CUPID: CUORE Upgrade with Particle ID

Fabio Bellini

XX International Workshop on Neutrino Telescopes, Venice, 25.10.2023

GOAL

Cover the Inverted Hierarchy and a fraction of Normal Hierarchy

- 3σ discovery sensitivity m_{ββ}: [13-21] meV
- 3σ discovery sensitivity $T^{0v}_{1/2} > 10^{27}$ yr

CUPID Strategy

A ton scale high-resolution detector array for the search of $0\nu\beta\beta$

- Re-use CUORE Infrastructure
- Replace CUORE ^{nat}TeO₂ detectors with an array of 95% enriched Li₂¹⁰⁰MoO₄

- Enough to take a leap forward in sensitivity because background reduces dramatically (~x100):
 - ¹⁰⁰Mo has higher Q_{ββ} (3037 keV) than ¹³⁰Te (2527 keV): lower γ-induced background, more favourable phase space and matrix element
 - new detector with very efficient α particle rejection: remove the dominant background in CUORE

Concept

Concept

CUPID

- Single module: Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g
- Detector: 1596 crystals in 57 towers, 14 floors, 2 crystals each
 - ► ~240 kg of ¹⁰⁰Mo ~1.6.10^{27 100}Mo atoms
- 1710 Ge Light Detector (LD) with SiO antireflective coating + Al electrodes for Neganov-Trofimov-Luke (NTL) effect
 - NTD Ge thermistor readout for both LD and Li₂¹⁰⁰MoO4
- CUPID performance goal
 - Energy resolution: 5 keV FWHM
 - LY: 0.3 keV/MeV
 - ► LD: obaseline ~100 eV for PID
 - Background: 10⁻⁴ ckky (cts/keV·kg·yr)
 - 3σ discovery sensitivity $T^{0v}_{1/2} > 10^{27}$ yr, $m_{\beta\beta}$: [13-21] meV

Detector Module

Collaboration

International collaboration: ~140 collaborators across 7 countries

Leverage previous collaborative experiences

https://cupid.lngs.infn.it

CUORE Collaboration in building the only project of comparable scale

Major participants: Italy (~60 authors), US (~40 authors), France (~25 authors) Other participants: Ukraine, Russia, China, Spain Integrate the experience from CUPID-0 and CUPID-Mo in operating detectors with Particle Identification technology

CUPID-0

Collaboration

International collaboration: ~140 collaborators across 7 countries

Leverage previous technical experiences

https://cupid.lngs.infn.it/

Cost and time-effective reuse of the CUORE underground infrastructure

Fully leverages the CUORE cryogenic infrastructure, experience and expertise in its operation

Re-use a unique existing infrastructure CUPID leverages many years of work and investment

Light Detectors

- High-purity Gewater with anthreflective SIO potting and NTD readout: a robust technology from predecessors
 - Performances extensively studied in 202.

Assembled light detectors for

test in **Pulse Tube** cryostat

JINST 18 P06033

σ_{base}~70-90 eV Excellent energy resolution 0.7 keV FWHM at 356 keV (¹³³Ba source)

• Performances meet CUPID requirements but at limit for pile-up rejection

Pile up rejection

- Relatively fast ¹⁰⁰Mo T^{2v} _{1/2} = 7.1x10¹⁸ yr leads to the possibility of 2 2vββ decays events piling up & reconstructing in ROI
- Rejection depends on: SNR after Optimum Filter, rise time (τ), algorithms
- Goal for pile up background contribution: 5×10-5 ckky
- Use LD: faster than Li₂MoO₄
 - NTL effect to increase SNR (x10)
 - reduce LD NTD size, tune working point to reduce τ

• Alternative to baseline: TES sensors \rightarrow require major change in readout

Detector Structure

- The challenge:
 - integrate LD without adding complexity
 - address weak points in CUORE design
 - reduce Cu amount
 - increase cryostat filling factor
- The solution: "gravity assisted" tower
 - no vertical constraint, stack of crystals and light detectors sitting one on top of the other (vs. rigid, fixed height structure in CUORE)
 - easier & faster assembly no screws, self-aligning structure
 - loose tolerances easy to produce (laser cut of Cu sheets), easy to clean (with no special care for threads and abutment surfaces)
 - better wiring integration
 - same materials used in CUORE (Cu, PTFE, CuPEN wiring)

Tower Test

CUPID

- Goal:
 - validate assembly procedure, mechanical structure and thermalization
 - performances studies, test of glue, LD coating
- 14 floors, 28 crystals, 30 LD in 2 different runs
 - ► Fast and uniform cool down→thermal and mechanical scheme validated
 - Same performance for spattered/evaporated SiO coating
 - New UV glue type proved better noise resolution & faster signal
 - Good LMO performances (σ~6.5 keV),
 - excess noise in LD: ascribed to Cu spine hosting the CuPEN in contact (by mistake) with Cu frames and double bonding
 - 72 channels of new DAQ installed and successfully tested
- 2024: test with NTL LD, Cu reduction, optimised LD anchoring on frame

CUPID Background model

CUPID

Our background model reconstruction approach is well validated in multiple experiments.

All the materials for CUPID have been directly measured in bolometric setups.

Energy resolution

ROI ($Q_{\beta\beta}$ = 3034 keV)

holders in 3 MeV ROI

Background budget

Our background model reconstruction approach is well validated in multiple experiments.

All the materials for CUPID have been directly measured in bolometric setups.

Well-defined path to reduce the CUORE backgrounds to the levels required for CUPID

CUPID scenarios

 $T_{1/2} > 1 \times 10^{27} \text{ yr}$ M_{\beta\beta\beta} :[13-21] meV} 240 Kg ¹⁰⁰Mo CUORE Cryostat Bkgd: 2 10⁻⁵ ckky $T_{1/2} > 2 \times 10^{27}$ yr M_{\beta\beta\beta} > [9-15] meV} 1000 Kg ¹⁰⁰Mo New Cryostat Bkgd: 5 10⁻⁶ ckky $T_{1/2} > 9 \times 10^{27}$ yr M_{ββ} > [4-7] meV

125 ci

CUPID 1Ton

Conclusions

- CUPID builds on an existing and well-functioning international collaboration
- Collaboration has operational experience at LNGS for ton-scale bolometric experiment and uses an existing infrastructure (CUORE cryostat and experimental site)
- Exceptional opportunity: cost effective, leverages international investments
- Crystallisation and enrichment at large scale are possibile and demonstrated
- Data-driven background model indicates bkgd~10⁻⁴ ckky.
- CUPID will the Inverted Hierarchy region
- Possibility of mass scaling and multi-isotopes deployment in case of discovery
- Collaboration is working on getting ready for CUPID.

Cryostat upgrade

Cryostat upgrade

Data readout: FEE and DAQ

preamp

112 mm x 17

CUORE: custom-designed roomtemperature front end electronics. Raw data is stored for offline processing

 Very stable and reliable operation for 5 years → Readout scheme proven on the field

CUPID will add several challenges

- More channels (x3), hence more power, more space, more data, etc.
- Faster signals on light detectors, required for pile-up rejection

Main upgrades

- New frontend will save a factor of 2 in space
- Keep same power budget, optimizing preamps for light channels (same power, lower noise) & heat channels (lower power, same noise)
- Reduce wiring capacitance to reduce input RC time constant
- New board merges DAQ (24-bit ADCs, 25ksps sampling rate for channels) + anti-aliasing filters (with 10-bit tunable cut-off up to 2.5 kHz)
- Update DAQ software and storage infrastructure to cope with increased data rate

20

Small scale prototypes already deployed in multiple facilities for R&D