

Search for neutron's invisible decays with JUNO

Yuxiang Hu

IHEP

On behalf of JUNO collaboration XX International Workshop on Neutrino Telescopes 26th October 2023

JUNO experiment

A multi-purpose experiment

Great potential to detect invisible nucleon decay

- >20 kton LS, low backgrounds, low threshold
- Energy resolution: 3%@1 MeV

≻LS Component: 88% C (99% ¹²C) and 12% ¹H

Physical motivation

But no experimental observations so far !!!

Experiment	$\tau(n \rightarrow inv)$ 90% <i>C</i> . <i>L</i> .	$\tau(nn \rightarrow inv)$ 90% C.L.	reference
Borexino	-	$> 4.9 \times 10^{25} y$	Nucl.Phys.B.Proc.Suppl. 118(2003) 499-499
SNO+	$> 9.0 imes 10^{29} y$	$> 1.5 \times 10^{28} y$	Phys.Rev.D 105 (2022) 11, 112012
KamLAND	$> 5.8 \times 10^{29} y$	> 1.4 × 10 ³⁰ y	PRL 96, 101802 (2006)

2023/10/25

Yuxiang Hu – Neutel 2023, Venice

Signals signature

2023/10/25

Signals vs backgrounds

Signal		:	n → inv	nn ightarrow inv
➢ Basic event selection	Fiducial volume	r	[.] < 16.7 m	<i>r</i> < 16.7 m
Designed Muon veto strategies		Δ	$T_{12} < 1 \mathrm{ms}$	$\Delta T_{12} < 1 {\rm ms}$
 Muon rate 28 Hz Reduce isotopes 		$\Delta T_{23} \in [0.002, 100] s$ $\Delta R_{12} < 1.5 m$ $\Delta R_{23} < 1.5 m$		$\Delta T_{23} \in [0.002, 3.0] s$ $\Delta R_{12} < 1.5 m$ $\Delta R_{23} < 1.5 m$
≻IBD(Inverse Beta decay) ~ 52 cpd		$E_2 \in [1.9, 2.5] \text{ MeV}$ $E_3 \in [1.5, 3.5] \text{ MeV}$		$E_2 \in [1.9, 2.5] \text{ MeV}$ $E_3 \in [3.0, 16] \text{ MeV}$
Muon induced Long-lived isotopes				
> Radioactivity		ctor veto	Cylindrical volume veto	Neutron-centered sphere veto
>Atm – v NC			^µ cd	neutron
Fast neutron	LyétoWater > 50 C Ls	cint > 10 cm Water		

Signal ($n \rightarrow inv$) vs backgrounds

Signal ($nn \rightarrow inv$) vs backgrounds

Backgrounds suppression

PSD(Pulse Shape Discrimination)

Different particles give rise to different photon emission time profiles

Choose a PSD value (blue dash line)

MVA(Multi-Variate-Analysis)-BDT/BDTG

Combine multidimensional features

Combine PSD + MVA

 \succ factor of **100** reduction for backgrounds of $n \rightarrow inv$

Yuxiang Hu – Neutel 2023, Venice

Summary and outlook

More target neutron number/pairs
 Signal efficiencies are acceptable
 Lower backgrounds than SNO+,
 comparable backgrounds with KamLAND
 Introduce ML to suppress backgrounds

➢ Before ML, $\frac{\epsilon_{sig}}{\sqrt{bkg_{tot}}}$ ● ~ 0.01 (n → inv), ~ 0.2 (nn → inv)
> After ML, $\frac{\epsilon_{sig}}{\sqrt{bkg_{tot}}}$ ● ~ 0.06 (n → inv), ~ 0.6 (nn → inv)

		SNO+	KamLAND	JUNO	
Life time limit		$\tau (n \to inv) > 9.0 \times 10^{29} y$	$\tau (nn \rightarrow inv) > 1.4 \times 10^{30} y$	n ightarrow inv	nn ightarrow inv
Fiducial volume cut			< 5.5 m	< 16.7 m	
Target mass		~ 0.9 kt H ₂ O	~ 0.5 kt LS	16.8 kt LS	
Target neutron number/pairs		$\textbf{1.2}\times 10^{32}$	$2.3 imes 10^{31}$	$1.5 imes 10^{33}$	$\textbf{7.4}\times\textbf{10}^{32}$
Br. $\epsilon_{\mathbf{n}}$	Br1. ϵ_{nn1}	~ 0.26	~ 0.04	~ 0.023	~ 0.03
	Br2. ϵ_{nn2}	0.26	~ 0.04		~ 0.03
Expected backgrounds (yr ⁻¹ kton ⁻¹)		~ 200	~ 0.02	~ 7.4	~ 0.03
$\mathbf{N} \cdot \mathbf{Br} \cdot \boldsymbol{\epsilon}_{sig} / \sqrt{bkg}$		$\textbf{2.3}\times\textbf{10}^{30}$	$\textbf{1.8}\times\textbf{10}^{31}$	$3.1 imes 10^{30}$	$\textbf{6.3}\times \textbf{10}^{31}$
Dominant background combination		⁸ B solar v Atmospheric v	IBD + singles ⁹ Li + singles 	IBD + singles ⁹ Li + singles 	

JUNO has a great potential to search for neutron's invisible decays !!! Thanks for your attention !