The Radio Neutrino Observatory - Greenland

 Performance and ProspectFelix Schlüter for the RNO-G collaboration

Ultra-high-energy neutrinos with RNO-G

- RNO-G's best sensitivity at 100 PeV - 10 EeV
- Cutoff in astrophysical spectrum
- Test models of 2. astrophysical component
- Test cosmogenic GZK neutrino flux

Ultra-high-energy neutrinos with RNO-G

- RNO-G's best sensitivity at $100 \mathrm{PeV}-10 \mathrm{EeV}$
- Cutoff in astrophysical spectrum
- Test models of 2. astrophysical component
- Test cosmogenic GZK neutrino flux
- UHE neutrinos in the northern hemisphere
- Earth absorption above ~ 100 TeV
- Complementary FOV to IceCube / South Pole

- Extend energy range in Northern Hemisphere
- Extend FOV for ultra-high energies to Northern Hemisphere

Radio Neutrino Observatory - Greenland

Hybrid station with 24 antennas

See previous talk by Delia Tosi

- Fully funded!
- 7 stations already deployed \& taking data
- 3 (4) more deployment seasons
- Each station acts as independent detector

Radio detection of neutrinos

A174in

Radio detection of neutrinos

A174ा

Particle cascade
$E_{\text {min }}$ to detect radio emission $\gtrsim 1-10 \mathrm{PeV}$

Charge asymmetry produces "Askaryan" emission in $\mathrm{MHz}-\mathrm{GHz}$

Radio detection of neutrinos

A17m
Radio emission pattern has cone shape due to interference

IITM

Particle cascade
$E_{\text {min }}$ to detect radio
emission $\gtrsim 1-10 \mathrm{PeV}$

Charge asymmetry produces "Askaryan" emission in $\mathrm{MHz}-\mathrm{GHz}$

Radio detection of neutrinos

Radio emission pattern has cone shape due to interference
Bend trajectory due to refractive index of ice
Attenuation length $\mathcal{O}(1 \mathrm{~km})$

Particle cascade
$\mathrm{E}_{\text {min }}$ to detect radio emission $\gtrsim 1-10 \mathrm{PeV}$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio detection of neutrinos

Radio emission pattern has cone shape due to interference
Bend trajectory due to refractive index of ice
Attenuation length $\mathcal{O}(1 \mathrm{~km})$
Particle cascade
$E_{\text {min }}$ to detect radio

Radio detection of neutrinos

Radio emission pattern has cone shape due to interference
Bend trajectory due to refractive index of ice
Attenuation length $\mathcal{O}(1 \mathrm{~km})$
Particle cascade

Radio detection of neutrinos

Radio emission pattern has cone shape due to interference
Bend trajectory due to refractive index of ice

Simulations with NuRadioMC

Surface Channels

t [ns]

t [ns]

- Developed reconstructions
- Used to determine sensitivity
- Energy (EPJC 82, 147 (2022)) \& Arrival direction (EPJC 83 (2023) 5)

Simulations with NuRadioMC

- Developed reconstructions
- Energy (EPJC 82, 147 (2022)) \& Arrival direction (EPJC 83 (2023) 5)
- Used to determine sensitivity

Eur. Phys. J. C 80, 77 (2020)

Simulations with NuRadioMC

Surface Channels

Reconstruction Channels

t [ns]

- Developed reconstructions

- Energy (EPJC 82, 147 (2022)) \&

Arrival direction (EPJC 83 (2023) 5)

Simulations with NuRadioMC

- Developed reconstructions

- Used to determine sensitivity
- Energy (EPJC 82, 147 (2022)) \&

Arrival direction (EPJC 83 (2023) 5)
Eur. Phys. J. C 80, 77 (2020)

Sensitivity: Diffuse emission

Sensitivity: Diffuse emission

- Assuming no background

Sensitivity: Diffuse emission

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component

Sensitivity: Diffuse emission

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models

Sensitivity: Diffuse emission

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic GZK neutrino models
- Testing extension of astrophysical flux measured by IceCube

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!

- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!

- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

GRB 20221009A in the FOV of RNO-G

- Extremely bright GRB
- Perfectly in FOV of RNO-G
- 24h visible, alert at favourable zenith angle band 70-80 deg
- Detector was off (winter mode) at that time!

Sensitivity: GRB 20221009A

- RNO-G eff. area for 3h time window

Sensitivity: GRB 20221009A

- RNO-G eff. area for 3h time window
- Sensitivity on time integrated E^{-2} flux over several decades in energy
- RNO-G with competitive sensitivity at higher energies

First look into the data: Galactic emission

- Standard candle (only parts of plane visible at RNO-G)
- Excess visible in the shallow upward facing antennas around 100 MHz
- Daily modulation seen as expected

S. Hallmann for RNO-G, Pos (ICRC23) 1043

First look into the data: Solar flares

- For 3 solar flares, reconstruct position of Sun

- Allowed correction / calibration of station geometry

Summary \& Outlook

- RNO-G is currently deploying at Summit Station in Greenland
- When completed, RNO-G will have world leading sensitivity for 1 EeV neutrinos
- Potential to discover the first UHE neutrino!
- RNO-G will be contributing with UHE neutrino observation to multi-messenger campaigns in the Northern Hemisphere
- Current efforts focus on calibration \& commissioning
- We are preparing for neutrino searches!
- Developing a rapid follow up analysis
- We have developed reconstruction algorithms
- 10 contributions at ICRC23

Backup

First look into the data

simulated CR sighals

Excess in received power at lower frequencies for upward-facing LPDAs \rightarrow Galactic emission

Hardware performance

Aka surviving the winter!

Battery charge over the winter

Deployment

Drilling 100 m deep, 28 cm diameter hole

Shallow antennas are deployed in trenches ...

Completed stations
Testing wind turbines for all-year uptime

Radio detection of neutrinos

Why?

- Use natural glacier ice as target
- Radio waves are less attenuated in ice
- A single radio station can monitor a cubic kilometer of ice
- Radio is a cost effective solution
- In hardware \& deployment (do not have to be deployed in 3 km depth; $100-200 \mathrm{~m}$ is sufficient)

Radio detection of neutrinos

How?

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

Radio detection of neutrinos

How?

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

The radio emission ...

- is produced by >PeV cascades
- illuminates a spherical (Cherenkov) cone
- gets bend in shallow ice
- propagates over km distances
- Signal features (frequency spectrum polarisation) allow to reconstruct neutrino properties

Arrival direction reconstruction

1. Reconstruct vertex position / signal arrival direction from triangulation

Using cross-correlation to determine signal (time) in each antenna.
Using forward folding technique to determine vertex position /
signal arrival direction.
Requires signals in several strings

Arrival direction reconstruction

1. Reconstruct vertex position / signal arrival direction from triang
2. Reconstruct viewing angle from frequency
$\theta-\theta_{\text {Cheren } k o v}=0^{\circ}$
$\theta-\theta_{\text {Cherenkov }}=1^{\circ}$
$\theta-\theta_{\text {Cherenkov }}=2^{\circ}$
$\theta-\theta_{\text {Cherenkov }}=3^{\circ}$
$\theta-\theta_{\text {Cherenkov }}=4^{\circ}$
 spectrum

Using cross-correlation to d
Using forward folding techni signal arrival direction.

Requires signals in several

Requires strong signals in Vpols on power string

Arrival direction reconstruction

3. Reconstruct polarisation

 signals in Hpols

Arrival direction reconstruction

Energy reconstruction

Observed Field

Viewing angle

$$
\exp \left[-\frac{1}{2}\left(\frac{\theta-\theta_{c}}{\sigma\left(E_{s h}, f\right)}\right)^{2}\right]
$$

Vertex Distance
Polarization

Shower energy

Radio detection of neutrinos

- Existing infrastructure, 10 months of sunlight per year
- Field of view (FOV):
- Overlapping with IceCube for TeV neutrinos
- Complementary with future UHE observatory at South Pole

Radio Neutrino Observatory - Greenland

What?

- 35 stations on 1.25 km grid
- 7 already deployed \& taking data
- 3-4 more deployment seasons
- Stations are solar powered \& communicate wireless

RNO-G Planned Layout

Station design

A hybrid concept

- 24 antennas
- 3 types; 80 - 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA \& ARIANNA)
- Will inform IceCube-Gen2 radio array design

Station design

A hybrid concept

- 24 antennas
- 3 types; 80 - 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA \& ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- \& downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

Station design

A hybrid concept

- 24 antennas
- 3 types; 80 - 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA \& ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- \& downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

Station design

A hybrid concept

- 24 antennas
- 3 types; 80 - 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA \& ARIANNA)
- Will inform IceCube-Gen2 radio array design

Phased array

- Signal of 4 Vpols combined by phasing into 8 beams in real time

Phased Array

Helper String 1 m

Shallow component

- Upward- \& downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

Antenna sensitivity

3 different antenna types

- LPDA is more sensitive but can not be deployed in borehole
- 2 orthogonal LPDAs \rightarrow Polarisation

- Combination of Vpol and Hpol gives polarisation
- Hpols is less sensitive because of narrow diameter of borehole

Calibration

Current effort

- The ice is part of our detector
- Refractive index profile of crucial importance
- See Talk by Bob Oeyen this afternoon

Expected number of neutrinos

For different flux models

- Several models predict at least one neutrino when integrating over the energy

Background

Air showers \& muons

1. Direct air shower emission

- Different polarisation pattern, possible veto

3. In-ice emission if air shower particles reach ice

- Similar signature as neutrinos but from surface
- See Uzair Latifi this afternoon

2. Huge energy loss from high energy muon

- Same signal signature as neutrino but different energy spectrum an arrival direction distribution
\qquad
detection

detection
muon detection catastrophic $\mathrm{dE} / \mathrm{dX}$

Background

Air showers \& muons

Ice Properties

- Part of the detector -> needs to be calibrated

Signals from secondary leptons

Which undergo catastrophic energy losses

Askaryan Radiation

Specific polarisation pattern

Phased array

For triggering and reconstruction

- Trigger runs on lower bandwidth (< 250 MHz), 8 beams are formed
- Design goal for threshold: amplitude_signal / sigma_noise = 2
- Technique demonstrated at South Pole by ARA ARA, PRD 105

Propagation

Signal can reach antennas on different trajectories!

\rightarrow vertex
-ray path dipoles

- LPDAs
$\mathrm{E}=2 \mathrm{e}+18 \mathrm{eV}$
$\theta=93.3^{\circ}$ $\varphi=178.8^{\circ}$

Reconstruction Channels

Run 2123 event 3657

LPM effect

Earth attenuation

