XX International Workshop on Neutrino Telescopes October 23-27, 2023

The JUNO Experiment

Yury Malyshkin^{1,2} on behalf of the JUNO collaboration

1. GSI Helmholtzzentrum für Schwerionenforschung, Germany
 2. Forschungzentrum Jülich GmbH, Germany

 Located in South China (~150 km from Guangzhou and Hong Kong)

 Will have 20 kt liquid scintillator target to ensure large statistics:
 ~100,000 reactor anti v. events in 6 years

~100,000 reactor anti- v_e events in 6 years

- Designed for unprecedented energy resolution of 3% at 1 MeV:
 - High light yield of liquid scintillator:
 ~10,000 photons / MeV
 - High transparency of liquid scintillator:
 ~20 m attenuation length at 430 nm
 - High photo-coverage:
 ~78% with 17,612 20" PMTs + 25,600 3" PMTs

• Will have **20 kt** liquid scintillator target to ensure large statistics:

~100,000 reactor anti- v_{e} events in 6 years

- Designed for unprecedented energy resolution of 3% at 1 MeV:
 - High light yield of liquid scintillator:
 ~10,000 photons / MeV
 - High transparency of liquid scintillator:
 ~20 m attenuation length at 430 nm
 - High photo-coverage:
 ~78% with 17,612 20" PMTs + 25,600 3" PMTs

Powerful instrument for observing neutrinos from other sources

- proton decay
- DM searches

• ...

Detector Design and Status

Central Detector: Stainless Steel Supporting Structure

From a concept to the physical realization

~40 m in diameter

Sub-cm assembly precision

Central Detector: Acrylic Vessel

- Inner diameter: 35.40 ± 0.04 m
- Thickness: 124 ± 4 mm
- Transparency: >96% in pure water

Installed up to the equator

Photomultiplier Tubes

5000 x 20" Hamamatsu R12860

High QE: Fine TTS: 28.5% 1.3 ns

15012 x 20" NNVT MCP-PMTs

Highest QE:30.1%Good TTS:7.0 ns

High efficiency of photon detection

Photomultiplier Tubes

5000 x 20" Hamamatsu R12860

High QE: Fine TTS: 28.5% 1.3 ns

15012 x 20" NNVT MCP-PMTs

Highest QE:30.1%Good TTS:7.0 ns

25600 x 3" HZC XP72B22

- Calibration of 20" PMTs' non-linearities
- Extension of dynamic range

More details about multi-calorimetry concept in <u>talk by Yang Han</u> on Thursday

Photomultiplier Tubes Installed

Acrylic vessel with temporary protection cover

Liquid Scintillator of JUNO

fluor

Composition:

LAB + PPO (2.5 g/L) + bis-MSB (3 mg/L)wavelength shifter

LAB purification:

Expected radio-purity: 10⁻¹⁷ g/g U/Th

- Al_2O_3 filtration column (optical properties improvement)
- Distillation

(heavy elements removal / transparency improvement)

- Water extraction (U/Th/K radioisotopes removal)
- Steam / nitrogen stripping (removal of Ar/Kr/Rn gaseous impurities)

Liquid Scintillator Quality Monitoring

JUNO

OSIRIS

Online Scintillator Internal Radioactivity Investigation System

[Eur. Phys. J. C 81 (2021)]

OSIRIS Detector **Assembled**

Energy Scale Calibration

Regular insertion of the calibration sources into the detector:

- Understanding of the detector response
- Testing of the reconstruction algorithms
- Calibration of the energy scale non-linearities

< 1% energy scale uncertainty

More details in talk by Jiaqi Hui on Thursday

JUNO Timeline

- 2008 Proposal to determine neutrino mass ordering by detecting reactor electron anti-neutrinos [*Phys. Rev. D* 78 (2008)]
- 2013 Project approval
- **2016** Publication of "Yellow Book" [*J. Phys. G* 43 (2016)]
- 2013-2022 Design and production of components
- 2015-2021 Civil construction
- 2022-2023 Installation and commissioning
- 2024 Filling and start of data taking!

Commissioning

- Regular light-off/on tests during detector assembly started
 - Light off tests: full data taking and processing chain with PMT HV on
 - Light on tests: joint elec./trigger/DAQ/DCS test with PMT HV off
- Very good electronics, shielding and grounding
 - Electronics noise of 20" PMTs is 2.8 ADC counts, 4% of SPE
 much better than the design of 10%
 - Electronics noise of 3" PMTs is 2.8 ADC units, ~5% of SPE
 much lower than the trigger threshold of 1/3 p.e.
- All tested PMTs (710 × 20" and 3184 × 3") are working well
- More tests will continue as installation progresses

Oscillation Physics with JUNO

Inverse Beta-Decay (IBD)

Prompt signal handle for neutrino energy: $E_{\nu} \simeq E_{e^+} + \Delta m_{n-p} + T_n$ **Delayed signal:**

neutron capture: 2.2 MeV (H) or 4.9 MeV (¹²C) within ~200 µs

The detection channel for:

Important detection channel for:

charged current interaction — sensitive to anti- v_{a} only

IBD Selection for Reactor and Geoneutrino Analyses

Backgrounds for Reactor Neutrino Signal

after IBD selection

Reactor neutrino signal: $47.1 \text{ day}^{-1} \pm 1.5\%$ (syst.)

(Yangjiang + Taishan + Daya Bay NPPs, no duty cycle)

Neutrino Oscillation Studies

Updates since Yellow Book [JPG 43 (2016)]:

- Two less reactor cores at Taishan NPP (Taishan + Yangjiang total: 35.7 GW_{τh} -> 26.6 GW_{τh})
- Actual location and overburden (~700 m -> ~650 m)
- Including TAO (see next slides) [TAO CDR <u>arXiv:2005.08745]</u>
- Improved energy resolution model (3.0% -> 2.95% at 1 MeV)
 - Results of PMT testing (PDE 27% -> 30%) [EPJ C 82 (2022)]
 - Increase of PMT PDE and new PMT optical model [EPJ C 82 (2022)]
 - New central detector geometry
- Improved muon veto strategy based on full MC (exposure fraction 83% -> 91.6%)
- Updated background expectations and radiopurity of materials [JHEP 102 (2021)]
- Extra backgrounds: atmospheric neutrino, world reactors
- PMNS parameters updated to PDG2020

~1350 p.e. / MeV --> ~1600 p.e. / MeV

Precision Measurement of Oscillation Parameters

Measuring frequencies and amplitudes of "solar" and "atmospheric" oscillation modes:

<u>[Chin. Phys. C 46 (2022)]</u>

Sub-percent precision for $\sin^2 \theta_{12}^{}, \Delta m^2_{21}^{}$ and $\Delta m^2_{31}^{}$

More details in talk by Andrea Serafini on Thursday

Reactor v

Neutrino Mass Ordering (with Reactor Neutrinos)

Resolving two scenarios:

JUNO TAO (Taishan Antineutrino Observatory)

- ~94% coverage with SiPM (~50% PDE)
- Cooling to -50°C
- 1 ton fiducial volume / 2.8 tons of Gd-LS

Measurement of reactor anti- v_e spectrum with **no oscillations** (within Taishan NPP building)

- Sensitive to fine structure with better precision
- Model-independent reference spectrum for JUNO
- Improvement of nuclear databases
- Sensitive to sterile neutrino

JUNO TAO (Taishan Antineutrino Observatory)

Other Physics Topics in JUNO

Geoneutrinos

- Originate from β-decays of radioactive elements in the interior of the Earth
- Only ²³⁸U and ²³²Th component can be detected via IBD due to the 1.8 MeV reaction threshold
- Reactor neutrinos constitute the largest background

Expected results:

JUNO will collect the largest dataset of geoneutrinos in about 1 year (1–2 events / day) Geoneutrinos Precision of total geoneutrino signal with Th/U mass ratio fixed to 3.9. Existing measurements: Borexino: 17% [PRD 2020] ~8% in 10 years KamLAND: 15% [GRL 2022] Precision of U and Th components in 10 years: ²³²Th ~35% 238 ~30% ²³²Th+²³⁸U ~15% ²³²Th/²³⁸U ~55% Separation of crust and mantle signal

More details in talk by Zhao Xin on Thursday

Atmospheric Neutrinos

- First measurement with a liquid scintillator detector
- Flavour separation
- Measurement of θ_{23}
- Validation of cross-sections in sub-GeV energy range
- Background for many analyses above the reactor-v energies: DSNB, proton decay, indirect DM ...

Atmospheric v

More details in talks by <u>Rosmarie Wirth</u>, <u>Zekun Yang</u> and <u>Gaosong Li</u> on Thursday

NeuTel-2023: The JUNO Experiment

October 23–27, 2023

Atmospheric Neutrinos

JUNO

Atmospheric v

- First measurement with a liquid scintillator detector
- Flavour separation
- Measurement of θ_{23}
- Validation of cross-sections in sub-GeV energy range
- Background for many analyses above the reactor-v energies: DSNB, proton decay, indirect DM ...

More details in talks by <u>Rosmarie Wirth</u>, <u>Zekun Yang</u> and <u>Gaosong Li</u> on Thursday

Solar Neutrinos

JUNO @ different radio-purity scenarios:

- min. requirement for NMO
- 10 x Borexino Phase-I
- Borexino Phase-I
- Borexino Phase-III (U/Th 10⁻¹⁷ g/g)

· · · Borexino result

[JCAP 10 (2022)]

More details in talk by Apeksha Singhal on Thursday

Solar Neutrinos

JUNO @ different radio-purity scenarios:

- min. requirement for NMO
- 10 x Borexino Phase-I
- Borexino Phase-I
- Borexino Phase-III (U/Th 10⁻¹⁷ g/g)

Borexino result

arXiv:2303.03910, accepted by JCAP] ⁸**B**

sin²θ₁₂

 Δm_{21}^2

8%

20%

Solar v

More details in talk by Apeksha Singhal on Thursday

Supernova Neutrinos

Supernova Neutrinos

NeuTel-2023: The JUNO Experiment

October 23–27, 2023

Other Topics

JUNO

Other Topics

NeuTel-2023: The JUNO Experiment

October 23-27, 2023

- JUNO detector construction will be finalized this year.
- Filling liquid scintillator and start of data taking next year!
- Sub-percent precision for $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} .
- Mass ordering determination in 6 years x 26.6 GW_{th}:

 ~3σ with reactor neutrinos only (completely independent from CP-violation and θ₂₃),
 >3σ with reactor and atmospheric neutrinos.
- Unprecedented physics potential:
 - geo-, atmospheric, solar and supernova neutrinos.
 - proton decay, dark matter search, ...

Summary

JUNO detector construction will be finalized this year.

- Filling liquid scintillator and start of data taking next year!
- Sub-percent precision for $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} .
- Mass ordering determination in 6 years x 26.6 GW_{th} : ~3 σ with reactor neutrinos only (completely independent from CP-violation and θ_{23}), $>3\sigma$ with reactor and atmospheric neutrinos. Thank you!
- Unprecedented physics potential:
 - geo-, atmospheric, solar and supernova neutrinos. Ο
 - proton decay, dark matter search, ... Ο

Backup Slides

Liquid Scintillator of JUNO

Composition:

LAB + PPO (2.5 g/L) + bis-MSB (3 mg/L)

LAB purification:

- 1. Al₂O₃ filtration column (optical properties improvement)
- Distillation (heavy elements removal / transparency improvement)
- Water extraction (U/Th/K radioisotopes removal)
- 4. Steam / nitrogen stripping (removal of Ar, Kr, Rn gaseous impurities)

Monitored during filling by OSIRIS

(Online Scintillator Internal Radioactivity Investigation System)

20 kton in JUNO \approx 1.45 \cdot 10³³ free protons (target for anti- v_{a})

NeuTel-2023: The JUNO Experiment

October 23-27, 2023

$\Delta \chi^2$ Contributions from Different Energies

 $\Delta \Box^2 = \Box^2_{false} - \Box^2_{true}$ - two independent fits for two NMO assumptions

PMNS parameters free in the fit: Δm_{21}^2 , $\sin^2 \theta_{12}$, Δm_{31}^2 , $\sin^2 \theta_{13}$

Nuisance parameters (for JUNO and TAO):

- Normalization
- Background rates
- Energy resolution
- Detector response non-linearities

Breakdown of Systematics Effects for $\Delta \chi^2$

-

(b)	true	IO
(D)	true	10

Uncertainties	$\Delta\chi^2_{ m min}$	$\Delta \chi^2_{\rm min}$ change
Statistics	11.3	0.0
Stat. $+$ Reference spectrum	10.7	-0.6
+ Nonlinearity	10.3	-0.4
+ Geoneutrinos	9.8	-0.5
+ World reactors	9.5	-0.3
+ Accidental	9.2	-0.3
+ ⁹ Li/ ⁸ He	9.1	-0.1
+ Other backgrounds	9.0	-0.05
Total	9.0	0.0

Neutrino Mass Ordering

Probability of finding the α neutrino flavor in the i-th neutrino mass eigenstate. The CP-violating phase is varied $(0\rightarrow 2\pi)$.

```
[P.F. de Salas et al, arXiv:1806.11051]
```


NeuTel-2023: The JUNO Experiment

Geoneutrino Signal Prediction at JUNO

JUNO

1 TNU (Terrestrial Neutrino Unit) = 1 event / 10³² target protons (~1kton LS) / year with 100% detection efficiency

Geonu = Lithosphere + Mantle

Lithosphere (crust + CLM) predictions

Lithosphere model	Signal [TNU]	Uncertainty [%]
Global [Prog. in Earth and Planet. Sci. 2, 5, 2015]	30.9 ^{+6.5} -5.2	+21 -17
JULOC [Phys.Earth.Planet.Inter. 299, 2020]	40.4 ^{+5.6} -5.0	+14 -12

Three groups of BSE models for mantle:

- Cosmochemical (CC): ~2 TNU
- Geochemical (GC): ~10 TNU
- Geodynamical (GD): ~20 TNU

Accessible via anti- v_{e} measurement $238_{92}U + 206_{82}Pb + 8\alpha + 6e^{-} + 6\bar{\nu}_{e} + 51.698 \text{ MeV}$ $235_{92}U + 207_{82}Pb + 7\alpha + 4e^{-} + 4\bar{\nu}_{e} + 46.402 \text{ MeV}$ $232_{90}Th \rightarrow 208_{82}Pb + 6\alpha + 4e^{-} + 4\bar{\nu}_{e} + 42.652 \text{ MeV}$ $40_{19}K \xrightarrow{89.3\%} 40_{20}Ca + e^{-} + \bar{\nu}_{e} + 1.311 \text{ MeV}$ $40_{19}K \xrightarrow{10.7\%} 40_{18}Ar + \nu_{e} + 1.505 \text{ MeV}$ Contribution to Earth's heat

More details in talk by Zhao Xin on Friday

Core Collapse Supernova Neutrinos

NeuTel-2023: The JUNO Experiment

Supernova v

DSNB

Figure 7: The prompt energy spectra of the reference DSNB signal with $R_{\rm SN}(0) = 1.0 \times 10^{-4} \, {\rm yr}^{-1} {\rm Mpc}^{-3}$, $\langle E_{\nu} \rangle = 15 \, {\rm MeV}$, and $f_{\rm BH} = 0.27$ versus all the backgrounds before (left) and after (right) the background reduction techniques. The upper and lower panels are shown for the regions of FV1 and FV2 respectively.

Proton Decay

Dark Matter Search

Detection in the IBD channel

PSD for atmo-nu rejection

15-100 MeV range

JUNO limit in 10 years (in terms of thermally averaged self-annihilation rate)

$$\langle \sigma v \rangle = 1.1 \times 10^{-25} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

Sterile Neutrino

- 30 m from the core
- Very high statistics (2000 events / day)
- Fine energy resolution (~2% at 1 MeV)

Sensitivity at the Δm^2 region of 0.05 – 1 eV²:

complimentary to the longer baseline experiments

