Atmospheric neutrino oscillations at JUNO

Gaosong Li Institute of High Energy Physics On behalf of the JUNO collaboration Oct 26, 2023

XX International Workshop on Neutrino Telescopes

DECLI STUDI

JUNO Overview

- 20 kton LS
- 78% photo-coverage
- Designed for low radioactivity background

Jiangmen Underground Neutrino Observatory (JUNO)

- Location optimized for neutrino mass ordering with reactor- ν
- 700m rock overburden to suppress muon flux
- Expected to finish detector construction in 2023

A Multipurpose Neutrino Observatory

Atmospheric neutrino program at JUNO

- Greatly expanding JUNO's physics potential beyond MeV energies
 - Unexplored energy regime for LS

Opportunities

- Oscillation physics (NMO)
- Atm- ν flux

. . .

- Understanding of NC \rightarrow bkgs for DSNB, PD ...
- Constraints for νN interaction model

Challenges

- GeV event reconstruction
- νN interaction uncertainties

Atmospheric neutrino oscillations

orimary cosmic ra

air molecule

- Produced by cosmic ray interaction with atmosphere
- Propagation in matter
 - MSW effect sensitive to NMO
- Potential to enhance overall NMO sensitivity at JUNO together with reactor neutrinos — Talk by Andrea Serafini
 - 0.8~1.4 σ @ 6 years with atm ν only, *J. Phys. G43:030401 (2016)*
 - Significant analysis improvements towards a more realistic estimation
 This talk!

Atm- ν with large homogenous LS detector

large homogenous LS detector like JUNO \rightarrow good potential to reconstruct atm- ν

- ✓ Large photo-coverage → image for μ vs e, v vs v̄
 ✓ Hadronic information visible → better E/θ rec for
 v (instead of l[±])
- ✓ Excellent neutron tagging → ν vs $\bar{\nu}$
- ✓ Final state isotopes identifiable → measure exclusive channels

Oscillation Analysis overview

Event classification

- FC/PC/muon classification
 - Timing info between CD and WP detectors
 - PMT hit charge/time patterns from both CD and WP

Event Reconstruction Method

- General purpose machine learning framework for
 - Directionality, energy, PID ...
- Waveform features extracted from each PMT for network input
 - First hit time, rising edge slope, NPE ...

- Scintillation light is isotropic from point sources
- Light from a long track is not
- Hit time distribution is different for PMTs at different angles w.r.t. the track
 - Embedded information on direction, vertex, energy, PID ...

Directionality

EfficientNet-V2

DeepSphere

PointNet++

7

EfficientNet-V2

DeepSphere

PointNet++

Ż

arxiv 2310.06281

5

5

- Direction information embedded in the shape of hit time distribution
- v Directionality better than 10° above 3 GeV
 - Hadronic information helps improve directionality
- Performance tested against different ν generator models

Particle Identification μ vs e

• PMT pattern of slope feature show a ring like pattern for track event

Particle Identification ν vs $\bar{\nu}$

- More primary neutrons from interaction vertex for $\bar{\nu}$

- $\bar{\nu} + p \rightarrow n + l^+$
- $\nu + n \rightarrow p + l^2$
- \rightarrow secondary event level info
- More energy transferred to hadrons for ν compared to $\bar{\nu}$
 - More hadronic components: different quenching and timing than leptons

→ prompt event PMT pattern info

- More hadronic interaction: more neutrons at higher energies
 - \rightarrow secondary event level info

Particle Identification

- v_{μ} vs \bar{v}_{μ} vs v_{e} vs \bar{v}_{e} vs NC classification relies on
 - Event interaction topology, e.g. μ -type vs e-type
 - Hadronic information: energy fraction, neutrons ...
- Extracted PMT features of the primary trigger is useful
- Adding event level info (n, e) is good for ν vs $\bar{\nu}$ separation
- Analysis ongoing with full detector simulation and reconstruction

Interaction models

- GeV neutrino interaction is model dependent! Existing generators at JUNO:
 - GENIE/NuWro/GiBUU
 - NEUT incorporation in progress
- We are working on the latest versions of the generators, within the <u>Gev v-A</u> <u>high-eNergY MEDium Effect (GANYMEDE)</u> working group

Interaction models

- Proposed methods for estimating interaction uncertainty for GeV neutrinos
 - Model variation: take the difference of the model predictions as one source of the uncertainties
 - *In-situ* measurements: seek unique features within the atm. v events for *in-situ* measurements
- Developed for NC background prediction in Diffuse Supernova Neutrino Background (DSNB) study, also applicable for GeV CC events

NMO improvements

	JUNO Physics Book assumptions	NEW developments	Potential improvement	>0.45 5 0.4 9 10.35
Event Selection $ u_{ m e}/v_{ m e} $	E _{vis} > 1GeV Y _{vis} =E _h /E _{vis} < 0.5	E _{vis} > 1GeV	~30% more stats	
Directionality	$\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$	σ_{θν} <10° (E>3GeV)	Better resolution, E-dependent	0.15 0.1 2×10 ⁻¹ 1 2 3 4 5 6 7 8 10 E _{vis} [GeV]
Classification	CC-e / CC-μ / NC: 100% eff.	CC-e / CC-μ / NC: 80%~95% eff.		$25 (b) v_e \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 2$
	$\nu \text{ vs } \overline{\nu}$: simple classification with N _{michel-e} , Y _{vis}	ν vs	Better $\nu vs \overline{\nu}$ separation	
Energy	$\sigma_{\rm Evis}$ = 1%/VE	$\sigma_{E u}$	E_{ν} instead of E_{vis}	0 1 3 5 7 9 Ε _ν (GeV)

Overall improvement against JUNO Physics book evaluation expected

Summary

- Atmospheric neutrino oscillations through MSW can enhance the NMO sensitivity at JUNO
- Many analysis progresses has been made to fully explore its potential
- Techniques for GeV atmospheric neutrino reconstruction (directionality PID, energy) have been developed
 - Critical for oscillation analysis
 - Preliminary results are promising
- Efforts on interaction models
 - evaluation of systematics
 - *in-situ* measurements with JUNO data to constrain model
- Stay tuned

Directionality

$$\frac{\mathrm{d}l}{\mathrm{d}t} = \frac{v}{|1 - n\beta\cos\theta|}$$

• Scintillation photon dl/dt reaches maximum at Cherenkov angle

E (GeV)

Atmospheric neutrinos

CC

v cc

v cc

ν cc

NC

18

 $\bar{\nu}_{\tau}$ CC

40

21

20

NC

12255

