

BINGO: a new proposal for background reduction in $0\nu\beta\beta$ bolometric experiments

Hawraa Khalife for the BINGO collaboration

XX International Workshop on Neutrino Telescopes

23-27 Oct 2023 - Venice

What are we searching for?

Neutrinoless double-beta decay: $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$

- Hypothetical nuclear transition
- Not allowed in SM
- Current half-lives limits 10²⁴-10²⁶ yr

Matteo Agostini talk

Its observation will:

- Ascertain the Majorana nature of neutrino ($\nu=\overline{\nu})$
- Confirm lepton number violation
- Measure $T^{0
 u}_{1/2}$ that will lead to m_{etaeta} measurement

What are we searching for?

Neutrinoless double-beta decay: $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$

- Hypothetical nuclear transition
- Not allowed in SM
- Current half-lives limits 10²⁴-10²⁶ yr

Matteo Agostini talk

Its observation will:

- Ascertain the Majorana nature of neutrino ($\nu=\overline{\nu})$
- Confirm lepton number violation
- Measure $T^{0
 u}_{1/2}$ that will lead to m_{etaeta} measurement

Hawraa Khalife - XX Int. Workshop on Neutrino Telescopes

How to search for $0\nu\beta\beta$ decay?

Chosen bolometric compounds

- Li_2MoO_4 (CUPID-Mo) and TeO₂ (CUORE)
 - ¹⁰⁰Mo, $Q_{\beta\beta}$ = 3034 keV
 - ¹³⁰Te, $Q_{\beta\beta} = 2527$ keV
- Excellent energy resolution
- High internal radio-purity
- Easiness in crystallization

Current sensitivity of bolometric experiments

Current sensitivity of bolometric experiments

Current sensitivity of bolometric experiments

The 3 pillars for background reduction

- Reduction of the total surface radioactivity contribution
- Surface contaminations can be rejected with coincidence thanks to the compact assembly and LD shielding

Geant4 simulations: surface contamination reduction

Comparison between CUPID-baseline and BINGO assemblies in terms of surface contamination

New assembly test on Li₂MoO₄

- The assembly was tested in two cryostats: aboveground at IJCLab and Canfranc underground laboratory (LSC) in CROSS facility
- These tests validated the new assembly procedure by showing a good bolometric performance

- The average resolution at 2.6 MeV FWHM is ~ 6.3 keV for heat channels and baseline resolution FWHM is 218 eV for light channels
- No impact of nylon wire on noise or thermal coupling
- Good discrimination between α and β/γ

The BINGO active veto

- An active inner shield will be used to surround the Li₂MoO₄ and TeO₂ towers
 - Suppress the external γ background and reject surface radioactivity from the crystals that face the active shield through anti-coincidence
- The shield will be composed of BGO scintillator
- Each bar (in fact two bars on top of each other) will be read by two light detectors (with NTL effect for signal amplification)
- A reflecting material on the lateral side of the veto to increase light collection in LDs
- On the internal side of veto, facing the crystals, a material will be added that should not be an α stopper and that should prevent scintillation light from BGO to reach Li₂MoO₄ and TeO₂ LDs (Al, Au, ...?)

Active veto role

The crystals on the periphery will be exposed directly to the veto

If a 2615 keV γ deposits a small amount of energy in the surrounding material (~80 keV) and the rest in TeO₂ → background in ROI Thanks to the active veto and the LDs, these events can be rejected: The energy deposition in the active veto will lead to scintillation light detected by the LD

• Using anti-coincidence these events can be rejected from TeO₂

2

 Some surface contamination on the crystal can be dangerous if part of the energy escapes. This can also be rejected by anticoincidence with the veto

Neganov-Trofimov-Luke light detector

BUNGO

Hawraa Khalife - XX Int. Workshop on Neutrino Telescopes

50 keV and 400 MeV

Neganov-Trofimov-Luke light detector role

NTL light detector is essential for the veto, Li_2MoO_4 and TeO_2 :

Veto:

High signal to noise ratio in order to achieve a low enough energy threshold in LD

- 50 keV energy threshold in BGO is required
 - It corresponds to the dangerous small energy deposition of the 2615 keV line in BGO
- 50 keV in the BGO scintillator corresponds to a few keV in LD
 - Few keV in LD is achieved by taking into account the expected gain from NL effect (10-20)

Li₂MoO₄:

- Relatively fast decay rate of ¹⁰⁰Mo ($T_{1/2}^{2V} = 8.1 \times 10^{18} yr$) + the slow pulses in heat channel \rightarrow Random coincidences of $2\nu\beta\beta$ decay in ROI
 - Rely on NTL light channel (which is faster) to reject pileups with PSD

TeO₂:

• Amplification of the tiny Cherenkov signal (TeO₂) \rightarrow suppress alphas

BUNGO

Active veto first cryogenic prototype test

- 2 BGO crystals (~1.6kg each)
- 2 normal LDs facing each BGO
- TeO₂ crystal facing both BGOs
- The test was performed above-ground in a pulse-tube cryostat at IJCLab (Orsay)

Uranium α source deposited on
 TeO₂ to produce surface
 contamination (at 4.2 and 4.8 MeV)

Hunting the α source with coincidence

Cryogenic veto part surrounding the physics volume

- 16 trapezoidal cross-section + 2 disc scintillators (BGO or ZnWO₄) each coupled to LDs
- The goal is to reach background level below 10⁻³ c/(keV kg y), improving the one achieved by similar scale demonstrators (CUPID-0, CUPID-Mo)

Mini-Bingo will be a technology demonstrator of the background reduction techniques described

- The demonstrator will be tested in Modane underground laboratory (France)
- The cryostat will be installed in spring 2024

Double beta decay part

- 12 cubic Li₂MoO₄ scintillating crystals (45×45×45 mm), each is coupled to a light detector (45×45 mm)
- 12 cubic TeO₂ crystals (50×50×50 mm), each is coupled to a light detector (50×50 mm)

Conclusions

- BINGO is a promising project towards the meV scale of the effective Majorana mass
- BINGO proposed technologies are a possible candidate for CUPID-1T
- BINGO introduces innovative technology for background rejection that allows to reach b~10⁻⁵ counts/(keV kg yr)
- Simulations show us that BINGO assembly design leads to at least one order of magnitude less background index from close components compared to present CUPID structure
- The nylon wire assembly is almost validated
- More R&D is needed to develop the suitable Neganov-Luke LD that fulfills BINGO goals
- Some simulations and further cryogenic measurements are ongoing on the active veto

Backups

Sources of background

Efficiency study at the expected threshold

- 1000 fake pulses at different energies were injected into the data to estimated the efficiency after data processing
- The required energy threshold for the veto scintillator should be around 50 keV, which corresponds to around 0.3-0.4 keV in LD when taking into account the light yield (LY) which is about 7 keV/MeV
 - With a NL gain of 10, the energy threshold would become 3-4 keV.

²⁰⁷Bi contamination

- With 328 mBq/kg, $M_{VETO} = 115$ kg and assuming a 5 ms coincidence time window, dead time is $\sim 17\%$
- Desirable to reach < 100 mBq/kg \rightarrow deadtime is $\sim 6\%$

Supplier6	Туре	Purity [%]	Mass [g]	Activity [mBq/kg]	Activity [mBq/kg BGO]	803 keV
SICCAS (CN)	BGO		301	173 ± 16	173 ± 16	Ν
(RU)	BGO		301	68 ± 11	68 ± 11	Ν
Alfa Aesar (DE)*	Bi ₂ O ₃	99.999	212	< 21 (95% CL)	< 16 (95% CL)	Ν
Santech (CN)	Bi ₂ O ₃	99.990	206	23 ± 6	17 ± 5	Y
Zhuzhou (CN)	Bi	99.999	460	37 ± 5	25 ± 3	Ν

*@ LSM for screening

TeO₂ energy spectrum

Hawraa Khalife - XX Int. Workshop on Neutrino Telescopes

25

Bolometric compounds choices

Li₂MoO₄

- Embeds ¹⁰⁰Mo with a $Q_{\beta\beta}$ at 3034 keV
- This crystal was validated by the CUPID-Mo demonstrator
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- High rate of $2\nu 2\beta \rightarrow$ background in the region of interest (ROI) due to $2\nu 2\beta$ random coincidences

TeO₂

- Embeds ^{130}Te with a $\text{Q}_{\beta\beta}$ at 2527 keV
- This crystal was validated by the CUORE experiment
 - Excellent energy resolution
 - High internal radio-purity
 - Easiness in crystallization
- $Q_{\beta\beta}$ below the end line (at 2615 keV line of $^{208}\text{Tl})$ of natural gamma radioactivity
- Very poor scintillator \rightarrow no alpha background rejection

Hunting the α source with coincidence

- Events in TeO₂ are rejected if an event is found in a time window of 5ms in the light detectors.
- Accidental coincidences distribution is determined with the regions in red dashed lines since it should be the same under the peak

Hunting the α source with coincidence

Coincidences between TeO₂ and LD (meaning BGO)

- The marked events are alphas (with shared energy in TeO₂) in LD
- At 0 keV in TeO₂ we have a full alpha absorption in BGO (LD)
- At higher energies in TeO₂ the alpha energy is shared between TeO₂ and the LD
- The extrapolation of this population to higher energies in the TeO₂ leads to full alpha absorption in TeO₂

•	(CP)	• •		· · ·	•	0
Crystal	Growth	λ_{\max}	$L/H_{\gamma(\beta)}$		QF _α	Section
		(nm)	(keV/MeV)	(ph/MeV)		
CaWO ₄	Cz	420 (8 K) [261]	6.0-24	2000-8100	0.10-0.12	Section 3.1.1
			$(45-52^{a})$	(15,400-17,500)		ibid.
CdWO ₄ ^b	Cz, LTG Cz	420 (8 K) [261]	14-31	5400-12,000	0.18-0.19	Section 3.1.2
Li ₂ WO ₄ (Mo)	Cz, LTG Cz	530 (8 K) [352]	0.40	170	0.26 ^c	Section 3.1.3
Na ₂ W ₂ O ₇	LTG Cz	540 (77 K) [353]	12	5200	0.20	Section 3.1.4
PbWO ₄	Cz	420 (4.2 K) [354]	1.8	600	0.20	Section 3.1.5
ZnWO ₄	Cz, LTG Cz	490 (9 K) [261]	13–19	5100-9500	0.15-0.23	Section 3.1.6
CaMoO ₄ b	Cz	540 (8 K) [261]	1.9-4.8	800-2100	0.13-0.22	Section 3.2.1
CdMoO ₄	BS	550 (5 K) [355]	2.6	1200	0.16	Section 3.2.2
Li ₂ MoO ₄ ^b	Cz, LTG Cz, BS	590 (8 K) [311]	0.55 - 1.0	300-500	0.17-0.23	Section 3.2.3
			$(1.2-1.4^{d})$	(600-700)		ibid.
Li2Mg2(MoO4)3	LTG Cz	585 (8 K) [356]	1.3	610	0.22	Section 3.2.4
Li2Zn2(MoO4)3	LTG Cz	630 (10 K) [357]	n/a	n/a	n/a	Section 3.2.5
$MgMoO_4$	Cz	520 (9 K) [358]	n/a	n/a	n/a	Section 3.2.6
Na2Mo2O2	Cz, LTG Cz	650 (4.2 K) [359]	0.58-1.6	300-840	0.16-0.40	Section 3.2.7
PbMoO ₄	Cz, LTG Cz	520 (10 K) [360]	5.2-12	2200-5000	0.18-0.23	Section 3.2.8
SrMoO ₄	Cz	520 (11 K) [361]	~1-3	400-1300	~ 0.26	Section 3.2.9
ZnMoO ₄ ^b	Cz, LTG Cz	520 (1.4 K) [362]	1.0-1.5	400-600	0.13-0.19	Section 3.2.10
			$(1.8-2.1^{d})$	(800-900)		ibid.
Li ₆ Eu(BO ₃) ₃	Cz	613 (4.2 K) [363]	6.6	3200	0.08	Section 3.3.1
Li ₆ Gd(BO ₃) ₃ ^b	Cz	312 (90 K) [364]	0.26	65	0.23	Section 3.3.2
Al ₂ O ₃ (Ti), pure	Ve, Ky, Cz	420 (9 K) [365]	2.5-14	850-4700	0.09-0.36	Section 3.4.1
Bi ₄ Ge ₃ O ₁₂	Cz, LTG Cz, BS	480 (9 K) [261]	7.0–28	2700-11,000	0.17-0.18	Section 3.4.2

Physics **2021**, *3*, 473–535.

Geant4 simulations: surface contamination reduction

Comparison between CUPID-baseline and BINGO assemblies in terms of surface contamination

For 100 Mo ROI:

U-Chain dominated by 214Bi beta contribution (Q_b = 3.27 MeV, avg. 1.5 MeV in gamma's) —> very efficient reduction > x100 to 1.4 E-7 ckky **Th-chain** contribution, dominated by 208Tl beta-decay (Q_b = 5 MeV, avg. 3.4 MeV in gamma's) reduced by ~ x5 to x10 to 2.0 E-6 ckky

