

Università degli Studi di Padova

Investigating Neutrino Oscillations with Reactor Antineutrinos in JUNO

XX International Workshop on Neutrino Telescopes

Andrea Serafini on behalf of the JUNO collaboration

andrea.serafini@pd.infn.it

The Jiangmen Underground Neutrino Observatory

[Prog. Part. Nucl. Phys. 2021.103927]

The JUNO detector

Main requirements:

- high statistics
 - \rightarrow 20 kton of liquid scintillator acrylic sphere
- <3% energy resolution @ 1 MeV
 → photocoverage ~78%
- energy-scale systematics below 1%
 → 17612 20" Large-PMT
 → 25600 3" Small-PMT

	Target mass [kton]	Energy resolution	Light yield [PE/MeV]
Daya Bay	0.02	8%/√E	160
Borexino	0.3	5%/√E	500
KamLAND	1	6%/√E	250
JUNO	20	3%/√E	~1600

The JUNO detection process

JUNO will measure the **antineutrinos** ($\bar{\nu}_{e}$) generated in the fissions occurring in 8 nuclear cores at 52.5 km

The **detection** is based on a charged current interaction named Inverse Beta Decay (IBD) on protons (p)

 \rightarrow sensitive only to electron $\overline{\nu}_{e}$

Detection relies on a **double coincidence**:

- **prompt** signal: positron (e⁺) annihilation
- **delayed** signal: neutron (n) capture

 \rightarrow strong handle against most backgrounds

JUNO can detect neutrinos and antineutrinos coming from several sources:

Neutrinos as a probe

JUNO can detect neutrinos and antineutrinos coming from several sources:

Neutrino oscillation properties

JUNO can detect neutrinos and antineutrinos coming from several sources:

Covered in this talk

Neutrino oscillation properties

Oscillation parameters

Let's write the $\bar{\nu}_e$ survival probability:

 $P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$ $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$

 \rightarrow probability does not depend on δ_{CP} and θ_{23}

Oscillation parameters

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

Let's write the $\bar{\nu}_e$ survival probability:

$$P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

$$P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$$

$$P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$$

 \rightarrow probability does not depend on δ_{CP} and θ_{23}

Oscillation parameters

SI

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

Let's write the $\bar{\nu}_e$ survival probability:

$$P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

$$P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$$

$$P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$$

→ probability does not depend on δ_{CP} and θ_{23} → JUNO is sensitive to Δm_{21}^2 , θ_{12} , Δm_{31}^2 and θ_{13}

Oscillation parameters

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

Let's write the $\bar{\nu}_e$ survival probability:

 $P_{ee} = \mathbf{1} - P_{21} - P_{31} - P_{32}$ $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$ $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$

→ probability does not depend on δ_{CP} and θ_{23} → JUNO is sensitive to Δm_{21}^2 , θ_{12} , Δm_{31}^2 and θ_{13}

Neutrino Mass Ordering (NMO)
NMO sensitivity manifests as an energy dependent phase
→ JUNO sits at the baseline maximizing NMO sensitivity

Antineutrino oscillations in JUNO

JUNO rich spectrum contains a lot of information:

- simultaneously observe fast and slow oscillations
- independently observe Δm^2_{21} , θ_{12} , Δm^2_{31} and θ_{13}
- sensitive to neutrino mass ordering (NMO)

JUNO aims in 6 years at:

- \rightarrow determining NMO @ >3 σ
- → place <1% precision on Δm^2_{21} , θ_{12} , Δm^2_{31}

Main systematics:

- Detector response
- Backgrounds
- Reference spectrum

Detector response: what JUNO actually sees

JUNO detector response: state of the art

Realistic MC simulation

Measured data

IBD backgrounds in JUNO

JUNO employs various selection cuts to retain high efficiency and assure high purity in the IBD signal:

- Cosmogenic backgrounds → muon veto
- Accidental coincidences → fiducial volume + IBD cuts
- Irreducible backgrounds → negligible (~1/20 of signal)

IBD selection cuts	Efficiency [%]	IBD rate [day⁻1]
All IBDs	100.0	57.4
Fiducial volume	91.5	52.5
IBD selection	98.1	51.1
Energy range	99.8	-
Time correlation (ΔT_{p-d})	99.0	-
Spatial correlation (ΔR_{p-d})	99.2	-
Muon veto (Time+spatial)	91.6	47.1
Combined selection	82.2	47.1

Residual backgrounds	Rate [day⁻¹]	Rate unc. [%]	Shape unc. [%]
Geoneutrinos	1.2	30	5
World reactors	1.0	2	5
Accidentals	0.8	1	negligible
⁹ Li/ ⁸ He	0.8	20	10
Atmospheric neutrinos	0.16	50	50
Fast neutrons	0.1	100	20
¹³ C(α,n) ¹⁶ O	0.05	50	50
Total background	4.11	-	-

TAO: a reference spectrum for JUNO

Accurate and precise reference spectrum → boost JUNO precision in parameters and NMO

- Conversion and ab-initio reactor spectrum models affected by large uncertainties
- Models and data (e.g. Daya Bay) inconsistent, current data has low energy resolution
- → Taishan Antineutrino Observatory (TAO)

TAO main features:

- **2.8 ton** of LS with Gd
- ~10 m²(94%) of SiPM
- working at -50° C
- <**2%** / √*E* [*MeV*]
- ~4000 IBD/day

_ower uncertainty

Subpercent precision on oscillation parameters

- In <2 years θ_{12} , Δm_{21}^2 , Δm_{31}^2 precision \rightarrow unprecedented <1% level
- In 6 years θ_{12} , Δm_{21}^2 , Δm_{31}^2 precision \rightarrow 0.5%, 0.3% and 0.2%

	PDG 2020	Nufit 5.2	JUNO 6 years
$\sin^2 heta_{13}$	3.2%	2.6%	12%
$\sin^2 \theta_{12}$	4.2%	4.0%	0.5%
Δm^2_{21}	2.4%	2.8%	0.3%
Δm^2_{31}	1.4%	1.1%	0.2%

Determination of Neutrino Mass Ordering (NMO)

JUNO NMO sensitivity: 3σ (reactors only) in 6.7 y (with 26.6 GW_{th})

- Combination reactor + atmospheric neutrino analysis ongoing → further improve NMO sensitivity
- Combination with external Δm_{31}^2 long baseline experiments constraint \rightarrow enhanced NMO sensitivity 19

Final remarks

JUNO will inaugurate a **high precision** era in the neutrino oscillation field. In ~6 years:

- \rightarrow <1% precision on θ_{12} , Δm^2_{21} and Δm^2_{31}
- → neutrino mass ordering at 3σ with reactor neutrinos only (completely independent from δ_{CP} and θ_{23})

Back up

Detection channels in JUNO

NC recoil threshold: 200 keV

Changes respect to JPG 43, 030401 (2016)

Changes	Design	Now	
Thermal power [GW _{th}]	35.8	26.6	↓
Signal rate [day ⁻¹]	60	47.1	↓
Overburden [m]	~700	~650	↓
Muon flux in LS [Hz]	3 Hz	4 Hz	↓
Muon veto efficiency	83%	91.6%	↑
Background rate [day-1]	3.75	4.11	↓
Energy resolution @ 1 MeV	3%	2.95%	↑
Shape uncertainty	1%	JUNO+TAO	1
3σ NMO exposure	< 6 yrs	~6 yrs	

Detector response: what JUNO actually sees

A recap of neutrino oscillations

For neutrinos, mass (v_i) and flavor (v_{α}) eigenstates do not correspond.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix can be parametrized by:

- 3 mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$
- 1 CP-violating phase (δ_{CP})

The non-correspondence between mass and flavor eigenstates causes the flavor to **"oscillate"** during propagation.

The **phase** of this oscillation **depends on** the **splitting** between the mass states:

- Δm_{21}^2
- $\Delta m_{31}^{\bar{2}}$

With Δm_{21}^2 >0 and Δm_{31}^2 and Δm_{32}^2 possibly positive (normal ordering) or negative (inverted).

Neutrino source	Expected signal	Energy Region
Reactor	45 evts / day	
Supernova burst	10 ⁴ evts at 10 kpc	
Diffuse supernova background	2-4 evts/ year	
Sun ⁸ B (⁷ Be)	16 (490) / day	
Cosmic rays	100+ / year	
Earth crust & mantle	400 / year	

0.1 1 10 10² 10³ 10⁴ MeV

Top tracker and The JUNO detector calibration house 43.5 m 4 Water pool Main requirements: Earth magnetic field 35.4 m • <3% energy resolution @ 1 MeV</p> compensation coils • energy-scale systematics below 1% Veto Large-PMTs • high statistics PMTs: Target 1761220" Large-PMT Energy Light yield mass 256003" Small-PMT resolution [PE/MeV] [kton] photocoverage > 75% 8%/√E 0.02 160 Daya Bay 5%/√E 0.3 500 Borexino Acrylic sphere with 20 kton of liquid scintillator 6%/√E 250 KamLAND 1 (linear alkylbenzene) **3%/**√E JUNO 20 >1300

Photomultiplier Tubes

See Yury Malyshkin's talk

5000 x 20" Hamamatsu R12860

High QE: Fine TTS: 28.5% 1.3 ns

15012 x 20" NNVT MCP-PMTs

lighest QE:	30.1%
Good TTS:	7.0 ns

25600 x 3" HZC XP72B22

- Calibration of 20" PMTs' non-linearities
- Extension of dynamic range

The JUNO detector

See Yury Malyshkin's talk

Regular insertion of the calibration sources into the detector:

- Understanding of the detector response
- Testing of the reconstruction algorithms
- Calibration of the energy scale non-linearities

< 1% energy scale uncertainty

[JHEP 2021, 4 (2021)]

More details in <u>talk by Jiaqi Hui</u> on Thursday

Contributions to NMO sensitivity

Synergy with long baseline experiments

Combined analysis expected to yield significance > 4σ