The Latest <u>Reactor Neutrino Oscillation</u> and <u>Reactor Neutrino Flux and Spectrum</u> Results from Daya Bay

Zhe Wang Tsinghua University (On behalf of the Daya Bay Collaboration)

October 25, 2023 @ XX International Workshop on Neutrino Telescopes

The Daya Bay Collaboration

About 250 collaborators

Asia (21)

Beijing Normal Univ., CNG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles University, JINR Dubna

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

South America (1)

Catholic Univ. of Chile

2023/10/25

Zhe Wang @ XX NeuTel

Reactor Neutrino Oscillation and Measurement

Power Plant and Three Experimental Sites

Far

Target mass: 80 ton 1600m to LA, 1900m to DYB Overburden: 350m Muon rate: 0.04Hz/m² IBD rate: 90/day/AD

Antineutrino Detector (AD)

Data Collection

• Operational statistics:

• Three physics runs:

Configuration	EH1	EH2	EH3	Start date – End date	Duration (Days)
6-AD	2	1	3	24 Dec 2011 – 28 July 2012	217
8-AD	2	2	4	19 Oct 2012 – 20 Dec 2016	1524
7-AD	1	2	4	26 Jan 2017 – 12 Dec 2020	1417
Total					3158

• Data available for analyses: ~2700 days

Candidates and Background

- Correlated background
- Fast neutron (produced outside of the AD but enters the active volume of the AD)
- 'Muon-x' (associated with untagged muons due to equipment malfunction)
- -9Li/8He (spallation product produced by cosmic-ray muons inside the AD)
- -²⁴¹Am-¹³C (neutron calibration source resides inside the ACU)
- $-13C(\alpha,n)16O (\alpha \text{ from decay of natural radioactive isotope in the liquid scintillator})$ 2023/10/25 Zhe Wang @ XX NeuTel 7

Energy Scale and Systematics

- Gain of photomultiplier tubes
 - Single-photoelectron dark noise
 - Weekly LED monitoring
- Energy calibration
 - Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
 - Spallation neutrons
 - Natural radioactivity

Relative uncertainty in energy scale: ~0.2%

Side-by-side comparison in 2012

Detection efficiencies

Efficiency	Correlated	Uncorrelated
-	0.92%	0.03%
99.98%	0.01%	0.01%
92.7%	0.97%	0.08%
99.8%	0.10%	0.01%
	0.02%	0.01%
98.7%	0.12%	0.01%
84.2%	0.95%	0.10%
104.9%	1.00%	0.02%
-	0.002%	0.01%
80.6%	1.93%	0.13%
	Efficiency 99.98% 92.7% 99.8% 98.7% 84.2% 104.9% - 80.6%	EfficiencyCorrelated-0.92%99.98%0.01%92.7%0.97%99.8%0.10%0.02%0.98.7%98.7%0.12%84.2%0.95%104.9%1.00%-0.002%80.6%1.93%

Expectation: R(AD1/AD2) = 0.982

Measurement:

Zhe Wang @ XX Neuter ± 0.004(stat) ± 0.003(syst)

Prompt energy spectra $E_{\nu} \approx E_{\text{prompt}} + 0.78 \text{ MeV}$

PRL 130, 161802 (2023)

Zhe Wang @ XX NeuTel

Measurement with nH

- Daya Bay's latest nH results still from 2016
 - Phys. Rev. D 93, 072011 (2016)
- 621 days of data were used to perform an analysis on rate deficit due to oscillation effect
- Statistically distinct sample with largely uncorrelated systematics to that of nGd, providing a nearly independent result
- Unique challenge due to more low energy background
- Result: $\sin^2 2\theta_{13} = 0.071 \pm 0.011$
 - with χ^2 /NDF = 6.3/6
- A new result exploiting rate deficit and shape distortion with larger sample is under preparation

Present Global Landscape

Compare Daya Bay's current results with other measurements

Evolution of Daya Bay Reactors

French Pressurized Water Reactor (PWR)

- Running cycle:
 - Replace 1/3 (1/4) fuel every 18 (12) months
- Fuel evolution in a cycle
 - U-235 and Pu-239 dominant

Reactor Neutrino Flux and Spectrum

 F_i , Fission rate of isotope *i* W_{th} , thermal power f_i , fission fraction of *i* E_k , Energy release/fission *i*, *k*: four fission isotopes

With the evolution information, U and Pu spectra, comparison with models, <u>HM and</u> SM2018, are made.

Reactor Neutrino Flux

Flux (yield at average fission status): $\sigma_f = (5.91 \pm 0.09) \times 10^{43} \text{ cm}^2/\text{fission}$ Ratio with respect to predicted reactor neutrino yield: $R = 0.952 \pm 0.014$ (Exp.) ± 0.023 (Huber-Mueller)

Reactor Neutrino Flux Evolution

Data are grouped into 13 fission groups according to their F_{q} .

The HM predictions:

Rejected at 3.6 standard deviations in $\overline{\sigma}$ Rejected at 3.0 standard deviations in $(d\sigma/dF_9)/\overline{\sigma}$ volution slope is free of any The SM2018 predictions:

Consistent

2023/10/25

Reactor Neutrino Spectrum (Fluxes in 6 energy bins) Evolution

Hints for Models

Predictions of the HM or SM2018 models:

$$\sigma^{\operatorname{Pred},eg} \equiv F_5^g \sigma_5^e + F_8^g \sigma_8^e + F_9^g \sigma_9^e + F_1^g \sigma_1^e$$

Introduce U, Pu spectrum distortions, f_5^e or f_9^e , or a global normalization factor η (motivated by largemass sterile neutrinos or by a global uncertainty, e.g., from the detection efficiency) to improve data HM/SM2018 agreement

$$\begin{split} \sigma^{\text{model},eg} &= \eta [F_5^g \sigma_5^e (1 + f_5^e) + F_8^g \sigma_8^e + F_9^g \sigma_9^e + F_1^g \sigma_1^e] \\ \sigma^{\text{model},eg} &= \eta [F_5^g \sigma_5^e + F_8^g \sigma_8^e + F_9^g \sigma_9^e (1 + f_9^e) + F_1^g \sigma_1^e] \\ \sigma^{\text{model},eg} &= (1 + f_E^e) [F_5^g \sigma_5^e + F_8^g \sigma_8^e + F_9^g \sigma_9^e + F_1^g \sigma_1^e] \end{split}$$

Hints for Models

²³⁵U and ²³⁹Pu Spectra Measurement

• First extraction of the ²³⁵U spectrum from commercial reactors and the first measurement of the ²³⁹Pu spectrum.

 In the 4~6 MeV energy range (bump), the ²³⁵U and ²³⁹Pu spectra might have a similar bump structure to the total spectrum.

•Joint Determination of Reactor Antineutrino Spectra by Daya Bay and PROSPECT,

Phys. Rev. Lett. 128 (2022) 081801

High-Energy Reactor Antineutrinos

- High-energy reactor antineutrinos in the prompt energy region of 8–12 MeV observed over 1958 days of data collection.
- The hypothesis of no reactor antineutrinos with neutrino energy above 10 MeV is rejected with a significance of 6.2 standard deviations.

Phys. Rev. Lett. 129 (2022) 041801

Summary

- Precise sin²2 θ_{13} measurement with neutron capture on Gd and H
- One of the best measurements of $|\Delta m^2_{32}|$
- One of the best reactor neutrino flux measurement
- Reactor model comparision: HM: Flux and spectrum both in conflict with Daya Bay SM2018: Flux agrees with Daya Bay, but not the spectrum
- ²³⁵U and ²³⁹Pu spectra measurement, high energy neutrino measurement
- More in the future, for example, updated results on oscillation parameters with neutron captured on H samples

Thank you. Stay tuned.