Next-generation CEvNS experiments at the ESS and beyond C.M. Lewis

Donostia International Physics Center (DIPC), Universidad del País Vasco Enrico Fermi Institute (EFI), Kavli Institute (KICP), University of Chicago

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

D.Z. Freedman, Phys. Rev. D 9 (1974) 1389

What you can do with it

The detector team

The best CEvNS detectors deserve the best CEvNS source

Enter... the European Spallation Source (ESS)

X10 the DAR v production of the SNS (=> signal statistics => sensitivity to new physics) x2.5 SNS current (=> x2.5 SNS v/p)

x2. SNS emergy (=> \sim x4 SNS v/p)

Detector Technology	Target	Mass	Steady-state	E_{th}	\mathbf{QF}	E_{th}	$\frac{\Delta E}{E}$ (%)	\mathbf{E}_{\max}	$CE\nu NS \frac{NR}{yr}$
	nucleus	(kg)	background	(keV_{ee})	(%)	(keV_{nr})	at Eth	(keV_{nr})	$@20m, >E_{th}$
Cryogenic scintillator	CsI	22.5	10 ckkd	0.1	~ 10 [71]	1	30	46.1	8,405
Charge-coupled device	Si	1	1 ckkd	0.007	4-30 [97]	0.16	60	212.9	80
High-pressure gaseous TPC	Xe	20	10 ckkd	0.18	20 [104]	0.9	40	45.6	7,770
p-type point contact HPGe	Ge	7	15 ckkd	0.12	20 [118]	0.6	15	78.9	1,610
Scintillating bubble chamber	Ar	10	0.1 c/kg-day	1		0.1	~ 40	150.0	1,380
Standard bubble chamber	C_3F_8	10	0.1 c/kg-day		-	2	40	329.6	515

advantage: characteristic in both energy and time

Venice, October 2023

ESS (a detector home)

- Steady-state backgrounds subtractable
- beam-induced prompt neutrons are main background (candidate locations being evaluated)
- neutron camera for on-site measurements

Signs of a deeper frontier (pure CsI)

- LAAPDs with waveshifters (NOL-9) to increase synergy
 - Thresholds < 55 eV
 - limited by LAAPD-induced low-energy population

- natural evolution from CsI[Na] measurement at SNS
- combine much higher light yield (x2.5-3) and more efficient photosensors
- large mass increase to ~60 kg (seven 7x7x40 cm crystals)

Joining of two houses

Fig. 3. Quantum efficiency vs. wavelength for a 4 and 30Ω cm APD.

NeuTel 2023

Cryogenic pure CsI quenching factor

preliminary

Venice, October 2023

What does all that detector development get you? C°sI

Sister detectors (GavESS)

GavESS's gaseous prototype (GaP)

- opportunity to evaluate the technique in different conditions
 - multiple targets (Ar, Kr, Xe)
 - pressure up to 50 bar
- characterization of the low-energy response to nuclear recoils
 - quenching factor measurements
 - detection threshold

Currently characterizing ER signals with gaseous Ar at ~9.5 bar

Fig: A. Simón

CEvNS sources (reactors)

Enectali Figueroa-Feliciano / vMass 2013 / Milano

Low recoil energies... but high ν flux

No background subtraction (steady-state source)... but some locations have excellent background reduction

Spallation produces x200 the neutrons per ν

A project of passion: Ge NR response

The next pre-ESS step: Ringhals

Venice, October 2023

Thanks

Questions?

Extra: Background Model

Extra: QFs in Ge

- underestimated treatment (flat 10 eV) of ballistic deficit from DAQ >> quoted numbers used to infer the correction (see right)
 - paper revision in response appears to soften ballistic deficit correction

*comments on CONUS sub-keV QF paper: arXiv:2203.00750

1

recoil energy (keV_{nr})

 $(\kappa = 0.157)$

10

10

photo-neutron