



# Reconstruction of Atmospheric Neutrino's Directionality and Energy in JUNO

Zekun Yang,<sup>1</sup> Jiaxi Liu,<sup>2</sup> Hongyue Duyang,<sup>1</sup> Teng Li,<sup>1</sup> Zhen Liu,<sup>2</sup> Wuming Luo,<sup>2</sup> Xiaohan Tan<sup>1</sup> <sup>1</sup> Shandong University <sup>2</sup> Institute of High Energy

26 Oct. 2023

#### Motivation

• The measure of atmospheric neutrino oscillations has great potential to enhance JUNO's neutrino mass ordering (NMO) sensitivity.

This talk

- Atmospheric neutrino oscillations analysis ( $P = f(\frac{L}{F})$ ) requires reconstructions of:
  - Zenith angle θ<sub>ν</sub> ≻ L;
    Neutrino energy;

  - Flavor (PID). See Rosmarie's talk



Reactor neutrinos: Sensitivity to NMO via oscillation in vacuum





Atmospheric neutrinos: Sensitivity to NMO via oscillation with matter effect

# Challenge

- Center detector of JUNO is not designed for atmospheric neutrino measurement at the beginning.
- Directionality measurement is very challenging:
  - Liquid scintillator (LS) detectors do not offer direct track information.
  - Cherenkov light << Scintillation light in a typical LS detector.



#### Methodology

- The light received by a PMT is the superposition of light from many points on the particle track in the detector.
- The track depicts distinct shapes of nPE(*t*) for PMTs at different angles, which then reflected in the PMT waveforms.



#### Methodology

- Features are extracted from waveforms to keep only the useful information relevant to reconstructions.
- Machine Learning (ML) models are trained to reconstruct directionality, energy, and flavors and other quantities from PMT features.



### Performance of directionality

 $\sigma_{\theta_{v}}$ : The standard deviation of the Gaussian fit to the distribution of  $\theta_{v,rec} - \theta_{v,true}$  in each energy bin.



Cross-checked with different ML models, and validated with different generators (GENIE and NuWro). Better than 10° resolution for  $E_{\nu} > 3$ GeV for both  $\nu_{\mu}/\bar{\nu}_{\mu}$ -CC and  $\nu_{e}/\bar{\nu}_{e}$ -CC events.

### Performance of directionality



## Performance of energy

Same method with directionality reconstruction but change output to energy. Good results of visable energy:



## Summary

- 1. In this talk, we present a multi-purpose machine learning approach for the reconstruction of atmospheric neutrino events in JUNO.
- 2. We demonstrated the feasibility of atmospheric neutrinos' directionality and energy reconstruction for the first time in a LS detector using this approach.
- 3. It provides the neccessary resolution for atmospheric neutrino oscillation analysis, and same method can be applied to other LS detector.



# Backup

### Backup





The resolution on  $\alpha$  ( $\sigma_{\alpha}$ ) is defined as the 68% quantile of the  $\alpha$  distribution, given that  $\alpha$  is always larger than 0.

Х

9

9

For  $\theta_{\nu}$ , the resolution in each energy bin  $(\sigma_{\theta_{\nu}})$  is defined as the standard deviation of the Gaussian fit to the distribution of  $\theta_{\nu,rec}$  $-\theta_{\nu,true}$ , since these distributions are found to be approximately Gaussian.

10

## Backup

To check models' robustness and estimate systematic uncertainties, a different generator, NuWro, is used for validation:



The result of GENIE and NuWro are consistent.