

Flavor Identification of Atmospheric Neutrinos in JUNO

XX International Workshop on Neutrino Telescopes 2023

Rosmarie Wirth¹ for the JUNO collaboration

1 Universität Hamburg, Germany

JUNO in a nutshell

- Jiangmen Underground Neutrino Observatory
- Liquid scintillator with 20 kton Volume
 → largest of its kind
- Aiming to determine neutrino mass ordering (NMO) from reactor electron anti-neutrinos

Upcoming JUNO talks:

- → **Solar neutrinos** at 4.40pm by A.Singhal
- → Supernova Neutrinos at 10.25am by Y.Zhang
 → Neutron decay at 10.20 am

by Y. Hu

Der Forschung | Der Lehre | Der Bildung

Determine NMO with reactor $\overline{\nu}_{e}$

- Baseline of ~ 52.5 km
- Double calorimetry system
- Optical overage of ~ 78 %
- Energy resolution of ~3 % at 1 MeV

Expected oscillated spectrum for reactor anti-electron neutrinos with normal and inverted ordering at JUNO.

Atmospheric Neutrinos in JUNO

- Neutrinos produced by cosmic rays scattering with earth's atmosphere
 - \rightarrow producing $v_e, \bar{v}_e, v_\mu, \bar{v}_\mu$ with up to TeV Energies
- Reaching the detector from all directions, partially penetrating earth's core
 - \rightarrow Upcoming neutrinos experience matter effect
 - \rightarrow Resonance energy range $E_{v} \approx 3 10 \,\text{GeV}$
 - $\ensuremath{\rightarrow}$ Significant differences for normal and inverted ordering

$$\rightarrow P_{NO}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{IO}(\bar{\nu_{\alpha}} \rightarrow \bar{\nu_{\beta}}), P_{IO}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{NO}(\bar{\nu_{\alpha}} \rightarrow \bar{\nu_{\beta}})$$

 Provide independent neutrino mass ordering (NMO) sensitivity at GeV energies

Atmospheric neutrino production

Atmospheric Neutrinos in JUNO

- Neutrinos produced by cosmic rays scattering with earth's atmosphere
 - \rightarrow producing $v_e, \bar{v}_e, v_\mu, \bar{v}_\mu$ with up to TeV Energies
- Reaching the detector from all directions, partially penetrating earth's core
 - \rightarrow Upcoming neutrinos experience matter effect
 - \rightarrow Resonance energy range $E_{v} \approx 3 10 \,\text{GeV}$
 - \rightarrow Significant differences for normal and inverted ordering

$$\rightarrow P_{NO}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{IO}(\bar{\nu_{\alpha}} \rightarrow \bar{\nu_{\beta}}), P_{IO}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{NO}(\bar{\nu_{\alpha}} \rightarrow \bar{\nu_{\beta}})$$

 Provide independent neutrino mass ordering (NMO) sensitivity at GeV energies

Atmospheric neutrino oscillograms

Oscillation probabilities for atmospheric neutrinos in normal hierarchy hypothesis. arXiv:1507.05613

2

Atmospheric Neutrinos in JUNO

Access the atmospheric neutrino channel for NMO analysis:

- Reconstruct neutrino direction
- Reconstruct neutrino energy
 - \rightarrow Identify fully contained events
 - \rightarrow Identify charged current events
- Identify incoming neutrino
 - → Identify charged current events
 - \rightarrow Identify neutrino flavor

Atmospheric neutrino oscillations at JUNO

 \rightarrow Covered by G. Li at 9.00 a.m.

Universität Hamburg

Upcoming talk by Z. Yang

Covered here

Atmospheric neutrino oscillograms

Oscillation probabilities for atmospheric neutrinos in normal hierarchy hypothesis. arXiv:1507.05613

2

Atmospheric Neutrinos interactions

• Neutral Current (NC):

- Particle identification not accessible
- Energy reconstruction problematic
 - \rightarrow Needs to be excluded for NMO analysis

Charged Current (CC):

- Neutrino flavor information contained
- Energy reconstruction promising

Identify 5 Classes: NC, CC: v_e , \bar{v}_e , v_μ , \bar{v}_μ

Neutrino interactions

Charged and neutral current neutrino interactions.

Neutrons in CC neutrino interactions

Atmospheric Neutrino CC interactions

- Flavor identification:
 - Secondary lepton differentiates
 - Electrons more point like, muons track like
 → secondary lepton track length
 - Michel electron could identify secondary muons

• Neutrino / anti-neutrino discrimination:

- Statistically more Neurons in anti-neutrino events
- Neutron capture information needed, from following trigger windows
 - $\rightarrow\,$ Depending on the Neutron tagging efficiency

	$ u_{\mu} ext{-}CC$	$ar{ u}_{\mu}$ -CC
QE	$\nu_{\mu} + n \rightarrow \mu^{-} + p$	$\bar{\nu}_{\mu} + p \to \mu^{+} + n$
	$\nu_\mu + p \rightarrow \mu^- + p + \pi^+$	$\bar{\nu}_{\mu} + p \rightarrow \mu^+ + p + \pi^-$
RES	$\nu_{\mu} + n \rightarrow \mu^- + p + \pi^0$	$\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n + \pi^{0}$
	$\nu_{\mu} + n \rightarrow \mu^{-} + n + \pi^{+}$	$\bar{\nu}_{\mu} + n \rightarrow \mu^{+} + \frac{n}{n} + \pi^{-}$
DIS	$\nu_{\mu} + N \rightarrow \mu^{-} + X$	$\bar{\nu}_{\mu} + N \rightarrow \mu^{+} + X$

Table of CC interaction types for v_{μ} , \overline{v}_{μ} .

- Neutron appears more often in CC antineutrino channel
- Neutron capture, releasing a 2.2 MeV γ

 \rightarrow Statistical discrimination of $\mathcal{V}, \ensuremath{\overline{\mathcal{V}}}$ from neutron capture information possible.

Reconstruction Approaches in JUNO

Investigation on different inputs:

UΗ

niversität Hamburg

- PMT level data: FHT, total charge, slope, total charge over time ...
- Event level data: neutron multiplicity, ...
 → Dependent on reconstruction quality
- Several reconstruction approaches developed
 - Using mainly Machine Learning methods
 - Promising results with Point Clouds and Graph Networks

 \rightarrow Using fully contained events, in GeV region.

Waveform shapes reflect the event characteristics

First waveform signal from one PMT, with waveform reconstruction and noise removing.

Extracted features:

- First hit time (FHT)
- Total charge
- Slope
- Charge ratio
- Max charge
- Peak time

Input features PMT level:

Flavor Identification Performance

Example results from current studies:

→ Results obtained without consideration of the electronic effect of the detector.

Used Architecture:

- Using PointNet++ PMT-wise on waveform features
- Additionally fully connected layers with decreasing size
- For event level case:
 - 42 features \rightarrow very idealistic
 - added to fully connected layers

PointNet++¹ Architecture

- 3D Point Cloud based model
- Each point in cloud resembles
 features of one PMT
- Resembles 3D structure of the detector

1. Qi, C. R., et al. (2017) PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Summary

- JUNO will be able to detect atmospheric neutrinos
- Secondary, independent channel for NMO analysis
- Flavor identification crucial to access this channel
- Many different methods under investigation, comparing different inputs and methods
- Current Classification approaches already promising
- Works towards a more realistic approach ongoing (electronics effects, neutron information)

Thanks, for your attention!

BACKUP

Example Method

- PointNet++ on PMT features
- Fully Connected layers including event level features

PointNet++¹ Architecture

- 3D Point Cloud based model
- Each point in cloud resembles features of one PMT
- Resembles 3D structure of the

detector

1. Qi, C. R., et al. (2017) PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

