JUNO's sensitivity to ⁷Be, *pep*, and CNO solar neutrinos

XX International Workshop on Neutrino Telescopes 23 - 27 October, 2023

<u>Apeksha Singhal^{1,2}</u> for the JUNO collaboration

¹ Forschungszentrum Jülich GmbH , Germany ² RWTH Aachen University , Germany

Solar neutrinos

Sun is powered by two sequences of Hydrogen to Helium conversion reactions :

Solar neutrinos

Sun is powered by two sequences of Hydrogen to Helium conversion reactions :

Measuring solar-v flux (⁷Be,⁸B, and CNO) helps to investigate the solar metallicity puzzle.

The JUNO experiment

Main Goal: Determine Neutrino mass ordering (NMO) with reactor antineutrinos, via Inverse Beta Decay (IBD).

- Located in Jiangmen city in Southern China.
 → Currently under construction!
- A 20 kton liquid scintillator (LS) experiment.
 → the biggest LS detector ever built!
- 17,612 20-inch PMTs and 25,600 3-inch PMTs.
 → Large PMT coverage (~78%)!
- Unprecedented energy resolution.
 → ~3% at 1 MeV!
- Potential to study various sources of neutrinos.

More details in plenary talk by Yury Malyshkin on Wednesday

Mitglied der Helmholtz-Gemeinschaft

Solar neutrinos in JUNO

The selected energy range for the analysis (ROI) is ~ (0.45 - 1.6) MeV

Expected energy spectrum in JUNO detector in ROI

JUNO's radiopurity levels

- Internal backgrounds: the decay of radioactive isotopes contained inside the scintillator.
- Relevant isotopes in ROI: ⁴⁰K, ⁸⁵Kr, ²³²Th-chain, ²³⁸U-chain, and ²¹⁰Pb-chain.

JUNO's radiopurity levels

- Internal backgrounds: the decay of radioactive isotopes contained inside the scintillator.
- Relevant isotopes in ROI: ⁴⁰K, ⁸⁵Kr, ²³²Th-chain, ²³⁸U-chain, and ²¹⁰Pb-chain.

• Suppress external backgrounds' contribution using fiducial volume R<14 m.

- Three-Fold Coincidence (TFC) algorithm: identification using space and time correlations between μ , n-capture and cosmogenic decay.
- TFC developed and successfully used in all Borexino¹ analysis.

- Three-Fold Coincidence (TFC) algorithm: identification using space and time correlations between μ , n-capture and cosmogenic decay.
- TFC developed and successfully used in all Borexino¹ analysis.

 $\mu + {}^{12}\mathrm{C} \rightarrow \mu + {}^{11}\mathrm{C} + n$

~30 min

 $^{11}\mathrm{C} \rightarrow ^{11}\mathrm{B} + e^+ + \nu_e$

Performance of TFC given by: Tagging Power (TP): % of correctly tagging cosmogenic backgrounds. (Assume similar to Borexino, TP = ~90%). Subtracted Exposure (SE): remaining exposure in TFC-subtracted dataset. (Assume similar to Borexino, SE= ~ 70%).

Analysis strategy

11

Results on ⁷Be solar neutrinos

Statistical error only

Impact of the exposure on ^ZBe-v sensitivity

- Highly competitive after 1 year of data taking.
- For longer data taking, reaching unprecedented statistical errors.
- E.g.: from ≈1.0 % in the pessimistic High background scenario to ≈0.15 % in the Very Low background case.

1. BOREXINO collaboration, Nature 562 (2018) 505

Results on *pep* **solar neutrinos**

Statistical error only

Impact of the exposure on pep-v sensitivity

- Measurement possible for the first time without fixing the CNO rate to the SSM prediction.
- After ~2 years of data-taking (except for the High background level), JUNO will exceed the current best result.
- For long data taking, JUNO will exceed the Borexino best result in all radiopurity scenarios.
 - 1. BOREXINO collaboration, Nature 562 (2018) 505

Results on CNO solar neutrinos

Statistical error only

Impact of the exposure on CNO-v sensitivity

1. BOREXINO collaboration, PRL 129 (2022) 252701

Results on CNO solar neutrinos

Statistical error only

After applying *pep-v* rate constraint, the CNO sensitivity greatly improves. For long data taking period, JUNO can overcome the best result on CNO solar neutrinos except in the High background scenario.

Mitglied der Helmholtz-Gemeinschaft

2: (J. Bergstrom et al., JHEP 03 (2016) 132)

Results on ¹³N and ¹⁵O solar neutrinos

Statistical error only

dashed: w/ pep constraint solid: w/o pep constraint

For the first time, it will be possible with JUNO to extract rates of ¹³N and ¹⁵O neutrinos individually.

Conclusions

- After the first data-taking year, JUNO will be able to provide **unprecedented** ⁷**Be** and (except for the worst radiopurity scenario) *pep* solar neutrino results.
- JUNO will also be able to provide the **first simultaneous** ⁷**Be**, **pep**, **CNO measurement for** > **six years** data taking in case of optimistic radiopurity scenarios.
- Except for the High background scenario, JUNO will be **highly competitive for the CNO** measurement for long data-taking, **using pep constraint**.
- The first separate detection of ¹³N and ¹⁵O neutrinos is also possible!
- Study in progress for the possible improvement in the sensitivity results using Correlated and Integrated Directionality (CID) method, developed by Borexino collaboration (Details in Luca Pelicci talk today).

"JUNO sensitivity to ⁷Be, *pep*, and CNO solar neutrinos" @ JCAP10(2023)022.

Backup

The Solar Metallicity Problem

Metallicity (**Z**/**X**): abundance of elements with Z>2 in the Sun. Can be inferred from spectroscopic measurement of the photosphere.

Two Classes of Standard Solar Models (SSMs) with different metallicity input: 1) **High-Metallicity HZ-SSM:** older GS98 metallicity input: Z/X = 0.0229 2) **Low-Metallicity LZ-SSM:** newer AGSS09 metallicity input: Z/X = 0.0178

Solar neutrino fluxes depends on the HZ/LZ SSM

Species	HZ-Flux (cm ⁻² s ⁻¹)*	LZ-Flux (cm ⁻² s ⁻¹)**	Relative difference(%)
рр	5.98(1 ± 0.006)×10 ¹⁰	6.03(1 ± 0.005) ×10 ¹⁰	-0.8
рер	1.44(1 ± 0.01) ×108	1.46(1 ± 0.009) ×108	-1.4
⁷ Be	4.93(1 ± 0.06) ×10 ⁹	4.50(1 ± 0.06) ×10 ⁹	8.9
⁸ B	5.46(1 ± 0.12) ×106	4.50(1 ± 0.12) ×10 ⁶	17.6
¹³ N	2.78(1 ± 0.15) ×10 ⁸	2.04(1 ± 0.14) ×10 ⁸	26.6
¹⁵ O	2.05(1 ± 0.17) ×108	1.44(1 ± 0.16) ×10 ⁸	29.7
¹⁷ F	5.29(1 ± 0.20) ×10 ⁶	3.26(1 ± 0.18) ×10 ⁶	38.3

Low metallicity inputs spoil the agreement of the HZ-SSM (using older metallicity) with the helio-seismological data.

Measuring the flux of solar neutrinos could provide a crucial input to solve the puzzle

* SSM-HZ= B16-GS98: Vinyoles et al. Astr.J. 835 (2017) 202 + Grevesse et al.,Space Sci.Rev. (1998)85 12

** SSM-LZ= B16-AGSS09met: Vinyoles et al. Astr.J. 835 (2017) 202 + A. Serenelli er al., Astr. J. 743,(2011)24

Solar neutrinos in JUNO

	Solar ν	$^{7}\mathrm{Be}$	pep	CNO
	$\Phi[10^8{\rm cm}^{-2}{\rm s}^{-1}]$	49.3(1±0.06)	$1.44(1 \pm 0.009)$	$4.88(1 \pm 0.11)$
HZ- SSM	$R \; [{ m cpd}/{ m kton}]$	489 ± 29	28.0 ± 0.4	50.3 ± 8.0
	$R^{\rm ROI}$ [cpd/kton]	142.5 ± 8.3	17.1 ± 0.2	16.6 ± 2.6
	$\Phi[10^8{\rm cm}^{-2}{\rm s}^{-1}]$	45.0(1±0.06)	$1.46(1 \pm 0.009)$	$3.51(1 \pm 0.10)$
LZ- SSM	$R \; [{ m cpd}/{ m kton}]$	447 ± 26	28.4 ± 0.4	36.0 ± 5.3
	$R^{\rm ROI}$ [cpd/kton]	130.0 ± 7.5	17.3 ± 0.2	11.9 ± 1.8
Borexino results	$\Phi [10^8 \rm cm^{-2} s^{-1}]$	$49.9 \pm 1.1^{+0.6}_{-0.8}$	$\begin{array}{c} 1.27 \pm 0.19 \substack{+0.08 \\ -0.12} (\mathrm{LZ}) \\ 1.39 \pm 0.19 \substack{+0.08 \\ -0.13} (\mathrm{HZ}) \end{array}$	$6.6 \ ^{+2.0}_{-0.9}$

JUNO radio-purity levels

	⁴⁰ K	⁸⁵ Kr	²³² Th chain	²³⁸ U chain	²¹⁰ Pb chain
		High Background scenario			
$c \left[\frac{g}{g} \right]$	1×10^{-16}	4×10^{-24}	1×10^{-15}	1×10^{-15}	5×10^{-23}
		Very	Low Backgrou	ind scenario	
$c\left[\frac{g}{g}\right]$	2×10^{-19}	8×10^{-26}	$5.7 imes 10^{-19}$	9.4×10^{-20}	5×10^{-25}

Results on ⁷Be solar neutrinos

Impact of ²¹⁰Po and ⁸⁵Kr Background Levels

- Measured ⁷Be rate precision worsens as a function of increased backgrounds levels.
- If JUNO experiences out-of-equilibrium ²¹⁰Po contamination as same level of Borexino (~8x10⁴ cpd/100t), JUNO can still improve the current results on ⁷Be solar neutrinos.
- When ⁸⁵Kr rate is kept below 10⁶ cpd/100t, JUNO can still overcome the current results on ⁷Be solar neutrinos

Isotope	$R_{ m Scaling\ exp.}$	R	$\langle R \rangle$	$\langle R \rangle_{\rm ROI}$
	[cpd/kton]	[cpd/kton]	[cpd/kton]	[cpd/kton]
¹¹ C	$R_{\rm Bx} = 274 \pm 3$	1890 ± 199	1916 ± 157	1761 ± 144
U	$R_{\rm KL} = 1106 \pm 8$	1959 ± 254	1010 ± 101	1101 ± 111
¹⁰ C	$R_{\rm Bx} = 6.2 \pm 2.2$	41.4 ± 15.3	37.1 ± 5.3	0.25 ± 0.04
	$R_{\rm KL} = 21.1 \pm 1.8$	36.5 ± 5.7	0111 ± 010	0.20 ± 0.01
⁶ He	$R_{\rm Bx} = 11.1 \pm 4.5$	74 ± 31	278 ± 48	127 ± 219
IIC	$R_{\rm KL} = 15.4 \pm 2$	26.6 ± 4.9	21.0 1 4.0	12.1 ± 2.10

Results on *pep* **solar neutrinos**

Impact of TFC performance on pep-v sensitivity

- TP parameter is more impactful parameter with respect to SE
- As the internal background levels increase, the precision of measurement is not significantly influenced by ¹¹C discrimination performance.