nucl. Part. Phys. 50 (2023) 030501 https://iopscience.iop.org/article/10.1088/1361-6471/ac865e/pdf

- FPF proposed to house a suite of experiments to for BSM physics searches, neutrino physics and QCD.
- FASER ν 2 designed to carry out precision ν_{τ} measurements and heavy flavour physics studies
 - ~2300 (SIBYLL) / ~20000 (DPMJET) ν_{τ} interactions are expected
- AdvSND with two off-axis forward detectors
 - •SND1: $\eta \sim 8$ Reduce systematic uncertainties
 - •SND2: $\eta \sim 4.5$ link to LHCb measurements & high-energy ν physics
 - FLArE with an on-axis LArTPC with ~10 ton LAr mass
 - neutrino and light DM detector

New era of collider neutrinos started!

30

CERNCOURIER | Reporting on international high-energy physics

New LHC experiments enter uncharted territory

Physics - Technology - Community - In focus Magazine

https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory

NEUTRINOS | NEWS

y

Collider neutrinos on the horizon

Stay tuned!

https://cerncourier.com/a/collider-neutrinos-on-the-horizon/

