QUEST-DMC: Probing Dark Matter with Nanowires, Superfluid Helium-3 and Quantum Sensors Paolo Franchini

XX International Workshop on Neutrino Telescopes

Venice, 26 October 2023

Outline

- The dark matter hypothesis
- Direct dark matter detection
- QUEST-DMC dark matter search programme
- Bolometry in Helium-3 with nanowires
- Measurement of the deposited energy
- Estimated sensitivity
- Future prospects

Quantum Enhanced Superfluid Technology

for Dark Matter and Cosmology

- The dark matter hypothesis
- Direct dark matter detection
- QUEST-DMC dark matter search programme
- Bolometry in Helium-3 with nanowires
- Measurement of the deposited energy
- Estimated sensitivity
- Future prospects

"I was conscious that I knew practically nothing..."

"I was conscious that I knew practically nothing..."

Socrates: 0 books

"I was conscious that I knew practically nothing..."

Socrates: 0 books

Dark matter hep-th: 1300 papers on arχiv

Direct dark matter detection: candidates

Direct dark matter detection: candidates

The dark matter hypothesis

• Matter and energy content of the universe

• Dark matter is 85% of mass

The dark matter hypothesis

- Evidences from gravitational interactions
 - Spiral and elliptical galaxies: rotation curves
 - Galaxy clusters: gravitational lensing
 - Cosmic Microwave Background
 - Colliding galaxy clusters: x-rays

- No electromagnetic interaction ("dark")
- Stable over billion years
- Non-baryonic: an unknown particle?

Direct dark matter detection: WIMPs

Nucleus

Μ

WIMP

- Signal: scattering of DM candidates off a target
 - rare processes...
 - ... but many WIMPs
- Backgrounds:
 - Cosmic rays
 - Radioactive environment
 - Radioactive contamination
 - Neutrinos

Recoil energy

~M/1'000'000

Direct dark matter detection: WIMPs

Rep. Prog. Phys. 85 (2022) 056201

https://arxiv.org/abs/2207.07640

QUEST-DMC collaboration and ecosystem

QUEST-DMC programme

- Beyond Standard Model physics investigation
 - Quantum sensors
 - Helium at ultra-low temperatures

1) What is the nature of Dark Matter?

Detection of sub-GeV dark matter with a quantum-amplified superfluid He3 calorimeter

2) How did the early universe evolve?

Phase transition in extreme matter ↔ early universe

eV recoil energy threshold

background < 1 event/kg/day/keV

Helium-3

- Spin ¹/₂ (!)
- Superfluid (1972) below 2.5 mK
- P-wave pairing and multiple superfluid states
- ³He-B:

- Solid (bcc) Pressure (MPa) 3 Superfluid A phase 2 Superfluid B phase Normal liquid Gas 0.0001 0.001 0.01 0.1 10 100 Temperature (K)
- He3 as a fermionic condensate (similar to BSC theory)
 - Cooper pairs: composite bosons, 100nm size
- Pair of bound quasiparticles with 10⁻⁷ eV energy and an effective mass

Paolo Franchini

Target

Lancaster advanced refrigerator Target Lancaster 😹 University Still 0.5 K Tubular Heat Exchanger **Discrete Heat** Liquid nitrogen Exchanger Cryostat 70K 3m Mixing 1.6 mK He4 bath Chamber 4.2K world Heat Switch record **Dilution refrigerator** 2mK **Nuclear stage** Demagnetisation Stage 80 uK 80**u**K vacuum can 20

Dark Matter events in He3

1.0

0.8

0.6 0.4

0.2

- Collision WIMP-He3 atom
 - **Heat:** quasiparticle excitations (10⁷/eV)
 - Light: from de-excitation

 10^{3}

Nuclear Recoil

triple

 10^{1}

 10^{2}

 10^{1}

energy [keV]

 10^{0}

 10^{0}

IR

 10^{2}

singlet

triplet

QP - IR

Vibrating nanowire

Bolometer response

- Wire oscillating in magnetic field in a He3 cm³ box
- Damping force on the oscillator, enhanced by Andreev reflections
- Voltage response
- Measure **energy deposition** as variation of the resonance width ∆f

Detector

Lancaster nanowires

- 1. 200 um copper matrix with 1 um Nb-Ti wires
- 2. Draw the cable in multiple dies
- 3. Etch the copper and replace with water
- 4. Microscope + tweezers
- 5. Replace water with IPA
- 6. Let dry
- 7. Mount on a PCB

Lancaster nanowires

Trivia:

~500 nanowires to make a cat's whisker

Paolo Franchini

Detector

Cells with wires

Photon sensing

- Silicon PhotoMultipliers explored for photon sensing
- SIPMs have high-gain and single photon resolution
- Wave length shift to near-UV
- Successfully tested at 4K [A. Ferri et al, 2016 JINST 11 P03023]

Quantum sensor

Bolometer in He3

• Deposited energy as variation of the damping force on the resonator

Superconducting QUantum Interference Device

Magnetometer, 10⁻¹⁴ T (brain: 10⁻¹³T) Magnetic flux into electrical voltage Readout

Readout sensitivity

• Error on the energy measurement ↔ dark matter energy threshold

Conventional: 31 eV SQUID: 0.51 eV

Readout

Background

- Cosmic rays
- Radioactive decays
 - Environment
 - Contamination
 - Materials

Alphas Betas Gammas Neutrons Muons

- Neutrinos (irreducible)
 - → Goal: 1 background event/kg/day

Analysis

Background: radiogenic

- Geant4 simulation
 - Energy deposited in the cm³ He³ cell
- Estimated activity
 - Radiopurity database
 - Screening of the materials

Beta decay from epoxy cell

Analysis

A.	Material	Up 238 U	Lower ^{238}U	²¹⁰ Pb	Upper ²³² Th	Lower 232 Th	$^{235}\mathrm{U}$	$^{137}\mathrm{Cs}$	40 K	60 Co	$^{54}\mathrm{Mn}$
	Concrete	$< 1.60 \times 10^5$	1.50×10^4	1.00×10^7	7.57×10^{3}	7.57×10^{3}	$< 7.20 \times 10^3$	800	4.20×10^{4}	< 700	0.00
	Aluminium	8.33×10^{3}	15.3	70.7	356	334	60.5	< 0.940	< 3.12	< 1.10	0.00
	Superinsulation	679	< 200	$< 3.90 \times 10^{3}$	200	200	4.93	0.00	3.50×10^{3}	400	0
	Stainless Steel	16	2.5	82.2	3.1	3.90	0.120	2.00	< 6.20	< 5.20	1.70
	Steel	< 12.4	12	1.20×10^{4}	4.88	4.88	3.00	2.00	34.1	30.0	1.00
	Araldite	< 3.60	< 4.80	14.5	< 3.40	< 2.20	0.0260	2.00	25.5	8.00	0.00
	Stycast	< 10.5	< 9.50	< 14.9	< 12.8	< 6.20	0.0762	2.00	122	10.0	0.00

Background: neutrino and cosmics

- Neutrinos from nuclear processes in the Sun:
 - proton-proton chain: 99% of solar energy
 - CNO chain: 1%
 - Experimental values + solar models
 - Nuclear and Electron recoils

- Cosmics
 - CRY generator + GEANT4
 - Assumed 90% vetoing efficiency

Paolo Franchini

Analysis

Background

• Current setup, estimated event rates in the ROI

Component	Expected con	unts $[0-10 \text{ keV}]$	Uncertainty
	$/\mathrm{kg}/\mathrm{day}$	/cell/day	
Cosmic ray	1.05×10^5	3.31	11~%
Radiogenic ER	8.31×10^4	2.61	14~%
Solar ν ER	1.51×10^{-2}	4.76×10^{-7}	2~%
Solar ν NR	6.37×10^{-4}	2.01×10^{-9}	2~%
TOTAL	1.88×10^5	5.92	

Paolo Franchini

Analysis

Bolometer in He3: events

Extract:

• Rate of background events

DATA!

- Energy spectrum
- Energy threshold

Submitted **Sensitivity projection** Signal simulation Detector Sensitivity for dark matter response model Background simulation 103 10¹ [%] 10⁻¹ Error arXiv:2310.11304 10^{-3} Conventional readout 10-5 SQUID readout QP shot noise 10^{-1} 101 103 105 Energy [eV]

Paolo Franchini

lacksquare

Conclusion and outlook

- Simulation and analysis tools in place
- Produced a **first sensitivity limit**, based on actual constructed detector cells and modelled energy reconstruction validated on data (<u>submitted to EPJ-c</u>)

• Work in progress:

- Develop the energy calibration of the bolometer
- Demonstrate SQUID readout at uK temperatures
- Implement light detection in the cell
- Add cosmic rays tagging

Conclusion and outlook

- SQUID being operated at RHUL
- To be operated at uK tempeatures in Lancaster

Conclusion and outlook

- Work towards SQUID readout of nanowires
- Start operating ³He cells with nanowires

Great potential for quantum technologies to open up

a new window on the dark matter universe

"QUEST-DMC superfluid 3He detector for sub-GeV dark matter" - submitted to EPC-J https://arxiv.org/abs/2310.11304