The Radio Neutrino Observatory - Greenland

Performance and Prospect

Felix Schlüter for the RNO-G collaboration

felix.schluter@icecube.wisc.edu

Neutrino Telescope 23, Venice - 25.10.23

Ultra-high-energy neutrinos with RNO-G

- RNO-G's best sensitivity at 100 PeV - 10 EeV
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux

Ultra-high-energy neutrinos with RNO-G

- RNO-G's best sensitivity at 100 PeV - 10 EeV
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux
- ► UHE neutrinos in the northern hemisphere
 - Earth absorption above ~ 100 TeV
 - Complementary FOV to IceCube / South Pole
 - Extend energy range in Northern Hemisphere
 - Extend FOV for ultra-high energies to Northern Hemisphere

Radio Neutrino Observatory - Greenland

- Fully funded!
- 7 stations already deployed & taking data
- 3 (4) more deployment seasons
- Each station acts as independent detector

Particle cascade

 E_{min} to detect radio emission $\gtrsim 1-10 \text{ PeV}$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Particle cascade

Radio detection of neutrinos

Time / ns

Frequency / MHz

Radio detection of neutrinos

Bend trajectory due to refractive index of ice

Attenuation length $\mathcal{O}(1\text{km})$

Particle cascade ${\rm E_{min} \ to \ detect \ radio} \\ {\rm emission} \gtrsim {\rm 1-10 \ PeV} \\ \hline 1/$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Change viewing angle $\theta_{\rm View}$ reduces signal (higher frequencies vanish)

Radio detection of neutrinos

Buried in-ice antennas

Radio detection of neutrinos

Signal polarisation reveals neutrino direction

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) &
 Arrival direction (EPJC 83 (2023) 5)

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) &
 Arrival direction (EPJC 83 (2023) 5)

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) &
 Arrival direction (EPJC 83 (2023) 5)

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) &
 Arrival direction (EPJC 83 (2023) 5)

Assuming no background

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component

- Assuming no background
- World leading sensitivity @ 1 EeV
- ► Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models

- Assuming no background
- World leading sensitivity @ 1 EeV
- ► Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models
- Testing extension of astrophysical flux measured by IceCube

Neutrinos from the northern sky

- ► Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

Neutrinos from the northern sky

- ► Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

GRB 20221009A in the FOV of RNO-G

- Extremely bright GRB
- Perfectly in FOV of RNO-G
 - 24h visible, alert at favourable zenith angle band 70 - 80 deg
- Detector was off (winter mode) at that time!

Sensitivity: GRB 20221009A

► RNO-G eff. area for 3h time window

Sensitivity: GRB 20221009A

- ► RNO-G eff. area for 3h time window
- ► Sensitivity on time integrated E⁻² flux over several decades in energy
 - RNO-G with competitive sensitivity at higher energies

First look into the data: Galactic emission

- Standard candle (only parts of plane visible at RNO-G)
 - Excess visible in the shallow upward facing antennas around 100 MHz
 - Daily modulation seen as expected

First look into the data: Solar flares

► For 3 solar flares, reconstruct position of Sun

Allowed correction / calibration of station geometry

S. Hallmann for RNO-G, Pos (ICRC23) 1043

Summary & Outlook

- RNO-G is currently deploying at Summit Station in Greenland
- When completed, RNO-G will have world leading sensitivity for 1 EeV neutrinos
 - Potential to discover the first UHE neutrino!
- RNO-G will be contributing with UHE neutrino observation to multi-messenger campaigns in the Northern Hemisphere
- Current efforts focus on calibration & commissioning
- We are preparing for neutrino searches!
 - Developing a rapid follow up analysis
 - We have developed reconstruction algorithms
 - 10 contributions at ICRC23

Backup

First look into the data

Simulated CR signals

Excess in received power at lower frequencies for upward-facing LPDAs \rightarrow Galactic emission

Hardware performance

Aka surviving the winter!

Deployment

Drilling 100m deep, 28 cm diameter hole

Shallow antennas are deployed in trenches ...

Why?

- Use natural glacier ice as target
- Radio waves are less attenuated in ice
 - A single radio station can monitor a cubic kilometer of ice
- Radio is a cost effective solution
 - In hardware & deployment (do not have to be deployed in 3 km depth; 100 - 200 m is sufficient)

How?

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

How?

- ► Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

The radio emission ...

- is produced by >PeV cascades
- illuminates a spherical (Cherenkov) cone
- gets bend in shallow ice
- propagates over km distances
- Signal features (frequency spectrum polarisation) allow to reconstruct neutrino properties

1. Reconstruct vertex position / signal arrival direction from triangulation

Using cross-correlation to determine signal (time) in each antenna.

Using forward folding technique to determine vertex position / signal arrival direction.

Requires signals in several strings

1. Reconstruct vertex position / signal arrival

Using cross-correlation to de

Using forward folding technic signal arrival direction.

Requires signals in several st

Requires strong signals in Vpols on power string

1. Reconstruct vertex position / signal arrival direction from triangulation

Using forward folding technique to determine vertex position /

 $\theta - \theta_{Cherenkov} = 0$

signal arrival direction.

Requires signals in several strings

Observed Field

Viewing angle

Shower energy

Radio detection of neutrinos

Where?

Greenland!

1500

- Existing infrastructure, 10 months of sunlight per year
- ► Field of view (FOV):
 - Overlapping with IceCube for TeV neutrinos
 - Complementary with future UHE observatory at South Pole

Radio Neutrino Observatory - Greenland

What?

- ► 35 stations on 1.25km grid
 - 7 already deployed & taking data
 - 3 4 more deployment seasons
- Stations are solar powered & communicate wireless

RNO-G Planned Layout

A hybrid concept

- ► 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

A hybrid concept

- ► 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

A hybrid concept

- ► 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

A hybrid concept

- ► 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Phased array

 Signal of 4 Vpols combined by phasing into 8 beams in real time

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

Antenna sensitivity

3 different antenna types

- LPDA is more sensitive but can not be deployed in borehole
 - 2 orthogonal LPDAs → Polarisation

- Combination of Vpol and Hpol gives polarisation
 - Hpols is less sensitive because of narrow diameter of borehole

Calibration

Current effort!

- ► The ice is part of our detector
 - Refractive index profile of crucial importance
 - → See Talk by Bob Oeyen this afternoon

Expected number of neutrinos

For different flux models

Several models predict at least one neutrino when integrating over the energy

Background

Air showers & muons

- 1. Direct air shower emission
 - Different polarisation pattern, possible veto

- 3. In-ice emission if air shower particles reach ice
 - Similar signature as neutrinos but from surface
 - See Uzair Latifi this afternoon

- 2. Huge energy loss from high energy muon
 - Same signal signature as neutrino but different energy spectrum an arrival direction distribution

cosmic ra

Background

Air showers & muons

Ice Properties

► Part of the detector -> needs to be calibrated

Signals from secondary leptons

Which undergo catastrophic energy losses

Askaryan Radiation

Specific polarisation pattern

Phased array

For triggering and reconstruction

- ► Trigger runs on lower bandwidth (< 250 MHz), 8 beams are formed
- Design goal for threshold: amplitude_signal / sigma_noise = 2
- ► Technique demonstrated at South Pole by ARA ARA, PRD 105

Propagation

Signal can reach antennas on different trajectories!

Solar flare

LPM effect

Earth attenuation

