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Neutrino oscillations

• Neutrinos interact “weakly” with the rest,   
as well as with themselves.  

• There are 3 active light neutrinos. 

• Neutrinos are massive and can change flavor. 
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Lepton Number in the Standard Model

• Lepton number is a conserved symmetry in the SM classically. Violated by chiral 
anomalies. 

• New physics leads to lepton-number violation. Might be related to origin of 
neutrino masses. 

• Consider 1 active and 1 sterile neutrino. The Lagrangian,    
 

                             

• The generic  mass matrix  
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Pseudo (Quasi)-Dirac neutrinos

Generic Majorana mass matrix . 

 
   1. Dirac limit:   .  
       No lepton-number violation. 
       
   2. Majorana limit :  . 
       Explicit  lepton-number violation. 
 
   3. (Quasi) Pseudo-Dirac limit : .   
        Soft lepton-number violation. 

ℳ = (mL mD
mD mR)

mL,R = 0

mL,R ≫ mD

mL,R ≪ mD

Wolfenstein, NPB 1981 
Valle, PRD 1983



Pseudo-Dirac neutrinos formalism

• 3 pairs of quasi-degenerate states, separated by ,   which 
 is much smaller than the usual  and  .  
 

,   where   

•In the P-D limit, under certain approximations, 
mass matrix can be diagonalized by 
 

  

• Further generalizations considered with non-maximal mixings. 
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Oscillations due to small δm2

•  will lead to oscillations at very large distances,  

• Flavor oscillation probability induced by  and  
over a large distance gets averaged.  

                           

• Survival probability    
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Oscillations due to small δm2

• Survival probability     

• Wave-packet separation decoherence also becomes important.  Decoherence 
important if  . 
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A smaller  can 
cause decoherence.
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Width of 
wavepacket

Giunti and Kim, Fundamentals of neutrino physics



Bounds from neutrino sources

Bounds: 
   
1. Solar neutrinos  

2. Atmospheric neutrinos  

3. High energy astrophysical neutrinos  

δm2 < 10−12 eV2

δm2 < 10−4 eV2

10−18 eV2 < δm2 < 10−12 eV2

de Gouvea, Huang, Jenkins,  PRD2009



1. Core-collapse supernova

Majority of the energy of the SN is emitted in the form of O(10)  MeV neutrinos!! 
Excellent laboratories for neutrino physics!



1. SN1987A
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Slight tension between  
IMB and KII data?  d𝒩ν̄(Eν) =

Etot

⟨Eν̄⟩
(1 + α)1+α

Γ(1 + α) ( Eν

⟨Eν̄⟩ )
α

e−(1+α) Eν
⟨Eν̄⟩ ,

Large Magellanic Cloud 
50 kpc away

Martinez-Soler,  Perez-Gonzalez, MS, (PRD 2021)



SN spectra due to oscillations

Martinez-Soler,  Perez-Gonzalez, MS, (PRD 2021)

Oscillations due to δm2
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Decoherence due to  and δm2 σx



 SN1987A data and comparison

Martinez-Soler,  Perez-Gonzalez, MS, (PRD 2021)

•Fit SN1987A combined data under the pseudo-Dirac 
hypothesis using an unbinned Likelihood analysis.   

•Use the same functional form, 
 

 

 
processed by oscillation probability that neutrinos are 
pseudo-Dirac. 

•Parameters varied are  ,  ,  and , which is 
considered same for all 3 mass eigenstates. The width of 
the wavepacket is fixed to . 
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 SN1987A data and comparison

No Oscillations

Martinez-Soler,  Perez-Gonzalez, MS, (PRD 2021)

• Slight preference for the PD possibility, ! 

•      Exclude  with 

Δχ2 ∼ 3

δm2 ∼ [2.5, 3.] × 10−20eV2 Δχ2 > 9



Future detectors: sensitivity

Martinez-Soler,  Perez-Gonzalez, MS, (PRD 2021)

•HK and DUNE can confirm/rule out this 
scenario with a high confidence. 

•Sensitive to lower mass-square differences 
due to decoherence. 

•Non-electron neutrino detectors to play an 
important  role!



2. DSNB

Neutrinos from 
Gpc distance

Losc = ∼ 16 Gpc ( Eν

20MeV ) ( 10−25eV2

δm2 )
de Gouvea, Martinez-Soler,  Perez-Gonzalez, MS (PRD 2020)



DSNB sensitivity to pseudo-Dirac neutrinos

Losc = ∼ 16 Gpc ( Eν

20MeV ) ( 10−25eV2

δm2 )
DSNB sensitive to  with a high significance. δm2 ∼ 𝒪(10−25 eV2)

de Gouvea, Martinez-Soler,  Perez-Gonzalez, MS (PRD 2020)



Final thoughts

Thank you!
Rink, MS (2022)
Perez-Gonzalez, MS (2023)

• CCSNe are sensitive to extremely tiny value of , 
not otherwise accessible to other experiments.  

• Data from SN1987A can already be used to probe 
. In fact, data from SN1987A has a 

slight preference for a non-zero . 

• Future galactic core-collapse SNe can be used to 
probe even lower values of  using DUNE and 
HK. 

• The DSNB opens up a plethora of avenues for 
neutrino astronomy, next giant leap from the Sun 
and SN1987A.  

δm2

δm2 ∼ 10−20 eV2

δm2

δm2



Increasing  reduces  and , and  
causes more oscillations

δm2 Losc Lcoh Decreasing  reduces  , and  
causes more decoherence

σx Lcoh

Manibrata Sen, MPIK

DSNB: Oscillations due to pseudo-Dirac nature


