

Latest from NOvA

Kirk Bays (UMN) on behalf of the NOvA collaboration

Oct 25, 2023

Neutrino Telescopes Conference

Questions in neutrino physics

What are the neutrino masses?

Do neutrino violate CP symmetry?

Are 3-flavor oscillations the full story?

Do we understand neutrino scattering?

Questions in neutrino physics

About NOvA

- Utilizes NuMI π decay-in flight beam from Fermilab
- 14.6 mrad off-axis beam for narrow peak @ 2 GeV
- High-purity neutrino or antineutrino mode polarities
- Two detectors 14 kton far detector (FD) 810 km from beam source, 300 ton near detector (ND) @ 1 km 4
- ND has high (>1M v_u interactions) stats

- Detectors are tracking calorimeters
- 4 cm x 6 cm x 16 m (FD) 'cells' are extruded plastic filled with liquid scintillator
- Wavelength-shifting fibers connected to APDs collect light
- Cells are alternately oriented horizontally or vertically for full 3D picture

Interactions in NOvA

- Clear long, straight muons
- Higher density electron showers
- Hadronic particles more difficult but can be clearly differentiated
- Use machine learning to identify single particles (ND cross-section analyses)
- Use convolutional neural network to look at entire events and ID neutrino flavor

NOvA simulation

- Many neutrino interaction types all matter for NOvA
- NOvA uses GENIE to simulated neutrino interactions
- 2p2h (MEC) interactions are modeled poorly
- NOvA corrects by fitting MEC model to ND data holding other simulation fixed
- We know other models aren't perfect; compensate with large, robust uncertainties
- This is a problem for all experiments; important to measure MEC directly

Do we understand neutrino scattering?

NOvA cross-section measurements

- v_{μ} interactions with MEC-enriched samples
- Measure muon properties (analysis 1) or hadronic properties (analysis 2) – double differential measurements

Cross-section measurement: muon system

Signal events, $0.98 < Cos \theta_{\mu} < 0.99$

- Require only 1 clear track
 - This is the muon
 - Low-energy hadronic particles won't make tracks
- This greatly reduces interactions that make higher-energy hadronic activity
 - RES, DIS reduced
 - Leaves a sample that is enriched in MEC
- Phase space cut (dotted line)
 - 115 kinematic bins
 - 12-15% uncertainty in each bin (mostly flux)
- Selected sample > 500k events

NOvA Preliminary

- Unfolded results are compared to different MEC model predictions
- Some are 'untuned' models, also an adjusted MEC model developed by MINERvA
- In areas with the most MEC, can see large differences in models, mostly don't agree with data

Cross-section measurement: hadronic system

- Previous analysis required low hadronic energy to enrich MEC
- Here hadronic energy is a variable, look at low E regions where MEC dominates
- 67 analysis bins
- ~12% uncertainty each (mostly flux)

- Again compare to different MEC predictions
- Again, where most MEC is expected, different models make the most difference and are generally discrepant

Comparing models

<u>muon analysis</u>

hadronic analysis

2p2h model	χ² (67 d.o.f.) (includes 12 q slices)	
GENIE 2.12.2 + NOvA tune	560	
Empirical MEC	910	model
València + MINERvA tune	970	
València	1900	`\`theor
SuSA v2	1000	model

- Calculate χ² for different models vs data (full covariance + uncertainty treatment)
- `Tuned' models do best (none do great)
 - Theory isn't accurate yet
- NOvA tune generally best (our MEC fitting procedure is roughly okay)
- Publications being prepared for these analyses

What are the neutrino masses?

Do neutrino violate CP symmetry?

NOvA oscillation results

- NOvA has both frequentist (*Phys.Rev.D 106* (2022) 3, 032004) and Bayesian (Markovchain MC) (paper in preparation, see <u>Fermilab W&C talk</u>) oscillation measurements
- Having two identical detectors allows for mitigation of flux and cross-section uncertainties (extrapolation)
- 13.6e20 pot (neutrino mode) and 12.5e20 pot (antineutrino mode)

- Bayesian and frequentist results agree
- 1σ regions for
 NOvA and T2K
 overlap in NO
- Large parts of IO excluded

Best Fit:

Normal hierarchy $\Delta m232 = (2.41 \pm 0.07) \times 10$ $\sin^2 \vartheta_{23} = 0.57^{+0.04}$ $\delta = 0.82\pi$

Are 3-flavor oscillations the full story?

Beyond 3-flavor: Sterile neutrinos

- Could there be a 4th, 'sterile' neutrino? (can't interact, but other neutrino flavors could oscillate into this flavor)
- Would affect all oscillations (adds 2 angles, a mass term and phase)

$$1 - P(\nu_{\mu} \to \nu_{s}) \approx 1 - \cos^{4} \theta_{14} \cos^{2} \theta_{34} \sin^{2} 2\theta_{24} \sin^{2} \Delta_{41}$$
$$- \sin^{2} \theta_{34} \sin^{2} 2\theta_{23} \sin^{2} \Delta_{31}$$
$$+ \frac{1}{2} \sin \delta_{24} \sin \theta_{24} \sin 2\theta_{23} \sin \Delta_{31}.$$

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{31} + 2 \sin^{2} 2\theta_{23} \sin^{2} \theta_{24} \sin^{2} \Delta_{31} - \sin^{2} 2\theta_{24} \sin^{2} \Delta_{41}.$$

standard 3F oscillations

new with sterile v; adds 2 new oscillation angles, a mass term, and a phase

- Differences from 3F oscillations could be visible in ND and FD
- Published NOvA analysis on anti-neutrino data: *Phys.Rev.Lett.* 127 (2021) 20, 201801

• measures NC only

- Update analysis uses neutrino mode data
 - NC + v_{μ} data
 - Simultaneous 2-detector fit
 - Assumes 3+1 model, covariance matrix fit
 - Systematic uncertainties in fit
 - No MEC alterations

Sterile sample pre-fit

Sterile sample 3-flavor fit

Sterile sample 3+1 fit

3+1 fit same as 3F fit

no evidence for steriles

22

preparation Sterile neutrino mixing parameter limits

What's next for NOvA

- Studying new models in new versions of GENIE
- More sophisticated treatment of MEC
- New oscillation results:
 - ~2x neutrino-mode statistics, updated simulation and reconstruction next year
- New cross-section results:
 - Antineutrino v_{μ} CC inclusive look for Fermilab seminar soon
 - Many more in pipeline
- Sterile neutrinos: add anti-neutrino mode data, v_e data
- NOvA-T2K joint fit result: converging now, results soon
- Beam: have achieved >950 kW power, heading to 1 MW this year
- NOvA test beam dedicated experiment to reduce uncertainties

Thanks!

Backup

Main MEC uncertainty

MEC weights – two 2D Gaussians

Cross-section analysis: muon system

1 1.5 2 Muon kinetic energy (GeV)

0.5

NOvA Preliminary NOvA Preliminary NOvA Preliminary $0.85 < \cos \theta_{\mu} < 0.88$ $0.91 < \cos \theta_{\mu} < 0.94$ $0.98 < \cos \theta_{\mu} < 0.99$ 0.25 0.25).25 — E_μ-Scale ---- Calib shape ---- Angle-Shift E_u-Scale ---- Angle-Shift ---- Angle-Shift E_u-Scale ---- Neutron ---- Calib shape ---- Neutron ---- Calib shape ---- Neutron - Cherenkov ---- Calib - Cherenkov ---- Calib ---- Light ---- Calib - Cherenkov Fractional uncertainties 0.1 0.1 ---- Light ---- Flux-HP Fractional uncertainties 50.0 50.0 50.0 ---- Flux-Foc ---- Light ---- Flux-Foc 0.2 ---- Flux-Foc Xsec-NotMEC - Flux-HP — Xsec-NotMEC - Flux-HP — Xsec-NotMEC MEC MEC MEC - Total ----- Total - Total).15 0.).05 1 1.5 2 Muon kinetic energy (GeV) 2.5 0.5 1 1.5 2 Muon kinetic energy (GeV) 2.5 0.5 1 1.5 2 Muon kinetic energy (GeV) **NOvA Preliminary NOvA Preliminary NOvA Preliminary** $0.85 < \cos\theta_u < 0.88$ $0.91 < \cos\theta_{\mu} < 0.94$ $0.98 < \cos \theta_{\mu} < 0.99$ Tune Data (Stat.+Syst.) $\frac{d^2 \sigma}{\theta_{\mu} dT_{\mu}}$ / GENIE v2.12.2-NOVA Tune = $\frac{\theta_{\mu} dT_{\mu}}{0}$ = 1 - - Data (Stat.+Syst.) Data (Stat.+Syst.) w / Empirical MEC w / Empirical MEC w / Empirical MEC - w / MINERvA Tune w / MINERvA Tune w / MINERvA Tune / GENIE v2.12.2-NOvA w / Valencia w / Valencia w / Valencia w / SuSA-v2 MEC w / SuSA-v2 MEC w / SuSA-v2 MEC 1 3 3.0 0.8 $\frac{d^2 \sigma}{d\cos \theta_{\rm H}} dT_{\rm H}$ s 0.6

1 1.5 2 Muon kinetic energy (GeV)

2.5

0.5

0.5

2.5

uncertainties

result ratios

2.5

1 1.5 2 Muon kinetic energy (GeV)

Cross-section measurement: hadronic system

Selection cut	Selected signal events	Efficiency
All true signal	1,956,000	100%
Quality	1,952,000	99.9%
Track reconstruction	1,951,000	99.8%
Muon identification	1,667,000	85.3%
Vertex fiducial	1,609,000	82.3%
Muon containment	482,600	24.7%
Muon phase space	432,200	22.1%
Shower containment	365,300	18.7%

bac	kground	se	lectior
	5		

Process	Selected events	Event fraction
Signal	372,000	91.85%
Total background	33,000	8.15%
Outside phase space	15,000	3.70%
Non-fiducial	7,600	1.78%
CC Anti-neutrino	6,000	1.48%
Neutral current	4,200	1.04%
Electron neutrino	160	0.04%

30

3F contours (Bayesian)