SUPERNOVAE NEUTRINO Observatories

LUCA PATTAVINA INFN - LABORATORI NAZIONALI DEL GRAN SASSO

European Research Council

Established by the European Commission

XX INTERNATIONAL WORKSHOP ON NEUTRIND TELESCOPES VENICE - 23-27 OCTOBER 2023

- WHY NEUTRINOS
- WHICH NEUTRINOS
- HOW NEUTRINOS
- WHAT NEUTRINDS
- WHERE NEUTRINOS

HOW DID WE DETECT SN1987A WE CAN DO BETTER THAN THAT 3 50 EL, $(\alpha = 2)$ 40 E Kamiokande ΚII IMB McNaught **Clock uncertainty** [mag. E 30 plates erg) +/- 1 min ×Zoltowski plate 20 = Phys.Rev. 30 $(\times 10^{52})$ Jones limit Brightness BS1 anc 8 10 ⊟ on¦t Bl 1111 1.1.1 20 ĴOINT Ft tot 10 50 12 IMB 40 10 Clock uncertainty 30 14 +/- 50 msec 23:00 23:12 24:00 24:12 20 5 10 15 20 Day: Hour (UT) February 1987

E. Amaldi et al., Europhys.Lett., 3, 1325 (1987).

Mirizzi et al,

D

72:063001 (2005

SUPERNOVAE: COSMIC FIREWORKS

SETTING THE STAGE

High-energy explosions of massive stars

W Baade, F Zwicky PNAS (1931)

Star binding energy is converted into: all flavor-neutrinos, GW, EM radiation

G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941)

Why neutrinos are interesting?

SUPERNOVAE: COSMIC FIREWORKS

SETTING THE STAGE

High-energy explosions of massive stars

W Baade, F Zwicky PNAS (1931)

Star binding energy is converted into: all flavor-neutrinos, GW, EM radiation

G. Gamow and M. Schoenberg, Phys. Rev. 59, 539 (1941)

Why neutrinos are interesting?

Highest luminosity

Direct **probes** and **messengers** of SN dynamics

Neutrinos provide early alerts of the explosion

HOW DOES A STAR EXPLODE ?

NEUTRINDS DRIVE THE FIREWORK

Main SN phase

Star's collapse

Neutronization

Accretion

Cooling

Wikipedia - Supernova

DETAILS OF A SN NEUTRIND SIGNAL

ALL FLAVORS EMISSION

→ Which flavor should we look at ?

DETAILS OF A SN NEUTRIND SIGNAL

ALL FLAVORS EMISSION

v_x is the most **intense** flavor

v_x is the most **energetic** flavor

Sensitive detection channel for v_x is needed

WE KNOW LITTLE ABOUT V OSCILLATION INSIDE SNE

→ Which flavor should we look at ?

in the stellar envelope are not included

amborra INSS202

WE KNOW LITTLE ABOUT V OSCILLATION INSIDE SNE

→ Which flavor should we look at ?

Spectral swap!

HOW

DO WE DETECT SN NEUTRINOS?

HOW DO WE DETECT SN NEUTRINOS?

From 1987 to nowadays

11

Mass: 1-7 Mton SN Distance: <50 kpc Bonus: Mass & timing IceCUBE $y_x + p$ $\overline{\nu}_x/\nu_x$ ---Chn: IBD v: anti-ve Mass: 1 Mton SN Distance: <60 kpc Bonus: Mass & timing to nowad

KM3NeT

Chn: IBD

v: anti-ve

HOW

СНАРС

'E 🚺

HOW DO WE DET

PROTONS

From 2024 on

NEUTRINOS?

NUCLEI

13

 e^-

JUNO

HOW DO WE DETECT SN NEUTRINOS?

HOW DO WE DE RESNOVA PROTONS ResNova Inve $\overline{ u}_e$ CHARGE v:all CUP Xenon-nT DARKSIDE Chn: CEvNS on Xe v:all Mass: 5 ton c DS-20k Chn: CEvNS on Ar

v:all Mass: 20 ton SN Distance: <20 kpc Bonus: High-xs & size

SN Distance: <40 kpc Bonus: High-xs & size

NEUTRINOS?

COHERENT Coll., *Science* 357 (2017) 6356, 1123

HOW DO WE DE RESNOVA PROTONS ResNova Inve $\overline{ u}_e$. CHARGE v:all CUP Xenon-nT DARKSIDE Chn: CEvNS on Xe v:all Mass: 5 ton c DS-20k Chn: CEvNS on Ar

v:all

SN Distance: <40 kpc Bonus: High-xs & size Mass: 20 ton SN Distance: <20 kpc Bonus: High-xs & size

COHERENT Coll., *Science* 357 (2017) 6356, 1123

HOW DO WE DE RESNOVA PROTONS ResNova Inve $\overline{ u}_e$ CHARGE v:all CUP Xenon-nT DARKSIDE Chn: CEvNS on Xe v:all Mass: 5 ton c DS-20k Chn: CEvNS on Ar

v:all

SN Distance: <40 kpc Bonus: High-xs & size Mass: 20 ton SN Distance: <20 kpc Bonus: High-xs & size

COHERENT Coll., *Science* 357 (2017) 6356, 1123

EXTRACTING THE MOST OUT OF A SN Using the vs: energy

- Location of the SN-
- Neutrino fundamental properties
 - SN remnants properties
 - Physics of the CoreCollapse
 - Multi-messenger observation
 - * Stellar nucleosynthesis 🗸
- *Physics Beyond SM + Exotic Physics / v for BSM Physics

* not covered in this talk

LOCATING THE NEUTRIND SOURCE WHERE IS THE SN ?

POINTING Anisotropic interactions WHAT:

Detection channels How:

SK-Gd, Dune, SNO+

TRIANGULATION

- Time delay of neutrino arrival
- Large statistics & many detectors
- ➡ Juno+SK, Juno+IC, …

JF. Beacom et al., Phys.Rev. D 60 (1999) 033007

DIRECTIONALITY

High-Energy neutrino follow up (GeV)

Directional detector

⊏> IC, ...

R. Tomas et al., Phys.Rev. D68 (2003) 093013

NEUTRIND FUNDAMENTAL PROPERTIES SNE, UNIQUE NEUTRIND SOURCES $V_{\rm E}$ NEUTRONIZATION BURST → V MASS ORDERING **V** ABSOLUTE MASS

Time of Flight measurement

➡ Katrin is already better Nat. Phys. 18, 160–166 (2022)

Suppression of v_e

Sensitive to MSW effects Statistics + Normalization

IceCube, HK, Dune, Juno

NEUTRIND SIGNAL TIME DISTRIBUTION

PHYSICS OF CORE-COLLAPSE

VSIGNAL DURATION **SN** REMNANT \rightarrow SN EXPLOSION MECHANISM

Cooling phase rate

BH vs NS requires time resolution of O(\ll 10 ms)

Shock-wave instabilities (SASI)

3D feature of SN models

Serv large-stats: IC, HK, ...

NEUTRIND SIGNAL TIME DISTRIBUTION PHYSICS OF CORE-COLLAPSE

Cooling phase rate

BH vs NS requires time resolution of $O(\ll 100 \text{ ms})$

➡ Fast / modular detectors: KM3NeT, IC, ...

Shock-wave instabilities (SASI)

3D feature of SN models

Serv large-stats: IC, HK, ...

NEUTRIND SIGNAL TIME DISTRIBUTION PHYSICS OF CORE-COLLAPSE

Cooling phase rate

BH vs NS requires time resolution of $O(\ll 100 \text{ ms})$

➡ Fast / modular detectors: KM3NeT, IC, ...

Shock-wave instabilities (SASI)

3D feature of SN models Interplay vs and GWs

Serv large-stats: IC, HK, ...

NEUTRIND SIGNAL TIME DISTRIBUTION

PHYSICS OF CORE-COLLAPSE

BH vs NS requires time resolution of $O(\ll 100 \text{ ms})$

 → Fast / modular detectors: KM3NeT, IC, ...

Shock-wave instabilities (SASI)

3D feature of SN models Interplay vs and GWs

Sery large-stats: IC, HK, ...

➡ Modular detectors: ResNova

Current technology

UNIFORM

1.63±0.46 SN/100y [R. Rozwadowska et la., New Astron. 83 (2021) 101498] **3.2(+7.3 – 2.6) SN/100y** [S. M. Adams et al., Astrophys. J., 778, 164 (2013)]

Solution → Mton-scale technology: HK

DIFFUSE SN NEUTRIND BACKGROUND NOT ONE SN, BUT ALL SNE!

The integral of:

- Failed- and CCSN
- SN explosion dynamics
- Star Metallicity
- Star formation rate
- Neutrino mass hierarchy

Strong model dependence

DIFFUSE SN NEUTRIND BACKGROUND NOT ONE SN, BUT ALL SNE!

The integral of:

- Failed- and CCSN
- SN explosion dynamics
- Star Metallicity
- Star formation rate
- Neutrino mass hierarchy

Strong r depende

DSNB in all flavors possible with CEvNS

DIFFUSE SN NEUTRIND BACKGROUND NOT ONE SN, BUT ALL SNE!

The integral of:

- Failed- and CCSN
- SN explosion dynamics
- Star Metallicity
- Star formation rate
- Neutrino mass hierarchy

Strong r depende

DSNB in all flavors possible with CEvNS

SUMMARY

- SN1987A neutrinos took 160,000 y to reach our detectors
- → Big technological leap since SN1987A
- High-sensitivity all flavors v detection is coming to town
- SN202X will offer a wealth of opportunities and answer some big questions
 - \rightarrow SNEWS2.0 online network of v-sensitive detectors
- Missing SN202X will be worse than no SN observation

BEYOND THIS TALK

- Repurpose veto detectors for SN neutrinos
- Main Detectors for SN neutrinos

26/10

24/10

leutrinos in XENONnT dark matter experiment	Emanuele Angelino
alazzo Franchetti, Istituto Veneto di Scienze, Lettere ed Arti	17:10 - 17:3
irst result of a search for Diffuse Supernova Neutrino Background in SK-Gd experiment	Masayuki Harad
alazzo Franchetti, Istituto Veneto di Scienze, Lettere ed Arti	17:30 - 17:5
ensitivity to core-collapse supernovae neutrino signals in DarkSide-20k	Giuseppe Matteuc
alazzo Franchetti, Istituto Veneto di Scienze, Lettere ed Arti	17:50 - 18:1

Neutrino flux observation of the next galactic core-collapse supernova in the COSINUS dark matter detector Matthew Stukel

supernova detection and triggering with the DUNE Far Detector	Pablo Barham Alza
alazzo Loredan,Sala delle Adunanze	17:55 - 18:2
ore-Collapse Supernova Neutrino Observation in JUNO	Yibing Zhar
Palazzo Franchetti, Istituto Veneto di Scienze, Lettere ed Arti	10:25 - 10:3
leutrino flavor evolution in dense astrophysical sources	Marie Corneliu
Palazzo Franchetti, Istituto Veneto di Scienze, Lettere ed Arti	11:00 - 11:0

