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JUNO Overview
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Largest ever LS detector

• 20 kton LS

• 78% photo-coverage

• Designed for low 

radioactivity background

Jiangmen Underground Neutrino Observatory (JUNO)

• Location optimized for neutrino mass ordering with reactor-𝜈
• 700m rock overburden to suppress muon flux   

• Expected to finish detector construction in 2023



26.6 GWth, 53 km

A Multipurpose Neutrino Observatory

From J. Pedro Ochoa-Ricoux 3

~60 / day

Primary physics goal

- NMO with reactor 𝜈
- Precision meas. of osc. 

parameters

Rich program of non-

oscillation physics: 

- Solar 𝜈
- Supernova 𝜈
- Atmospheric 𝜈
- Geo-𝜈
- Nucleon decays

- Indirect DM search

- …

4 mHz/m2, 207 GeV 



Atmospheric neutrino program at JUNO

• Greatly expanding JUNO’s physics potential beyond MeV energies 
• Unexplored energy regime for LS
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10 MeV 102 MeV 103 MeV

Atm 𝜈Reactor 𝜈

Solar 𝜈

SN 𝜈

𝜈-nucleus interaction: QEL/RES/DIS

IBD, ES

Opportunities

• Oscillation physics (NMO)

• Atm-𝜈 flux

• Understanding of NC → bkgs for DSNB, PD …

• Constraints for 𝜈N interaction model

• …

Challenges

• GeV event reconstruction

• 𝜈𝑁 interaction uncertainties



Atmospheric neutrino oscillations

• Produced by cosmic ray interaction with atmosphere

• Propagation in matter
• MSW effect sensitive to NMO

• Potential to enhance overall NMO sensitivity at JUNO together 
with reactor neutrinos 

• 0.8~1.4𝜎 @ 6 years with atm 𝜈 only, J. Phys. G43:030401 (2016)

• Significant analysis improvements towards a more realistic 
estimation
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J. Phys. G43:030401 (2016)

Talk by Andrea Serafini

This talk!



ML models

e

𝜇

Atm-𝜈 with large homogenous LS detector
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✓ Large photo-coverage → image for 𝜇 vs 𝑒, 𝜈 vs ҧ𝜈
✓ Hadronic information visible → better 𝐸/𝜃 rec for 

𝝂 (instead of 𝑙±)

✓ Excellent neutron tagging → 𝜈 vs ҧ𝜈
✓ Final state isotopes identifiable → measure 

exclusive channels

Cherenkov 

detector
LS detector

Pros

Cherenkov ring Low E 

threshold

High n-

tagging 

efficiency

large homogenous LS detector like JUNO

→ good potential to reconstruct atm-𝝂



Oscillation Analysis overview
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Event classification

• FC/PC/muon classification

• Timing info between CD and 
WP detectors

• PMT hit charge/time patterns 
from both CD and WP
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FC PC muon



Event Reconstruction Method

• General purpose machine learning framework for
• Directionality, energy, PID …

• Waveform features extracted from each PMT for network input
• First hit time, rising edge slope, NPE …

9Methodology paper online, arxiv 2310.06281



How?

• Scintillation light is isotropic from point sources

• Light from a long track is not

• Hit time distribution is different for PMTs at different angles w.r.t. the track
• Embedded information on direction, vertex, energy, PID …
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Directionality

• Direction information 
embedded in the shape 
of hit time distribution  

• 𝜈 Directionality better 
than 10˚ above 3 GeV

• Hadronic information 
helps improve 
directionality

• Performance tested 
against different 𝜈-
generator models
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More details in the talk by Z.K. Yang

arxiv 2310.06281



Particle Identification 𝜇 vs e

• PMT pattern of slope feature show a ring like pattern for track event
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Particle Identification 𝜈 vs ҧ𝜈

• More primary neutrons from 
interaction vertex for ҧ𝜈

• ҧ𝜈 + p → n + l+

• 𝜈 + n → p + l-

→ secondary event level info

• More energy transferred to 
hadrons for 𝜈 compared to ҧ𝜈

• More hadronic components: 
different quenching and timing 
than leptons

→ prompt event PMT pattern info

• More hadronic interaction: more 
neutrons at higher energies

→ secondary event level info
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y = Ehad / E𝝂

*Honda flux + GENIE 3.2



Particle Identification

• 𝜈𝜇 vs ҧ𝜈𝜇 vs 𝜈𝑒 vs ҧ𝜈𝑒 vs NC classification relies on

• Event interaction topology, e.g. 𝜇-type vs e-type

• Hadronic information: energy fraction, neutrons …

• Extracted PMT features of the primary trigger is useful   

• Adding event level info (n, e) is good for 𝜈 vs ҧ𝜈 separation

• Analysis ongoing with full detector simulation and reconstruction

14More details in the talk by R. Wirth



Interaction models
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Nucleon momentum distribution in the ground 
state of 12C in the RFG, LFG, and SF models.

J.A. Formaggio, G.P. Zeller

Rev. Mod. Phys. 84, 1307 (2012)

• GeV neutrino interaction is model dependent! Existing generators at JUNO:

• GENIE/NuWro/GiBUU

• NEUT incorporation in progress

• We are working on the latest versions of the generators, within the Gev v-A 

high-eNergY MEDium Effect (GANYMEDE) working group

Curtesy of Jie Cheng



Interaction models
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• Proposed methods for estimating interaction uncertainty for GeV neutrinos

• Model variation: take the difference of the model predictions as one source of the uncertainties

• In-situ measurements:  seek unique features within the atm. 𝜈 events for in-situ measurements

• Developed for NC background prediction in Diffuse Supernova Neutrino Background (DSNB) study, 
also applicable for GeV CC events

JCAP 10 (2022) 033



NMO improvements
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JUNO Physics Book
assumptions

NEW 
developments

Potential
improvement

Event Selection
𝜈e/𝜈e

Evis > 1GeV
Yvis=Eh/Evis < 0.5

Evis > 1GeV ~30% more stats

Directionality
𝜎𝜃𝜇 =1˚
𝜎𝜃𝜈=10˚

𝜎𝜃𝜈 <10˚ (E>3GeV)
Better resolution,
E-dependent

Classification

CC-e / CC-𝜇 / NC: 
100% eff.

CC-e / CC-𝜇 / NC: 
80%~95% eff.

—

𝜈 vs ҧ𝜈 :
simple classification 
with Nmichel-e, Yvis

𝜈 vs ҧ𝜈 :
50%~80% eff.

Better 𝜈 vs ҧ𝜈
separation

Energy 𝜎Evis = 1%/√E 𝜎E𝜈 E𝜈 instead of Evis

Overall improvement against JUNO Physics book evaluation expected



Summary

• Atmospheric neutrino oscillations through MSW can enhance the NMO 
sensitivity at JUNO

• Many analysis progresses has been made to fully explore its potential  

• Techniques for GeV atmospheric neutrino reconstruction (directionality 
PID, energy) have been developed

• Critical for oscillation analysis

• Preliminary results are promising

• Efforts on interaction models
• evaluation of systematics

• in-situ measurements with JUNO data to constrain model

• Stay tuned
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Backup
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Directionality

• Scintillation photon dl/dt reaches 
maximum at Cherenkov angle
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Atmospheric neutrinos
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J. Phys. G43:030401 (2016)

200 kton yr

𝜈 Flux

x-section

Expected Interactions

𝝂𝝁 CC ത𝝂𝝁 CC 𝝂𝒆 CC ത𝝂𝒆 CC 𝝂𝝉 CC ത𝝂𝝉 CC NC

8662 3136 6637 2221 90 40 12255


