

Observations of High-Energy Astrophysical Neutrino Fluxes with IceCube

Christopher Wiebusch XX International Workshop on Neutrino Telescopes 23.–27. Oct. 2023

GEFÖRDERT VOM

Outline

- A. Observations of astrophysical neutrinos Updated recent results
- B. Galactic plane and implications
- C. Combined fit initial results
- D. Discussion Conclusions Outlook

Atmospheric foregrounds to astrophysical neutrinos

Astrophysical neutrino signal

Energy spectrum:

$$\frac{d\phi}{dE} \propto E^{-2+x}$$

✤ ~100-200 /a

Cosmic ray induced muons

- High rate ~kHz
- Steep energy spectrum
- Enter dector from above

Conventional atmospheric neutrinos

- Pion and kaon decays in the atmosphere
- Steep energy spectrum:

$$\frac{d\phi}{dE} \propto E^{-3.7}$$

80,000/a

Prompt atmospheric neutrinos

- Heavy meson decays in the atmosphere (not measured yet)
- Energy spectrum:
- ✤ < 20/a</p>

$$\frac{d\phi}{dE} \propto E^{-3.0}$$

Neutrino detection channels: Tracks and Cascades

Tracks:

Uncontained events \Rightarrow Large detection volume

- $\sim 10x > instrumented volume$
- ~ 100-200 astrophysical events /year
- Arrival time of photons \Rightarrow **direction & geometry** $\Delta \psi \sim 0.3^{\circ}$

Number of registered photons \Rightarrow **energy-loss**

 $\Delta E/E \sim 100\%$ (events uncontained)

Cascades:

- Contained events
- Good energy resolution $\Delta E/E \sim 10\%$
- Smaller volume: 1 astro.ev /month
- angular resolution $\Delta \psi \sim 5^{\circ} 10^{\circ}$
- Smaller atmospheric background
- Self-veto: Largest signal above horizon

Hybrid channel: High Energy Starting Events (HESE)

- Simple Veto from outer layers, background from experimental data
- All flavor: v_e, v_μ, v_τ
- Variants: Starting tracks sample (**ESTES**), medium energy starting event (**MESE**)

Neutrino detection channels: Tracks and Cascades

time

Tracks:

Uncontained events \Rightarrow Large detection volume

- $\sim 10x > instrumented volume$
- ~ 100-200 astrophysical events /year
- Arrival time of photons \Rightarrow **direction & geometry** $\Delta \psi \sim 0.3^{\circ}$

Number of registered photons \Rightarrow **energy-loss** $\Delta E/_E \sim 100\%$ (events uncontained)

Cascades:

- Contained events
- Good energy resolution $\Delta E/E \sim 10\%$
- Smaller volume: 1 astro.ev /month
- angular resolution $\Delta \psi \sim 5^{\circ} 10^{\circ}$
- Smaller atmospheric background
- Self-veto: Largest signal above horizon

Hybrid channel: High Energy Starting Events (HESE)

- Simple Veto from outer layers, background from experimental data
- All flavor: v_{e} , v_{μ} , v_{τ}
- Variants: Starting tracks sample (**ESTES**), medium energy starting event (**MESE**)

New Northern tracks result (ICRC 2023): 12.3 years

- 12.3 years
- 982,279 events
- Neutrino purity > 99.8%
- Northern Sky θ >85°
- 3d fit of energy, zenith, and azimuth Including
 - Isotropic Astro
 - Conventinal & Promt atmospheric
 - Galactic plane contribution
 - Muon background

Single Power-law fit

Bestfit	No galactic contribution	
O : $\phi = 1.51 \pm ^{0.22}_{0.23}$: $\phi = 1.61 \pm {}^{0.21}_{0.24} (+6.5\%)$	
O : $\gamma = 2.38 \pm ^{0.08}_{0.08}$: $\gamma = 2.40 \pm ^{0.08}_{0.08}$	

Isotropic distribution of excess events \Rightarrow Mostly extragalactic origin

Very similar to previous 9.5 year result Astrophys. J. 928 (2022) 50, arXiv:2111.10299v1

New Starting Track result (ICRC 2023): ESTES

Starting track events with optimized muon veto for low energy

	Events
Astro Nu	680
Atmos Conv.	10042
Atmos Mu.	75
Total MC	10797
Data	10798

Single Power-law fit

$$\begin{split} \Phi_{Astro}^{Total} &= \phi_{Astro}^{\text{per-flavor}} \times (\frac{E_{\nu}}{100 \text{TeV}})^{-\gamma} \times C_0, \\ C_0 &= 3 \times 10^{-18} \times \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \\ \text{where,} \\ \phi_{Astro}^{\text{per-flavor}} &= 1.68^{+0.19}_{-0.22}, \quad \gamma = 2.58^{+0.10}_{-0.09} \end{split}$$

More results soon: 11 yr cascades 10 yr starting events (MESE)

Comparison of Observations and open questions

Differences in

- sensitive energy ranges
- angular acceptances
- backgrounds
- flavor composition
- systematic uncertainties

 10^{3} 10^{4} 10^{5} 10^{6} 107 90% CL sensitive energy range [GeV] ^{- flavor} [10⁻¹⁸/GeV/cm²/s/sr] 4.0 Cascades 6yr(2020) HESE 7.5yr(2021) 3.5 Through-going tracks 9.5yr(2022) 3.0 ESTES 10vr (2022, prelim.) 2.5 2.0 1.5 $\Phi_{@100TeV}^{\nu + \overline{\nu}, \text{ per }-}$ 68% C.L. 95% C.L 0.5 2.2 2.4 2.6 2.8 3.0 3.2 3.4 spectral index γ

- \Rightarrow Combined fit on an event-by-event basis
- \Rightarrow How about more complex spectra
- \Rightarrow Galactic versus extra-galactic

Single Power-law fit

C. Characterisation of the cosmic neutrino flux

- Is there a Galactic contribution ?
- Are there v_{τ} and what is the flavor composition ? \Rightarrow Yes, well consistent with roughly 1:1:1, new result coming soon, see ICRC 2023 arXiv:2308.15213v1
- Are there Glashow-events at 6.3 PeV ?

 \Rightarrow Yes, see Nature 591, 220-224 (2021)

- Are there spectral features ?
- Is there a spectral cut-off ? favored at the 2σ level
- Can we get a consistent picture?
- Observation of prompt atmospheric neutrinos from charmed meson decays ?

Neutrinos from our Galaxy

- unresolved sources
- CR interactions with the ISM
- Guaranteed flux of neutrinos in IceCube (~40/a expected)
- Template can be derived from gamma observations

- Tomography of the CR injection & intensity throughout the Galaxy
- Bias on measured extra-galactic flux

Neutrino flux expectation based on Fermi π 0 model from Fermi-LAT Ev > 1TeV

Observation of Galactic Neutrinos with Cascades

15°

 $b = 0^{\circ}$

-15°

180°

DNN selected cascade-like events

- 10yr data, 60,000 events
- All sky
- ML improved angular resolution
- Extended diffuse emission

Diffuse Galactic plane analyses	Flux sensitivity Φ	p-value	Best-fitting flux Φ
π^0	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	$21.8 \substack{+5.3 \\ -4.9}$
$\mathrm{KRA}^{5}_{\gamma}$	0.16×MF	$6.13 \times 10^{-6} (4.37\sigma)$	$0.55^{+0.18}_{-0.15} \times \mathrm{MF}$
$\mathrm{KRA}_{\gamma}^{50}$	$0.11 \times MF$	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} \times \mathrm{MF}$
Catalog stacking		n-value	
analyses		p-value	
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$	

- Post-trial significance 4.5σ
- About 10% contribution to the total flux
- No ability to discriminate between different emission scenarios
 ⇒ Probably a combination of diffuse and unresolved source emission

IceCubeCollaboration*+Science 380,1338 1343(2023).DOI:10.1126/science.adc9818

Test the Galactic emission with Northern tracks (ICRC)

Expand 2d-fit (Zenith-Energy) to 3d fit (including Right Ascension)

Data prefers non-zero galactic contribution (not yet significant)

Comparison Northern tracks with Cascades

- CRINGE Model slightly preferred (2.7σ, 2.9x model)
- CRINGE/Fermi fits better than Kra-γ models (as cascades)
- Fitted flux norm. is consistent between tracks and cascades

Model	Northern Tracks Model scale		DNNCascade (all-sky) Model scale
Fermi-π ⁰	4.7 +/-2.0	2.5 σ	5 +/-1.1
KRA-γ 50	0.7 +/-0.4	2.2 σ	0.37 +0.13/-0.11
KRA-γ 5	1.0 +/-0.5	2.4 σ	0.55 +0.18/-0.15

Effects of galactic neutrinos on the fit of the extragalactic flux

Northern Tracks

Enhanced Starting Tracks (ESTES)

Comparison

- 3d fit including galactic template (12.3 yr)
- Fit without galactic template (12.3yr)
- Previous 9.5 yr result (no galactic template)

Comparison

- Fit without Galactic component (default)
- Fit including a Galactic contribution fixed to the experimental cascade observation

 \Rightarrow Fit of extra-galctic flux is very robust w.r.t. the Galactic contribution and mainly the flux changes by the expected 10%

Combined fit of Tracks and Cascades (ICRC 2023)

 \mathcal{L} combined = \mathcal{L} tracks × \mathcal{L} cascades

- Consistent treatment of systematic uncertainties
- Complete picture & probe structure in spectrum
- Northern tracks (8.5 years)
- Cascades (10.5 years)

Single power-law fit

Conturs of the combined Track-cascade fit

Strongly improved accuracy, but tension in energy spectrum between the two fits ...when a single power-law is assumed

Beyond the single Power-law (SPL)

- 1. Log Parabola fit
- 2. Broken power-law (BPL)
- 3. Segmented Fit

Main results

- All models are statistically preferred w.r.t the SPL at the >2-3 σ level
- The BPL model & segmented fit prefer a softening of the spectrum at around 30TeV
- tension between cascades and track

\Rightarrow Work in progress

Segmented fit

Track histogram

Astrophysical Model	Result	Energy Range (90% CL)	–2∆log⊥ over SPL
SPL	$ \Phi_{@100\text{TeV}}^{\nu+\bar{\nu}} / C = 1.80^{+0.13}_{-0.16} \gamma = 2.52^{+0.04}_{-0.04} $	2.5 TeV to 6.3 PeV	-
LogP	$ \Phi_{@100\text{TeV}}^{\nu+\bar{\nu}} / C = 2.13^{+0.16}_{-0.19} \alpha_{\text{LP}} = 2.57^{+0.06}_{-0.05} \beta_{\text{LP}} = 0.23^{+0.10}_{-0.07} $	8.0 TeV to 2.2 PeV	16.4
BPL		13.7 TeV to 4.7 PeV	24.7

Summary of Combined fit of different hypotheses

Spectrum is still consistent with a single power-law but more complex shapes provide a better fit on the 2σ level

Summary of potential spectral anomalies

Spectrum is consistent with a single power-law ... but indications of potential features

The challenge of finding prompt neutrinos

Careful determination of confidence Conservative estimate results in Sensitivity 1.5 (cascades) - 2.9 (power-law) (model-prediction)

See POS (ICRC 2023) arXiv:2309.07560v1

Likelihood scans (Asimov) experiments with injected astrophysical best fits and default ϕ_{prompt} Expected fit result for ϕ_{prompt} (stand.dev.)

Summary and Outlook

- The observed astrophysical neutrino flux in IceCube originates from the Galaxy and from extra-galactic sources
- Both components can be well separated
- Analysing and combining different detection channels is a must and allows increasing understanding of the observed signal
- There are weak indications of features in the spectrum
- Several new results are work in progress (preliminary reports at ICRC 2023) and will be published soon

Multi-PeV events

1.) June 2014: High energy up-going muon

 $E_{deposi}t = 2.6 \pm 0.3 \text{ PeV}$ Muon energy 4.5 PeV (median) Neutrino energy 8.7 PeV (median) ATEL #7856, arXiv:1607.08006 [astro-ph.HE]

3.) Mar 2019: IceCube-20190331A HESE-Track-Alert 199,000 p.e. \Rightarrow O(10PeV), not relased yet ATel #12616, GCN 24028

2.) Dec. 2016: Partially contained cascade

Glashow-event

- \Rightarrow 5.9 PeV eq. em. energy
- \Rightarrow 6.3 PeV hadr. energy

Nature 591, 220-224 (2021)

4.) Dec. 2012: Big Bird, HESE-Cascade 2 PeV

 \Rightarrow Despite of indications for a spectral cut-off at ~1PeV there are events far above the cut-off energy

Combined fit result in comparison to other results

