The Near Term Race for the Neutrino Mass Ordering

Stephen Parke

Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

with Hiroshi Nunokawa and Renata Zukanovich Fundal (NPZ)

entitled in arXiv:2008.11280v1 as Earliest Resolution to the Neutrino Mass Ordering?

Anatael Cabrera^{*1,2,4}, Yang Han^{†1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², Hiroshi Nunokawa^{‡2,8}, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec⁷, Pietro Chimenti^{§5,*}, Stefano Dusini^{¶6,*}, Mathieu Bongrand^{9,2}, Rebin Karaparambil⁹, Victor Lebrin⁹, Benoit Viaud⁹, Frederic Yermia⁹, Lily Asquith¹⁰, Thiago J. C. Bezerra¹⁰, Jeff Hartnell¹⁰, Pierre Lasorak¹⁰, Jiajie Ling¹¹, Jiajun Liao¹¹, and Hongzhao Yu¹¹

SNO $m_2 > m_1$

KamLAND $|\Delta m^2_{21}| = |m^2_2 - m^2_1| = 7.5 imes 10^{-5} ext{ eV}^2$ $L/E = 15 ext{ km/MeV} = 15,000 ext{ km/GeV}$

Nu MO / NeuTel 2023

-atmospheric mass ord $\nu_3, \nu_1/\nu_2^*$ Massive out os.nb Undering:

L/E = 0.5 km/MeV = 500 km/GeV $|\Delta m^2_{31}| = |m^2_3 - m^2_1| = 2.5 \times 10^{-3} \ {
m eV}^2$ unknown: SK, T2K, NOvA, JUNO, T2HK, DUNE: ICECUBE, KM3NET/ORCA

Stephen Parke

NOPIO = Graphics [d_1 set [d_1] set [d_2] set [

Nu MO / NeuTel 2023

Explain this figure + Future Prospects

Stephen Parke

Current members:

Ivan Esteban Concha Gonzalez Garcia Michele Maltoni Thomas Schwetz Albert Zhou

Former members:

Johannes Bergström Alvaro Hernandez Cabezudo Ivan Martinez Soler Jordi Salvado

Stephen Parke

Nu MO / NeuTel 2023

No preference Or for NO

Except

T2K + NOvA Combined

T2K & NOvA Appearance Confusion:

SK event samples

• O(45%) change in electron-like event rate between $\delta_{CP} = +\pi/2$ and $\delta_{CP} = -\pi/2$

T2K NO prefer by ~2 units of χ^2

Stephen Parke

Number of Events proportional to Oscillation Probability

NOvA NO prefer by ~1 unit of χ^2

https://doi.org/10.5281/zenodo.6683827

Kelly, Machado, SP, Perez, Zukanovich 2007.08526 plus other papers

COMBINED

IO prefer by ~1.6 unit of $\Delta \chi^2$

Nu MO / NeuTel 2023

Reactors + LBL All Prefer NO:

Even T2K + NOvA

For these Experiments the is a 'Mass Ordering Sum Rule:'

Not valid for ICECUBE, KM3Net/Orca

Needs tweak for JUNO

Stephen Parke

$$\widehat{\cos\delta} \equiv (\cos\delta^{NO} + \cos\delta^{IO})/$$

Unchanged if $31 \leftrightarrow 32$ in either or both MO's

Nu MO / NeuTel 2023

10/23/2023

/2

Stephen Parke

$$\left(\frac{NO}{Mais} - |\Delta m_{31}^2|_{DB}^{NO}\right) = (2.4 - 0.9\hat{\cos\delta})\% |\Delta m_{ee}^2|$$

10/23/2023

11

Nu MO / NeuTel 2023

Another possible way to determine the Neutrino Mass Hierarchy

arXiv:hep-ph/0503283v1 29 Mar 2005

and that $|\Delta m^2_{ee}| > |\Delta m^2_{\mu\mu}|$ implies NO

- Hiroshi Nunokawa¹,* Stephen Parke²,[†] and Renata Zukanovich Funchal^{3‡}
 - in PRD **NPZ'05**
- Introduced Δm^2_{ee} and $\Delta m^2_{\mu\mu}$ for disappearance experiments:

few % difference

 $|\Delta m_{ee}^2| < |\Delta m_{\mu\mu}^2|$ implies IO

P(
u)

$$\begin{split} \bar{\nu}_{e} \text{ disappearance at an } L/E &\sim 0.5 \text{ km/MeV} \\ \Delta_{ij} = \frac{\Delta m_{i}^{2}}{4E} \\ \nu_{e} &\rightarrow \nu_{e}) = 1 - P_{\odot} - \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}) \\ &\approx 1 - P_{\odot} - \sin^{2} 2\theta_{13} (\sin^{2} \Delta_{3i} + (-1)^{i} \mathcal{O}(\Delta_{21})) \quad i = 1 \text{ or } 2 \\ &\approx 1 - P_{\odot} - \sin^{2} 2\theta_{13} (\sin^{2} \Delta_{ee} + \mathcal{O}(\Delta_{21}^{2})) \quad \text{note "2"} \\ \Delta_{21} &= \left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right) \Delta_{31} = 0.03 \ \frac{\pi}{2} = \frac{1}{20} \text{ and therefore } \Delta_{21}^{2} = \frac{1}{400} \\ \mu_{ee}^{2} &\equiv \cos^{2} \theta_{12} \Delta m_{31}^{2} + \sin^{2} \theta_{12} \Delta m_{32}^{2} = m_{3}^{2} - (c_{12}^{2} m_{1}^{2} + s_{12}^{2} m_{2}^{2}) \\ &\qquad \nu_{e} \text{ average of } \Delta m_{31}^{2} \text{ and } \Delta m_{32}^{2} \\ P_{\odot} &= \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} = 0.002 \text{ when } \Delta_{31} = \frac{\pi}{2} \end{split}$$

 Δm

Nu MO / NeuTel 2023

14

Improved $\sin^2 2\theta_{13}$ and Δm^2_{32}

 $|\Delta m_{32}^2|^{IO} - |\Delta m_{32}^2|^{NO} = +2c_{12}^2\Delta m_{21}^2 = 0.105 \times 10^{-3} \text{ eV}^2$

 ν_{μ} disappearance at an L/E \sim 500 km/GeV

$$egin{aligned} \Delta m^2_{\mu\mu} &\equiv rac{|U_{\mu1}|^2 \Delta m^2_{31} + |U_{\mu2}|^2 \Delta m^2_{32}}{|U_{\mu1}|^2 + |U_{\mu2}|^2} = m^2_3 - rac{|U_{\mu1}|^2 m^2_1 + |U_{\mu2}|^2 m^2_2}{|U_{\mu1}|^2 + |U_{\mu2}|^2} \ &pprox \Delta m^2_{ee} - (\cos 2 heta_{12} - \sin heta_{13}\cos \delta) \Delta m^2_{21} \end{aligned}$$

 ν_{μ} average of Δm_{31}^2 and Δm_{32}^2

 $|\Delta m_{ee}^2| > |\Delta m_{\mu\mu}^2|$ implies NO

THIS IS IGNORING MATTER EFFECTS:

Stephen Parke

Nu MO / NeuTel 2023

 $(\sin 2\theta_{12} \tan \theta_{23} \approx 1)$

 $|\Delta m^2_{ee}| < |\Delta m^2_{\mu\mu}|$ implies IO

0.4

18

$|\Delta m_{\mu\mu}^2| \approx |\Delta m_{32}^2|^{\frac{NO}{IO}} \pm (s_{12}^2 + s_{13}\cos\delta^{\frac{NO}{IO}})$

	Dorometer			
	I af afficier	Normal ordering	Inverted ordering	
T2K:	$\delta_{\rm CP}$ (rad.)	$-1.97\substack{+0.97 \\ -0.62}$	$-1.44\substack{+0.56 \\ -0.59}$	
	$\sin^2 \theta_{13} / 10^{-3}$			$\perp 0.05.07$
	$\sin^2 \theta_{23}$	$0.561\substack{+0.019 \\ -0.038}$	$0.563\substack{+0.017 \\ -0.032}$	$\pm 0.03(2\%)$
	$\Delta m_{32}^2 / 10^{-3} ({\rm eV}^2)$	$2.494\substack{+0.041\-0.058}$		
	$ \Delta m_{31}^2 /10^{-3}({ m eV}^2)$		$2.463\substack{+0.042 \\ -0.056}$	

$$|\Delta m_{31}^2|^{IO} - |\Delta m_{32}^2|^{NO} = -(\cos 2\theta_{12} - 2s_{13}\widehat{\cos \delta})\Delta m_{21}^2$$
$$|-2.463| - +2.494 \approx -(0.4 - 0.30\widehat{\cos \delta}) \times 0.075$$
$$-0.031 = -\begin{pmatrix} 0.008 & \widehat{\cos \delta} = 1\\ 0.030 & \widehat{\cos \delta} = 0\\ 0.053 & \widehat{\cos \delta} = -1 \end{pmatrix}$$

$$(\Delta m_{21}^2 = |\Delta m_{31}^2|^{\frac{NO}{IO}} \mp (c_{12}^2 - s_{13}\cos\delta^{\frac{NO}{IO}})\Delta$$

Nu MO / NeuTel 2023

Normal o	rd.	Inverte	ed ord.	
UO	LO	UO	LO	
$+2.41 \pm 0.07$	+2.39	-2.45	-2.44	± 0.07
$0.57\substack{+0.03 \\ -0.04}$	0.46	0.56	0.46	
$0.82\substack{+0.27 \\ -0.87}$	0.07	1.52	1.41	

 $\frac{|\Delta m_{32}^2|^{IO}}{|\Delta m_{32}^2|^{IO}} = (2s_{12}^2 + s_{13}\cos\delta^{NO} + s_{13}\cos\delta^{IO})\Delta m_{21}^2$

UO |-2.45| - +2.41 \approx $(0.6 + 0.15 \cos \delta^{NO} + 0.15 \cos \delta^{IO}) \times 0.075$

 $0.04 \approx 0.045 - 0.008$

LO $|-2.44| - +2.39 \approx (0.6 + 0.15 \cos \delta^{NO} + 0.15 \cos \delta^{IO}) \times 0.075$

 $0.05 \approx 0.045 + 0.007$

agrees to the accuracy provided !

Matter Effect:

Daya Bay: $\frac{E_{\nu}}{12 \text{ GeV}} < 10^{-3}$ irrelevant

NOvA Disappearance: $\frac{E_{\nu}}{12 \text{ GeV}} \approx 0.2$

But further suppressed by s_{13}^2 and $(1 - 2 | U_{\mu 3} |^2)$ Combined approx. 0.002 !

Stephen Parke

Nu MO / NeuTel 2023

10/23/2023

21

Stephen Parke

Nu MO / NeuTel 2023

ν_e Disappearance: $|\Delta m_{ee}^2|$ same for both orderings Daya Bay:

$|\Delta m_{32}^2|_{DB}^{IO} = |\Delta m_{31}^2|_{DB}^{NO} + \cos 2\theta_{12}\Delta m_{21}^2$

 $\cos 2\theta_{12} \approx 0.40$

$$\left(|\Delta m_{32}^2|_{DB}^{IO} - \Delta m_{32}^2|_{\mu dis}^{IO} \right) + \left(|\Delta m_{32}^$$

Unchanged if $31 \leftrightarrow 32$ in either or both MO's

 ν_{μ} Disappearance: $|\Delta m^2_{\mu\mu}|$ same for both orderings NOvA, T2K:

 $\cos 2\theta_{12} - 2\sin \theta_{13} \cos \delta \approx 0.40 - 0.30 \cos \delta$

Hinting at NO and $\cos \delta \leq 0$

2.5 approx -I.6 (App LBL) +4.1 (Dis LBL)

Stephen Parke

Nu MO / NeuTel 2023

+ SuperK

SK I–V Atmospheric Oscillation Results

SK 2023 best fit: Normal ordering, $\delta_{CP} \sim -\pi/2$, $\Delta m^2_{32} \sim 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2\theta_{23} \sim 0.45$

Super-K Neutrino Results & Gd Status, Thomas Wester, NNN2023

2023/10/12

Stephen Parke

캮

Mass ordering: $\Delta \chi^2$ I.O. - N.O. ~ 5.7*

With reactor constraint: $\sin^2\theta_{13} = 0.0220 \pm 0.0007$

14

Nu MO / NeuTel 2023

NEXT STEP: JUNO

Stephen Parke

JUNO

Time Evolution of JUNO measurements

Forero, SP, Ternes, Zukanovich 2107.12410

Nu MO / NeuTel 2023

JUNO Events Spectra

Forero, SP, Ternes, Zukanovich 2107.12410

Real Baseline Distribution + Backgrounds

If $|\Delta m_{32}^2|(IO) = |\Delta m_{32}^2|(NO)$, then $|\Delta m_{ee}^2|(IO) = 2.428$ If $|\Delta m_{31}^2|(IO) = |\Delta m_{31}^2|(NO)$, then $|\Delta m_{ee}^2|(IO) = 2.578$ If $|\Delta m_{32}^2|(IO) = |\Delta m_{31}^2|(NO)$, then $|\Delta m_{\rho\rho}^2|(IO) = 2.503$

Nu MO / NeuTel 2023

Stephen Parke

Nu MO / NeuTel 2023

Preliminary NPZ++

0 -2.8

-2.7

-2.6

-2.5

-2.4

 $\Delta m_{32}^2 [10^{-3} \text{ eV}^2] \qquad \Delta m_{31}^2 [10^{-3} \text{ eV}^2]$

-23

- LBL comb.
 - Comb.

2.4

2.5

2.6

2.7

Stephen Parke

Nu MO / NeuTel 2023

Further Synergies:

JUNO-ICECUBE UPGRADES 1911.06745 JUNO-KM3NET 2108.06293

Single Experiments:

JUNO 1507.05613

no MO update in JUNO 2204.13249

See also FPTZ:2107.12410

Stephen Parke

HyperK:

DUNE:

Nu MO / NeuTel 2023

Chiara Brofferio U. Milano - Bicocca

Gioacchino Ranucci INFN - Milano

• Nu 2024: June 16 - 22

Milano, Italy

Discussions over a

Nu 1980 Erice - INC

Summary: • Circa Nu 2026: Global fits, including JUNO's precision Δm^2 measurement may give us Neutrino Mass Ordering > 3σ .

- - Precision Disappearance Δm^2 measurements will make significant contributions (NPZ '05)
- Circa Nu 202x: Synergies of JUNO with ICECUBE/PINGU, KM3NET
- Circa Nu 203x: JUNO, HK and DUNE will each have Neutrino Mass Ordering $> 3\sigma$ in a single experiment
- A Year Later: DUNE > 5σ for Neutrino Mass Ordering

Daya Bay (10^{-3} eV^2)

$|\Delta m_{32}^2|^{IO} - |\Delta m_{32}^2|^{NO} = +2c_{12}^2\Delta m_{21}^2$ |-2.571| - +2.466 \approx $+2 \times 0.7 \times 0.075 = 0.105$ ± 0.060

Stephen Parke

Nu MO / NeuTel 2023

 $|\Delta m_{ee}^2| \equiv |\Delta m_{32}^2|^{\frac{NO}{IO}} \pm c_{12}^2 \Delta m_{21}^2$

 $\equiv |\Delta m_{31}^2|^{\frac{NO}{IO}} \mp s_{12}^2 \Delta m_{21}^2$

Perfect agreement !

 ν_e Disappearance: ν_{μ} Disappearance: $|\Delta m_{ee}^2|$ same for both orderings Daya Bay: NOvA, T2K: $\pm = NO/IO$ $\Delta m_{32}^2 = \pm |\Delta m_{ee}^2| - \cos^2 \theta_{12} \Delta m_{21}^2$ $\Delta m_{32}^2 = \pm |\Delta m_{\mu\mu}^2| - \sin^2 \theta_{12}' \Delta m_{21}^2$ $\Delta m_{31}^2 = \pm |\Delta m_{ee}^2| + \sin^2 \theta_{12} \Delta m_{21}^2$ $\Delta m_{31}^2 = \pm |\Delta m_{\mu\mu}^2| + \cos^2 \theta_{12}' \Delta m_{21}^2$ $-\Delta m_{32}^2 \Big|_{DB}^{IO} = \Delta m_{31}^2 \Big|_{DB}^{NO} + \cos 2\theta_{12} \Delta m_{21}^2$ $-\Delta m_{32}^2 \Big|_{\mu dis}^{IO} = \Delta m_{31}^2 \Big|_{\mu dis}^{NO} - \cos 2\theta_{12}' \Delta m_{21}^2$ $\cos 2\theta_{12}' = \cos 2\theta_{12} - 2s_{13}\cos\delta \approx 0.40 - 0.30\cos\delta$ $\cos 2\theta_{12} \approx 0.40$ If IO then 0 If NO then 0 $\Delta m_{31}^2 |_{DB}^{NO}) = (2.4 - 0.9 \cos \delta)\% \ \Delta m_{ee}^2$ $(\Delta m_{32}^2)_{\mu dis}^{IO} - \Delta m_{32}^2|_{DB}^{IO})$ 1.5 to 3.3 % Unchanged if $31 \leftrightarrow 32$ in either or both MO's

Stephen Parke

Nu MO / NeuTel 2023

 $|\Delta m^2_{\mu\mu}|$ same for both orderings

Vacuum v Matter:

Mass Ordering Sensitivity

one (two) year > 3 σ (> 5 σ) for all values of δ_{CP}

Mass Ordering Sensitivity

42