Confronting sterile vs with NSIs in T2K and NOvA

Outstanding progress in v physics in ~ 25 years

Discoveries	Interpretation	known knowns
		$\delta m^{2} / e^{2} \sim 7.34 \times 10^{-5} \pm 2.2 \%$ $\Delta m^{2} / \mathrm{eV}^{2} \sim 2.48 \times 10^{-3} \pm 1.3 \%$ $\sin ^{2} \theta_{12} \sim 0.303$ $\pm 4.4 \%$ $\sin ^{2} \theta_{13} \sim 0.0225$ $\pm 3.8 \%$ $\sin ^{2} \theta_{23} \sim 0.545$ $\pm 5.0 \%$
0°		known unknowns
		$\delta(C P)$ $\operatorname{sign}\left(\Delta \mathbf{m}^{2}\right)$ octant $\left(\theta_{23}\right)$ absolute v mass Dirac/Majorana
+ many other ones:		unkown unknowns
θ_{13} at reactors \& T2K ...		NSI, sterile states, PMNS non-unitarity, ...?

3-flavor scheme now established as the standard framework...

The $3 v$ mixing matrix

$$
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{3} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle \quad U=O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}
$$

$\Gamma_{\delta}=\operatorname{diag}\left(1,1, e^{+i \delta}\right)$
Dirac CP-violating phase δ
U is non-real if $\delta \neq(0, \pi)$
$\delta \in[0,2 \pi]$
Explicit form

$$
\begin{gathered}
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{22} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i 8} \\
0 & 1 & 0 \\
-s_{13} 3_{38} 8^{i 8} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-c_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\theta_{\mathbf{2 3}} \sim \mathbf{4 5}^{\circ} \quad \theta_{\mathbf{1 3}} \boldsymbol{\sim} \mathbf{9}^{\circ} \quad \theta_{\mathbf{1 2}} \sim \mathbf{3 4} \mathbf{3}^{\circ}
\end{gathered}
$$

Three non-zero $\theta_{i \mathrm{ij}}$: Way open to CPV searches...

Two main actors: T2K \& NOvA

Bird's-eye view: bievents plots

for Normal Ordering: $\left\{\begin{array}{l}\text { T2K prefers } \delta_{\mathrm{CP}} \sim 1.5 \pi \\ \text { NOvA prefers } \delta_{\mathrm{CP}} \sim 0.8 \pi\end{array}\right.$

In NO, tension in the determination of δ_{CP}

Maybe a statistical fluctuation or a systematic error
But interesting to consider alternative explanations...

At NeuTel 2021

I showed that NSI can solve the tension

NSI bring the estimates of δ_{CP} in agreement

Contours obtained for the best fit of T2K + NOvA: $\left[\varepsilon_{e \mu}=0.15, \phi_{e \mu}=1.38 \pi\right]$
T2K region almost unaltered
NOvA region strongly modified

Can sterile neutrinos resolve the tension?

Interpretation of $\mathrm{NO} \nu \mathrm{A}$ and T 2 K data in the presence of a light sterile neutrino

Sabya Sachi Chatterjee ${ }^{1, *}$ and Antonio Palazzo ${ }^{2,3, \dagger}$
${ }^{1}$ Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DH1 3LE, UK
${ }^{2}$ Dipartimento Interateneo di Fisica "Michelangelo Merlin," Via Amendola 173, 70126 Bari, Italy
${ }^{3}$ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy
We study in detail the impact of a light sterile neutrino in the interpretation of the latest data of the long baseline experiments $\mathrm{NO} \nu \mathrm{A}$ and T 2 K , assessing the robustness/fragility of the estimates of the standard 3 -flavor parameters with respect to the perturbations induced in the $3+1$ scheme. We find that all the basic features of the 3 -flavor analysis, including the weak indication ($\sim 1.4 \sigma$) in favor of the inverted neutrino mass ordering, the preference for values of the CP-phase $\delta_{13} \sim 1.2 \pi$, and the substantial degeneracy of the two octants of θ_{23}, all remain basically unaltered in the 4 -flavor scheme. Our analysis also demonstrates that it is possible to attain some constraints on the new CP-phase δ_{14}. Finally, we point out that, differently from non-standard neutrino interactions, light sterile neutrinos are not capable to alleviate the tension recently emerged between $\mathrm{NO} \nu \mathrm{A}$ and T 2 K in the appearance channel.

Submitted to New Journal of Physics

Enlarging the 3-flavor scheme

At LBL the effective 2-flavor SBL description is no more valid and calculations should be done in the $3+1\left(\right.$ or $3+N_{s}$) scheme

Mixing Matrix in the 3+1 scheme

$$
R_{i j}=\left[\begin{array}{cc}
c_{i j} & s_{i j} \\
-s_{i j} & c_{i j}
\end{array}\right] \quad \tilde{R}_{i j}=\left[\begin{array}{cc}
c_{i j} & \tilde{s}_{i j} \\
-\tilde{s}_{i j}^{*} & c_{i j}
\end{array}\right] \quad \begin{aligned}
& s_{i j}=\sin \theta_{i j} \\
& c_{i j}=\cos \theta_{i j} \\
& \tilde{s}_{i j}=s_{i j} \in\left(i \delta_{i i j}\right)
\end{aligned}
$$

$3 v\left\{\begin{array}{l}3 \text { mixing angles } \\ 1 \text { Dirac phase } \\ 2 \text { Majorana phases }\end{array}\right.$

$$
3+1\left\{\begin{array}{l}
6 \\
3 \\
3
\end{array}\right.
$$

$$
3+N\left\{\begin{array}{l}
3+3 N \\
1+2 N \\
2+N
\end{array}\right.
$$

In general, we have additional sources of CPV

LBL transition probability in 3-flavor

$$
P_{\nu_{\mu} \rightarrow \nu_{e}}^{3 \nu}=P^{\mathrm{ATM}}+P^{\mathrm{SOL}}+P^{\mathrm{INT}}
$$

In vacuum:

$$
\begin{aligned}
& P^{\mathrm{ATM}}=4 s_{23}^{2} s_{13}^{2} \sin ^{2} \Delta \\
& P^{\mathrm{SOL}}=4 c_{12}^{2} c_{23}^{2} s_{12}^{2}(\alpha \Delta)^{2} \\
& P^{\mathrm{INT}}=8 s_{23} s_{13} c_{12} c_{23} s_{12}(\alpha \Delta) \sin \Delta \cos (\Delta \\
& \Delta=\frac{\Delta m_{31}^{2} L}{4 E}, \quad \alpha=\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \quad \alpha
\end{aligned}
$$

$$
\text { PATM leading } \rightarrow \theta_{13}>0
$$

$$
\text { PINT subleading } \rightarrow \text { dependency on } \delta
$$

PsoL negligible

T2K osc. maximum $\mathrm{E}=0.6 \mathrm{GeV}$

A new interference term in the 3+1 scheme

N. Klop \& A.P., PRD (2015)
$-\Delta_{14} \gg 1$: fast oscillations are averaged out

- But interference of $\Delta_{14} \& \Delta_{13}$ survives and is observable

$$
P_{\mu e}^{4 \nu} \simeq P^{\mathrm{ATM}}+P_{\mathrm{I}}^{\mathrm{INT}}+P_{\mathrm{II}}^{\mathrm{INT}}
$$

$$
S_{13} \sim S_{14} \sim S_{24} \sim 0.15 \sim \varepsilon
$$

$$
\alpha=\delta \mathbf{m}^{2} / \Delta \mathrm{m}^{2} \sim 0.03 \sim \varepsilon^{2}
$$

$$
\begin{cases}P^{\mathrm{ATM}} \simeq 4 s_{23}^{2} s_{13}^{2} \sin ^{2} \Delta & \sim \varepsilon^{2} \\ P_{\mathrm{I}}^{\mathrm{INT}} \simeq 8 s_{13} s_{23} c_{23} s_{12} c_{12}(\underline{\alpha \Delta}) \sin \Delta \cos \left(\Delta+\delta_{13}\right) & \sim \varepsilon^{3} \\ P_{\mathrm{II}}^{\mathrm{INT}} \simeq 4 s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin \left(\Delta+\delta_{13}-\delta_{14}\right) & \sim \varepsilon^{3}\end{cases}
$$

Sensitivity to the new CP-phase δ_{14}

Numerical examples of $4 v$ probability

The fast oscillations get averaged out due to the finite energy resolution

Different line styles \Leftrightarrow
Different values of δ_{14}

The modifications induced by δ_{14} are almost as large as those induced by the standard CP-phase δ_{13}
In principle we can try to explain the tension with $4 v$

However, it doesn't work: tension is still there!

Why?

Sterile vs NSI: Two different kinds of interference

Gaining insight with bievents plots

We need a noticeable displacement in NOvA while no displacement is needed in T2K

This is possible only with NSI (different values of v)

Biprobability plots in the presence of NSI

Conclusions

T2K and NOvA display a tension at ~ 2 sigma level
Complex flavor-changing NSI can solve the tension for $\varepsilon \sim 0.2$
Sterile neutrinos are not able to do the same job
Dynamical (NSI) vs Kinematical (sterile) mechanism
If the NSI indication persists, Hyper-Kamiokande T2HK and DUNE will definitely confirm/disconfirm it.

Back up slides

Amplitude of the new interference term

CPV and averaged oscillations

$$
A_{\alpha \beta}^{\mathrm{CP}} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)-P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

$A_{\alpha \beta}^{\mathrm{CP}}=-16 J_{\alpha \beta}^{12} \sin \Delta_{21} \sin \underbrace{\sin \Delta_{13} \sin \Delta_{32}}$
if $\begin{gathered}\Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1 \\ \text { osc. averaged out by finite } \text { Eresol. }\end{gathered} \rightarrow\left\langle\sin ^{2} \Delta\right\rangle=1 / 2$

It can be:

$$
A_{\alpha \beta}^{\mathrm{CP}} \neq 0
$$

(if $\sin \delta=\varnothing$)

The bottom line is that if one of the three v_{i} is ∞ far from the other two ones this does not erase CPV (relevant for the $4 v$ case)

Estimates of standard oscillation parameters

Estimates of standard oscillation parameters

Analytical expectations with NSI

$P_{\mu \mathrm{e}}$ involves 4 small quantities

$$
\begin{array}{llc}
\mathrm{s}_{13}=0.15 & \boldsymbol{\epsilon} & v=\frac{2 V_{\mathrm{CC}} E}{\Delta m_{31}^{2}}=0.18\left[\frac{E}{2.0 \mathrm{GeV}}\right] \\
\alpha=0.03 & \boldsymbol{\epsilon}^{2} & \left|\varepsilon_{\alpha \beta}\right| \sim 0.2
\end{array} \boldsymbol{\epsilon}
$$

$P_{\mu \mathrm{e}}$ is the sum of three terms

$$
P_{\mu e} \simeq \underbrace{P_{0}+P_{1}}_{\mathrm{SM}}+\underbrace{P_{2}}_{\mathrm{NSI}}
$$

$$
\begin{array}{ll}
\text { T2K } & v \sim 0.05 \\
\text { NOvA } & v \sim 0.18
\end{array}
$$

$P_{0} \simeq 4 s_{13}^{2} S_{23} f^{2}$
$P_{1} \simeq 8_{13} s_{12} c_{12} s_{23} c_{23} \alpha f g \cos \left(\Delta+\delta_{\mathrm{CP}}\right)$
$P_{2} \simeq 8 s_{13} s_{23} v \mid \varepsilon_{\alpha \beta}\left[\left[a f^{2} \cos \left(\delta_{\mathrm{CP}}+\phi_{\alpha \beta}\right)+b f g \cos \left(\Delta+\delta_{\mathrm{CP}}+\phi_{\alpha \beta}\right)\right] \boldsymbol{\epsilon}^{3}\right.$
P_{2} brings one additional CP-phase $\phi_{\alpha \beta}$

$$
\nu \rightarrow \bar{\nu}\left[v, \delta_{C P}, \phi_{\alpha \beta}\right] \rightarrow\left[-v,-\delta_{C P},-\phi_{\alpha \beta}\right]
$$

Parametric curve in biprobability plot:

$$
[x, y]=\left[\mathbf{P}_{\mu e}, \overline{\mathbf{P}}_{\mu \mathrm{e}}\right]
$$

- For fixed $\phi_{\alpha \beta} \rightarrow$ ellipse for varying $\delta_{C P}$
- For fixed $\delta_{C P} \rightarrow$ ellipse for varying $\phi_{\alpha \beta}$

Why to consider non-standard interactions

T2K and NOvA have different baselines and peak energies (L/E = costant)
Matter effects depend on the ratio $v=\frac{2 V_{\mathrm{CC}} E}{\Delta m_{31}^{2}}=0.18\left[\frac{E}{2.0 \mathrm{GeV}}\right] \begin{gathered}\text { T2K } \quad v \sim 0.05 \\ \text { NOvA } \quad v \sim 0.17\end{gathered}$
New matter effects encoded by NSI are also proportional to v

Basic Idea: suppose NSI exist, then:

T2K is a "quasivacuum" experiment. Its estimate of δ_{CP} is independent of NSI.

NOvA is a "matter dominated" experiment. The extracted value of δ_{CP} is affected by NSI. If NSI are taken into account, the estimate of δ_{CP} should return in agreement with that of T2K.

Summary of the results of the fit ($\mathrm{NO} v \mathrm{~A}+\mathrm{T} 2 \mathrm{~K}$)

NMO	NSI	$\left\|\varepsilon_{\alpha \beta}\right\|$	$\phi_{\alpha \beta} / \pi$	$\delta_{\mathrm{CP}} / \pi$	$\Delta \chi^{2}$
	$\varepsilon_{e \mu}$	0.15	1.38	1.48	4.50
	$\varepsilon_{e \tau}$	0.27	1.62	1.46	3.75
IO	$\varepsilon_{e \mu}$	0.02	0.96	1.50	0.07
	$\varepsilon_{e \tau}$	0.15	1.58	1.52	1.01

$$
\Delta \chi^{2}=\chi_{S M}^{2}-\chi_{S M+N S I}^{2}
$$

NO $\left\{\begin{array}{l}\Delta \chi^{2} \sim 4 \text { signals a satisfactory resolution of the discrepancy } \\ \text { Best fits of both CP phases } \delta_{\mathrm{CP}} \text { and } \phi_{\alpha \beta} \text { are close to } 3 \pi / 2 \\ \text { The coupling } \varepsilon_{e \mu} \text { is slightly favored over } \varepsilon_{e \tau}\end{array}\right.$
IO \quad No significant preference for non-zero NSI
Similar results found by Denton, Gehrlein \& Pestes, PRL 126051801 (2021)

Can the tension be resolved assuming IO？

T2K Run1－10 Preliminary

For IO the best fit of $\delta_{\text {CP }}$ is the same in T2K and NOvA（left panel）．
However，IO gains only $\chi^{2}{ }_{\mathrm{IO}}-\chi^{2} \mathrm{No} \sim-2$ in T2K＋NOvA combination（middle panel）．
The reason is that T2K disfavors IO（dotted ellipses）（right panel）．
T2K and NOvA disappearance channel＋Reactors prefer NO（ $\chi^{2}{ }_{10}-\chi^{2}$ No ~ 4 ）．
SK atmospheric data（v 2020）prefer NO（ $\chi^{2} \mathrm{⿺} ⿻ 上 丨-\chi^{2}$ No ~ 3 ）．

Therefore，IO seems not to be the favored solution

NSI restore the preference for NO

Better agreement with all the other data

What theory says about NSI?

T2K and NOvA point to effective couplings of about 0.2. These can be obtained with fundamental couplings on electrons, u and d quarks of a few \%. This is still a large number from a theoretical perspective.

Neutrinos are components of an SU(2) L doublet. Gauge invariance at high energies implies that NSI operators come together with operators involving charged leptons, on which there are strong constraints from CLFV.

So, it is very difficult to build models with large NSI [Gavela et al. 0809.3451]

Some possibilities:

Heavy mediators $\left\{\begin{array}{l}\text { Tree-level see-saw [Forero \& Huang 1608.04719] } \\ \text { Radiative see-saw [Babu et al. 1907.09498] }\end{array}\right.$
Light mediators are an appealing alternative
Farzan, Heeck 1607.07616 Farzan 1912.09408
Note that forward scattering probes $\mathrm{q}^{2}=0$ and a light mediator is felt as an heavy one. Hence, also in this case it is legitimate to describe NSI by an effective dim-6 operator.

Biprobability plots in the presence of NSI

Indication of non-zero $\varepsilon_{\text {e }}$ from T2K + NOvA

~2 sigma preference for NSI

Confronting $\varepsilon_{\mathrm{e} \mu}$ with $\varepsilon_{\mathrm{e} \tau}$

NOvA allowed region is different because $P_{\mu \mathrm{e}}$ has different analytical form in the two cases (the relative sign of the coefficients a and b is opposite)

Confronting sterile vs with NSIs in T2K and NOvA

Author Antonio Palazzo ${ }^{1,2, *}$
Co-author Sabya Sachi Chatterjee ${ }^{3}$
${ }^{1}$ Dipartimento Interateneo di Fisica "Michelangelo Merlin," Via Amendola 173, 70126 Bari, Italy
${ }^{2}$ Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy
${ }^{3}$ Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France

* Speaker

Acknowledgements

A. P. acknowledges partial support by the research Grant No. 2022E2J4RK "PANTHEON: Perspectives in Astroparticle and Neutrino THEory with Old and New messengers" under the program PRIN 2022 funded by the Italian Ministero dell'Università e della Ricerca (MUR) and by the research project TAsP funded by the Instituto Nazionale di Fisica Nucleare (INFN).

