XX International Workshop on Neutrino Telescopes

Monday, 23 October 2023 - Friday, 27 October 2023 Istituto Veneto di Scienze, Lettere ed Arti, Venice

Neutrinos in XENONnT dark matter experiment

Emanuele Angelino

on behalf of the XENON collaboration

The XENON project

Direct search for dark matter with **liquid xenon (LXe)** deep underground at the INFN **Laboratori Nazionali del Gran Sasso** (LNGS) in Italy

VENICE LNGS 1.4 km rock/3600 m.w.e. 10⁶ µ reduction factor XENON

01

Emanuele Angelino

mminn

The XENON project

Direct search for dark matter with **liquid xenon (LXe)** deep underground at the INFN **Laboratori Nazionali del Gran Sasso** (LNGS) in Italy

The XENON project

Direct search for dark matter with **liquid xenon (LXe)** deep underground at the INFN **Laboratori Nazionali del Gran Sasso** (LNGS) in Italy

Dark matter searches require **extremely low background**

Many other physics channels can be investigated! LNGS 1.4 km rock/3600 m.w.e. 10⁶ µ reduction factor

01

VENICE

WATER TANK SERVICE BUILDING

Dual-phase Xe TPC

Drift length	1.5 m
Total mass	8.5 t
Active mass	5.9 t
Photosensors	494 PMTs

WATER TANK SERVICE BUILDING

02

Dual-phase Xe TPC

Drift length	1.5 m
Total mass	8.5 t
Active mass	5.9 t
Photosensors	494 PMTs

Neutron veto

Water **Cherenkov** detector (33 m³) **Neutron tagging** efficiency: **53% Soon** with **Gd-doped water** (expected **87%** efficiency) Photosensors **120 PMTs**

WATER TANK

SERVICE BUILDING

Emanuele Angelino

02

Dual-phase Xe TPC

Drift length	1.5 m
Total mass	8.5 t
Active mass	5.9 t
Photosensors	494 PMTs

Neutron veto

Water **Cherenkov** detector (33 m³) **Neutron tagging** efficiency: **53% Soon** with **Gd-doped water** (expected **87%** efficiency) Photosensors **120 PMTs**

Muon veto

700 t ultra-pure water
Water Cherenkov detector
Muon tagging efficiency:
99.5%
Photosensors 84 PMTs

WATER TANK

SERVICE BUILDING

Dual-phase Xe TPC

Drift length	1.5 m
Total mass	8.5 t
Active mass	5.9 t
Photosensors	494 PMTs

Neutron veto

Water **Cherenkov** detector (33 m³) **Neutron tagging** efficiency: **53% Soon** with **Gd-doped water** (expected **87%** efficiency) Photosensors **120 PMTs**

Muon veto

700 t ultra-pure water
Water Cherenkov detector
Muon tagging efficiency:
99.5%
Photosensors 84 PMTs

WATER TANK

SERVICE BUILDING

Cryogenics

GXe Purification Calibration System

Electronics

Data Acquisition Slow Control

Recovery & Purification

Kr Distillation Column **Rn Distillation Column** LXe Storage **LXe Purification**

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

ent mine

XX International Workshop on Neutrino Telescope | 24th October 2023 |

Dual-phase Time Projection Chamber

In **dual-phase** Time Projection Chamber (**TPC**) **scintillation** and **ionization** signals:

- Prompt scintillation light → S1
- Secondary scintillation proportional to drifted electrons → S2

minin

Dual-phase Time Projection Chamber

03

ENERGY RECONSTRUCTION

from combining S1 and S2 signals

3D POSITION RECONSTRUCTION

x-y from PMTs light pattern, z from drift time

RECOIL TYPE IDENTIFICATION

mminn

S2/S1 different for **Electronic Recoils** (**ER**) and **Nuclear Recoils** (**NR**), resulting in two bands

In **dual-phase** Time Projection Chamber (**TPC**) **scintillation** and **ionization** signals:

- Prompt scintillation light → S1
- Secondary scintillation proportional to drifted electrons → S2

Dual-phase Time Projection Chamber

→ S1

ENERGY RECONSTRUCTION

from combining S1 and S2 signals

3D POSITION RECONSTRUCTION

x-y from PMTs light pattern, z from drift time

RECOIL TYPE IDENTIFICATION

S2/S1 different for **Electronic Recoils** (**ER**) and **Nuclear Recoils** (**NR**), resulting in two bands

Electronic Recoils

Electrons, photons, neutrinos, (axions ...)

Nuclear Recoils

mminun

Neutrons, neutrinos via coherent scattering, (WIMPs ...)

In **dual-phase** Time Projection Chamber (**TPC**) **scintillation** and **ionization** signals:

- **Prompt scintillation** light
- Secondary scintillation proportional to drifted electrons → S2

Emanuele Angelino

XX International Workshop on Neutrino Telescope | 24th October 2023 |

WIMP dark matter is expected to induce O(1)-O(10) keV NR scattering off xenon atoms, as well as neutrons

WIMP dark matter is expected to induce O(1)-O(10) keV NR scattering off xenon atoms, as well as neutrons

Coherent elastic neutrino nucleus scattering (CEvNS) has the same signature of low mass spin-independent WIMP interaction, producing low-energy NRs (via Z-exchange, \propto (A-Z)²)

Nuclear Recoil

WIMP dark matter is expected to induce O(1)-O(10) keV NR scattering off xenon atoms, as well as neutrons

Coherent elastic neutrino nucleus scattering (CEvNS) has the same signature of low mass spin-independent WIMP interaction, producing low-energy NRs (via Z-exchange, \propto (A-Z)²)

1000 Trent

Nuclear Recoil

Current detectors are approaching the **neutrino "fog**", where **distinction** between WIMPs and neutrinos is **challenging**

Neutrino "**floor**", indicated where DM experiment are inevitably limited by **irreducible background** from neutrinos

WIMP dark matter is expected to induce O(1)-O(10) keV NR scattering off xenon atoms, as well as neutrons

Coherent elastic neutrino nucleus scattering (CEvNS) has the same signature of low mass spin-independent WIMP interaction, producing low-energy NRs (via Z-exchange, \propto (A-Z)²)

Nuclear Recoil

CEvNS process, first measured in 2017 by COHERENT, has never been observed for solar neutrinos

Solar ⁸B, which is the main contributor, can be treated as a signal and detected in LXe DM experiment! **Current** detectors are approaching the **neutrino "fog**", where **distinction** between WIMPs and neutrinos is **challenging**

Neutrino "**floor**", indicated where DM experiment are inevitably limited by **irreducible background** from neutrinos

04

ent 🗾

Nuclear Recoils in XENONnT SR0

	I.		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}$	1.1 ± 0.4	0.42 ± 0.16
CE <i>v</i> NS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03^{+0.17}_{-0.15}$
WIMP		2.6	1.3
Observed		152	3

Nuclear Recoils in XENONnT SR0

Nominal Best fit ROI Signal-like ER 134 135^{+12}_{-11} 0.92 ± 0.08 $1.1^{+0.6}$ Neutrons 1.1 ± 0.4 0.42 ± 0.16 **CE***v***NS** 0.23 ± 0.06 0.23 ± 0.06 0.022 ± 0.006 AC $4.4^{+0.9}_{-0.8}$ 0.32 ± 0.06 4.3 ± 0.9 Surface 0.35 ± 0.07 14 ± 3 12 ± 2 Total background 154 152 ± 12 $2.03^{+0.17}_{-0.15}$ WIMP 2.6 1.3 ... Observed 152 3

Expected **hundreds** of events from **CEvNS** in detector:

 $R=\phi(
u) imes \sigma_{
u} imes ext{exposure} \ \simeq 600 ext{ events}/(ext{tonne} imes ext{year})$

but at extremely low energies. Detection **efficiency** for **v** in **NR** search is around 0.04%, too **low** for **detection**

mminn

Nuclear Recoils in XENONnT SR0

Nominal Best fit ROI Signal-like ER 134 135^{+12}_{-11} 0.92 ± 0.08 $1.1^{+0.6}$ Neutrons 1.1 ± 0.4 0.42 ± 0.16 **CE***v***NS** 0.23 ± 0.06 0.23 ± 0.06 0.022 ± 0.006 AC $4.4^{+0.9}_{-0.8}$ 4.3 ± 0.9 0.32 ± 0.06 Surface 0.35 ± 0.07 14 ± 3 12 ± 2 Total background 154 152 ± 12 $2.03^{+0.17}_{-0.15}$ WIMP 2.6 1.3 ... Observed 152 3 ...

Expected **hundreds** of events from **CEvNS** in detector:

 $R=\phi(
u) imes \sigma_
u imes ext{exposure} \ \simeq 600 ext{ events}/(ext{tonne} imes ext{year})$

but at extremely low energies. Detection **efficiency** for **v** in **NR** search is around 0.04%, too **low** for **detection**

mminun

Blinded NR analysis with 4.2 t fiducial mass and total exposure of 1.1 t × y in Science Run 0 (SR0)

No significant excess

Upper limit for **WIMP** interactions σ , minimum at **2.6 × 10⁻⁴⁷ cm²** at **28 GeV/c²** (spin-independent)

Electronic Recoils in XENONnT SRO

Component	Constraint	Fit
²¹⁴ Pb	(570, 1200)	960 ± 120
⁸⁵ Kr	90 ± 60	90 ± 60
Materials	270 ± 50	270 ± 50
¹³⁶ Xe	1560 ± 60	1550 ± 50
Solar neutrino	300 ± 30	300 ± 30
¹²⁴ Xe		250 ± 30
AC	0.70 ± 0.04	0.71 ± 0.03
¹³³ Xe		150 ± 60
^{83m} Kr		80 ± 16

Electronic Recoils in XENONnT SR0

	and an	
Component	Constraint	Fit
²¹⁴ Pb	(570, 1200)	960 ± 120
⁸⁵ Kr	90 ± 60	90 ± 60
Materials	270 ± 50	270 ± 50
¹³⁶ Xe	1560 ± 60	1550 ± 50
Solar neutrino	300 ± 30	300 ± 30
¹²⁴ Xe	•••	250 ± 30
AC	0.70 ± 0.04	0.71 ± 0.03
¹³³ Xe		150 ± 60
^{83m} Kr		80 ± 16

Lowest background rate ever achieved in this energy range thanks to radio-purity screening and online cryogenic radon distillation (16.1 ± 1.3 events / t × y × keV) in [1,30] keV

Solar neutrinos (pp reaction) elastic scattering off **e**⁻ of LXe

Magnetic moment of neutrino would cause enhanced interaction with e

Electronic Recoils in XENONnT SR0

Component	Constraint	Fit
²¹⁴ Pb	(570, 1200)	960 ± 120
⁸⁵ Kr	90 ± 60	90 ± 60
Materials	270 ± 50	270 ± 50
¹³⁶ Xe	1560 ± 60	1550 ± 50
Solar neutrino	300 ± 30	300 ± 30
¹²⁴ Xe		250 ± 30
AC	0.70 ± 0.04	0.71 ± 0.03
¹³³ Xe		150 ± 60
^{83m} Kr		80 ± 16

Lowest background rate ever achieved in this energy range thanks to radio-purity screening and online cryogenic radon distillation (16.1 ± 1.3 events / t × y × keV) in [1,30] keV

Solar neutrinos (pp reaction) elastic scattering off **e**⁻ of LXe

Magnetic moment of neutrino would cause enhanced interaction with e

Blinded ER analysis with 1.16 t × y exposure (SRO)

Strongest experimental limit to date, **competitive** to **indirect** searches, for magnetic moment

$$\mu_
u < 6.3 imes 10^{-12} \mu_{
m B}$$

With **lower background, solar pp** neutrino interaction rate could be directly **measured**

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023 |

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Neutrinos in XENONnT dark matter experiment

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023 |

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023 |

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Solar ⁸B Neutrinos CEvNS search

INCREASED DETECTION EFFICIENCY

S1 threshold: 3 > 2 PMTs coincidence

S2 threshold: 200 → 120 PE

Expected total efficiency for CEvNS around 1%

Lower energy threshold → Background rate increased by two orders of magnitude

Solar ⁸B Neutrinos CEvNS search

08

INCREASED DETECTION EFFICIENCY

S1 threshold: 3 → 2 PMTs coincidence

S2 threshold: 200 → 120 PE

Expected **total efficiency** for CEvNS around **1%**

Lower energy threshold → Background rate increased by two orders of magnitude

LOW-ENERGY BACKGROUND REDUCTION

Main background for CEvNS given by Accidental Coincidences (AC), resulting from random pairing of isolated SIs and S2s.

Various **mitigation** strategies: excluded events in **proximity** of **large peaks**, dedicated **selection** in **specific observables**, **machine learning** techniques and AC background modeling

- → PMT dark counts
- → Misidentified single electron
- → Below-cathode and surface events

Isolated S2s

 → Single electrons from delayed extraction or photo-ionization
 → Misidentified PMT afterpulses

⁸B neutrino discovery potential

09

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

⁸B neutrino discovery potential

09

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	11	> 0.6 t × y

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

⁸B neutrino discovery potential

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	n	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- longer drift time
- worst NR-ER discrimination. but negligible for CEvNS

Accidental coincidence background reduced and modelling validated in the XENONnT **WIMP** analysis (Science Run 0)

Now need to perform a dedicated low-threshold 2-fold coincidence analysis!

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope 24th October 2023 mminun

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	11	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- **longer drift** time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Larger AC rate but improved **AC suppression** with new :echniques

Discovery potential in XENONnT should be increased

Neutrinos in XENONnT dark matter experiment

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	n	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- **longer drift** time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Larger AC rate but improved **AC suppression** with new techniques

Discovery potential in XENONnT should be increased

mminun

XX International Workshop on Neutrino Telescope | 24th October 2023

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	n	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- **longer drift** time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Larger AC rate but improved **AC suppression** with new techniques

Discovery potential in XENONnT should be increased

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023

	Isolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	11	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- **longer drift** time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Larger AC rate but improved **AC suppression** with new techniques

Discovery potential in XENONnT should be increased

mminun

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023

	lsolated S1	Isolated S2	Drift field	Max drift	Relative AC rate	Exposure
XENONIT	11.2 Hz	1.1 mHz	82 V/cm	730 us		0.6 t × y
XENONnT	2.5 Hz	18.5 mHz	23 V/cm	2200 us	11	> 0.6 t × y

Lower drift field results in:

- larger isolated S2 rate
- longer drift time
- worst NR-ER discrimination, but negligible for CEvNS

Higher exposure in XENONnT

Larger AC rate but improved **AC suppression** with new techniques

Discovery potential in XENONnT should be increased

XENONNT will be more sensitive to solar ⁸B neutrino and a first observation could be within reach

Accidental coincidence background reduced and modelling validated in the XENONNT WIMP analysis (Science Run 0)

Now need to perform a dedicated **low-threshold 2-fold** coincidence analysis!

Neutrinos in XENONnT dark matter experiment

XX International Workshop on Neutrino Telescope | 24th October 2023

Solar pp neutrino elastic scattering

ELECTRONIC RECOILS SEARCH

Solar neutrinos **below 100 keV** (**pp** process) can be detected due to **elastic scattering** off **e**⁻ in LXe (charged and neutral current)

²¹⁴Pb (from ²²²Rn) is one major background in this region but improvements to Radon
 Removal System reduced it below 1 uBq/kg for the next science runs

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Solar pp neutrino elastic scattering

10

ELECTRONIC RECOILS SEARCH

Solar neutrinos **below 100 keV** (**pp** process) can be detected due to **elastic scattering** off **e**⁻ in LXe (charged and neutral current)

²¹⁴Pb (from ²²²Rn) is one major background in this region but improvements to Radon
 Removal System reduced it below 1 uBq/kg for the next science runs

SOLAR NEUTRINO FLUX

Not directly **measured yet** in SR0 but **constrained** component in the fit

First measurement in [1, 200] keV possible if even lower background is reached

Solar pp neutrino elastic scattering

ELECTRONIC RECOILS SEARCH

Solar neutrinos **below 100 keV** (**pp** process) can be detected due to **elastic scattering** off **e**⁻ in LXe (charged and neutral current)

²¹⁴Pb (from ²²²Rn) is one major background in this region but improvements to Radon
Removal System reduced it below 1 uBq/kg for the next science runs

SOLAR NEUTRINO FLUX

Not directly **measured yet** in SR0 but **constrained** component in the fit

First measurement in [1, 200] keV possible if even lower background is reached

ENHANCED NEUTRINO MAGNETIC MOMENT

Non-standard magnetic moment would increase cross-section with electrons

Not observing an excess results in upper limits on magnetic moment

TITLE TOTAL

XX International Workshop on Neutrino Telescope | 24th October 2023

Supernova neutrino

SUPERNOVA NEUTRINO CHANNELS IN XENONnT

→ TPC, 6 t of LXe

 $u_{e,\,\mu,\,\tau}\,, \bar{\nu}_{e,\,\mu,\,\tau}\,$ via **CEvNS** (charged and other neutral current are subdominant)

~ 100 expected events from supernova at 10 kpc

→ MUON & NEUTRON VETO, 700 t ultra-pure water

 $\overline{
u}_e$ via **inverse beta** decay with H

~70 - 200 expected events from supernova at 10 kpc

Supernova neutrino

77

SUPERNOVA NEUTRINO CHANNELS IN XENONnT

→ TPC, 6 t of LXe

 $u_{e,\,\mu,\,\tau}\,, \bar{\nu}_{e,\,\mu,\,\tau}\,$ via **CEvNS** (charged and other neutral current are subdominant)

~ 100 expected events from supernova at 10 kpc

→ MUON & NEUTRON VETO, 700 t ultra-pure water

 $\overline{
u}_e$ via **inverse beta** decay with H

~ 70 - 200 expected events from supernova at 10 kpc

PREDICTIONS

Neutrinos deposit around O(1) keV in LXe

Background stable in time, can be reduced with **specific selection** (similar to ⁸B search)

Possible improvements using **coincident** signals from **vetoes**

•

SENSITIVITY PROJECTIONS

Cuts can reduce background down to ~3 Hz, while average signal (SN at 10 kpc) will results in ~45 events in ~ 6 s (~ 18 background events)

Triggerless DAQ allows continuous data taking and increases in rate with respect to a dynamic threshold can be monitored online

Considering signal evolution, time **window** can be **optimized**, resulting in ~80 significance (10 kpc)

12

Supernova neutrino

SENSITIVITY PROJECTIONS

Cuts can reduce background down to ~3 Hz, while average signal (SN at 10 kpc) will results in ~45 events in ~ 6 s (~ 18 background events)

Triggerless DAQ allows continuous data taking and increases in rate with respect to a dynamic threshold can be monitored online

Considering signal evolution, time **window** can be **optimized**, resulting in ~8\sigma significance (10 kpc)

12

Supernova neutrino

SENSITIVITY PROJECTIONS

Cuts can reduce background down to ~3 Hz, while average signal (SN at 10 kpc) will results in ~45 events in ~ 6 s (~ 18 background events)

Triggerless DAQ allows continuous data taking and increases in rate with respect to a dynamic threshold can be monitored online

Considering signal evolution, time **window** can be **optimized**, resulting in ~8\sigma significance (10 kpc)

SNEWS INTEGRATION

XENONnT is **ready** to join the **Supernova Early Warning System** (**SNEWS**)

It will **receive** incoming **alerts** to check data and **send** possible **supernova observations**

In XENONnT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

mminn

In XENONNT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

2vββ-decaying ¹³⁶Xe isotope with $Q_{\beta\beta} = (2457.83 \pm 0.37)$ keV is a good candidate for **0vββ**

 $0\nu\beta\beta$ would demonstrate the violation of total lepton number and a nonzero Majorana component of neutrino mass

mminn

In XENONNT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

2vββ-decaying ¹³⁶Xe isotope with $Q_{\beta\beta}$ = (2457.83 ± 0.37) keV is a good candidate for 0vββ

 $0\nu\beta\beta$ would demonstrate the violation of total lepton number and a nonzero Majorana component of neutrino mass ¹²⁴Xe & ¹³⁶Xe produce single site ER events due to LXe high stopping power

They became a major **background** for **electronic recoil** searches

mminun

In XENONNT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

2vββ-decaying ¹³⁶Xe isotope with $Q_{\beta\beta}$ = (2457.83 ± 0.37) keV is a good candidate for 0vββ

 $0\nu\beta\beta$ would demonstrate the violation of total lepton number and a nonzero Majorana component of neutrino mass

¹²⁴Xe & ¹³⁶Xe produce single site ER events due to LXe high stopping power

They became a major **background** for **electronic recoil** searches

Neutrinos in XENONnT dark matter experiment

mminun

In XENONNT ¹²⁴Xe & ¹³⁶Xe (0.1% and 8.9% abundancy) are long-lived isotope which produce detectable ER signals

First observation of ¹²⁴Xe 2vDEC in XENONIT demonstrated sensitivity to extremely rare events and can be used to constrain Nuclear Matrix Element (NME) calculations

2vββ-decaying ¹³⁶Xe isotope with $Q_{\beta\beta}$ = (2457.83 ± 0.37) keV is a good candidate for 0vββ

 $0\nu\beta\beta$ would demonstrate the violation of total lepton number and a nonzero Majorana component of neutrino mass ¹²⁴Xe & ¹³⁶Xe produce single site ER events due to LXe high stopping power

They became a major **background** for **electronic recoil** searches

Expected **peak** at **2457.83** keV from $0\nu\beta\beta$ on top of **materials** background

Dedicated treatment of signals for saturation effects in digitizers and PMTs at MeV energies

Phys. Rev. C 106, 024328, 2022

Expected **peak** at **2457.83** keV from $0\nu\beta\beta$ on top of **materials** background

Dedicated treatment of signals for saturation effects in digitizers and PMTs at MeV energies

Phys. Rev. C 106, 024328, 2022

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

XENONIT RESULTS

 $T^{0\nu\beta\beta}_{1/2}$ > 1.2 × 10²⁴ yr with tonne-scale fiducial mass, resulting in isotope exposure of 36.16 kg × yr

Best results for a non enriched target detector

mminn

Expected **peak** at **2457.83** keV from $0\nu\beta\beta$ on top of **materials** background

Dedicated treatment of signals for saturation effects in digitizers and PMTs at MeV energies

XENONIT RESULTS

 $T^{0\nu\beta\beta}_{1/2}$ > 1.2 × 10²⁴ yr with tonne-scale fiducial mass, resulting in isotope exposure of 36.16 kg × yr

Best results for a non enriched target detector

NOT COMPETITIVE YET WITH $0\nu\beta\beta$ EXPERIMENTS

Non-enriched target

(dedicated experiments with 90% isotopic abundance)

Materials optimized for DM search (stainless steel cryostat)

Expected **peak** at **2457.83** keV from $0\nu\beta\beta$ on top of **materials** background

Dedicated treatment of signals for saturation effects in digitizers and PMTs at MeV energies

XENONIT RESULTS

 $T^{0\nu\beta\beta}_{1/2}$ > 1.2 × 10²⁴ yr with tonne-scale fiducial mass, resulting in isotope exposure of 36.16 kg × yr

Best results for a non enriched target detector

XENONnT SENSITIVITY PROJECTION

With **275** kg × yr exposure, expected upper limit of $T^{0\nu\beta\beta}_{1/2}$ > **2.1 × 10²⁵ yr**

Future xenon DM detector with **optimized** high-energy **backgrounds** and **larger exposure** can perform also Ονββ searches

ΝΟΤ COMPETITIVE YET WITH 0νββ EXPERIMENTS

Non-enriched target

(dedicated experiments with 90% isotopic abundance)

Materials optimized for DM search (stainless steel cryostat)

mminn

Conclusions and future perspective

IN A NUTSHELL

XENONnT performed blinded searches of electronic and nuclear recoils, finding no significant excess in SR0

It achieved the lowest ER background in the field

Potential to search for different rare processes regarding neutrino, such as SN neutrino or $0\nu\beta\beta$

In particular, XENONnT is **currently sensitive** to ⁸B solar **neutrino**, which can be **detected** via **CEvNS**

XENONnT has already started **acquiring** new **data** (SRI)

Conclusions and future perspective

IN A NUTSHELL

XENONnT performed blinded searches of electronic and nuclear recoils, finding no significant excess in SR0

It achieved the lowest ER background in the field

Potential to search for different rare processes regarding neutrino, such as SN neutrino or $0\nu\beta\beta$

In particular, XENONnT is **currently sensitive** to ⁸B solar **neutrino**, which can be **detected** via **CEvNS**

XENONnT has already started **acquiring** new **data** (SRI)

WHAT'S NEXT

minin

New science runs with 50% lower ²²²Rn (ER background)

Planned neutron veto with Gd-loaded water to reach 87% neutron background tagging efficiency

Improved WIMP limits and new analysis results with much more exposure

Conclusions and future perspective

IN A NUTSHELL

XENONnT performed blinded searches of electronic and nuclear recoils, finding no significant excess in SR0

It achieved the lowest ER background in the field

Potential to search for different rare processes regarding neutrino, such as SN neutrino or $0\nu\beta\beta$

In particular, XENONnT is **currently sensitive** to ⁸B solar **neutrino**, which can be **detected** via **CEvNS**

XENONnT has already started **acquiring** new **data** (SRI)

WHAT'S NEXT

New science runs with 50% lower ²²²Rn (ER background)

Planned neutron veto with Gd-loaded water to reach 87% neutron background tagging efficiency

Improved WIMP limits and new analysis results with much more exposure

NEXT-GENERATION LXe EXPERIMENT

Dual-phase Xe TPC with ~50 t of LXe, from the joint efforts of XENON, LZ and DARWIN collaboration into the XLZD consortium

Multi-purpose observatory for dark matter, neutrino and rare events, probing WIMPs down to neutrino floor

15

ZÐ

NEN

XX International Workshop on Neutrino Telescopes

INAF

Thank you for your attention!

XENON OFFICIAL WEBSITE

xe-pr@lngs.infn.it

STAY TUNED! XENONNT is going to take and analyze more science data!

facebook.com/XENONexperiment/

instagram.com/xenon_experiment/

twitter.com/xenonexperiment

 $\mathbf{\nabla}$

 \mathbf{O}

Direct detection of dark matter

EXPERIMENTAL SEARCH OF DM

- Production at **colliders**
- Indirect search from annihilation products
- <u>Direct detection of DM</u> <u>scattering off SM particles</u>

DETECTION OF DM HALO PARTICLES

Local dark matter density $\rho_0 = 0.3 \text{ GeV/cm}^3$

For WIMPs, with mass = 100 GeV/c²:

- Density: 3000 particles / m³
- Flux: **10**⁵ particles / (cm² s¹)

Neutron veto

	Neutron capture cross-section	γ energy	Mean capture time
н	0.33 b	Single, 2.2 MeV	200 us
Gd	49000 b	3-4 γ, 8 MeV in total	30 us

In demi-water neutron tagging efficiency ~ 53% and livetime reduction of 1.6 %

3 multiple scatter + **1 single** scatter tagged by neutron veto, resulting in **total neutron** expectation of **1.1**_{-0.5}^{+0.6} in ROI

Plan to dissolve **3.4 t** of Gd sulphate octahydrate $Gd_2(SO_4)_3 \cdot 8H_2O$ to reach **0.2%** of **Gd** in mass

Gd-WATER PURIFICATION PLANT COMMISSIONING AT LNGS

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

2v Double-Electron Capture in ¹²⁴Xe

First direct observation of nuclear decay via two-neutrino double electron capture (2VDEC):

 124 Xe $\rightarrow ^{124}$ Te + v_e + v_e

Expected signature: (64.3 ± 0.6) keV monoenergetic peak

Observed peak of **126 ± 29 events** at (**64.2** ± 0.5) **keV**

4.4 σ discovery significance

Measured half-life: (1.8 \pm 0.5_{stat} \pm 0.1_{sys}) × 10²² yr

 $\sim 10^{12}$ times larger than the age of the Universe

The rarest process ever directly observed!

riment 🛒 🛒

Neutrino fog in LXe detectors

minin

XENONnT Science Run 0

ER and NR blinded analyses

mm hum

• 97.1 days of exposure from July 6th - Nov 11th 2021

• **Radon** column operating in **gas-only** mode

• 477 out of 494 PMTs operative, gain stable at 3% level

• Drift field 23 V/cm (cathode voltage limited to -2.75 kV due short-circuit with bottom screen mesh)

• Extraction field in LXe 2.9 kV/cm

• Localized high single-electron emission (hotspot) occurring seemingly at random, anode ramped down

XX International Workshop on Neutrino Telescope | 24th October 2023 |

Background comparison in LXe experiment

5x ER background reduction with respect to XENONIT

Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn

Lowest background level ever achieved by a dark matter experiment: (16.1 ± 0.3) events/(t y keV)

8.6 σ exclusion on XENONIT **excess**

<u> Phys. Rev. Lett. 129, 161805</u>

Other ER searches in XENONnT

SOLAR AXIONS

Best limit from dark matter direct detection experiments

- Included axio-electric and reverse Primakoff effect
- Improved constraints on axion-photon, axion-electron and axion-nucleon couplings
- Upper limit on the ⁵⁷Fe solar axion rate

BOSONIC DARK MATTER

No peak-like signals. New limits on:

- Axion like particle dark matter
- Dark photon dark matter

Neutrinos in XENONnT dark matter experiment

TITLE TOTAL

WIMP search background model in SR0

Low ER background

- Dominated by beta-decays from ²¹⁴Pb a daughter of ²²²Rn
- 16 events/(t*y*keV) in the [1, 30] keV range

Accidental background (AC)

- Random pairing of S1 and S2 lone signals
- **Suppressed** by a dedicated Gradient Boosted Decision Tree cut (GBDT), using S2 shape, R and Z information

Surface background

- Due to ²¹⁰**Pb** plate out at TPC walls (beta-decay)
- Suppressed by **R**_{max} < **61.35** cm of fiducial volume NR background
 - Neutrons from spontaneous fission and (α,n) reactions
 - CEvNS (coherent elastic neutrino-nucleus scattering)

	Nominal	Best Fit		
	R	Signal-like		
ER	134	135^{+12}_{-11}	$0.86\substack{+0.08\\-0.07}$	
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.17	
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.011	
AC	4.3 ± 0.2	4.32 ± 0.15	0.366 ± 0.013	
Surface	14 ± 3	12^{+0}_{-4}	$0.35\substack{+0.01\\-0.11}$	
Total Background	154	152 ± 12	2.0 ± 0.2	
WIMP	-	2.6	1.3	
Observed	-	152	3	

Pie-chart representing **component fraction** of the **best-fit model** including a 200 GeV/c² **WIMP evaluated** at **event position**

Comparison with other NR searches

Log-Likelihood-ratio as test statistics, median upper limits at 90% confidence, p-values of test statistic indicate no significant excess for all WIMP masses

Community had agreed on using Power-Constraint Limit (PCL) to avoid too low exclusion limits, but the PCL critical threshold β_r was defined on discovery power instead of rejection power

mminn

Typically PCL used to constrain the limit at -1 σ (β_r =0.16) but it was show to be **pathological** for **downward fluctuations** and it was **raised** to be conservative to 0.5 (median), it need to be further discussed within the community
Purification and distillation

NEW!

RADON DISTILLATION COLUMN

²²²Rn intrinsic background from materials

Dedicated system in addition to Kr column

Lowest level in LXe TPCs (~ µBq/Kg ²²²Rn)

LIQUID Xe PURIFICATION

Removal of electronegative impurities

High-flux purification (350 kg/h)

High efficiency O₂ filter

Electron lifetime improved by factor 50

t mining

Purification and distillation

RADON DISTILLATION COLUMN

²²²Rn intrinsic background from materials

Dedicated system in addition to Kr column

Lowest level in LXe TPCs (~ µBq/Kg ²²²Rn)

LIQUID Xe PURIFICATION

Removal of electronegative impurities

High-flux purification (350 kg/h)

High efficiency O₂ filter

Electron lifetime improved by factor 50

Emanuele Angelino

Neutrinos in XENONnT dark matter experiment

Calibration sources

PMTs

LEDs → Dark rate, gains, SPE acceptance

Material Radioactivity

²¹⁴Bi, ⁶⁰Co, ⁴⁰K → High-energy lines

External sources

²⁴¹AmBe → Continuous spectrum of NRs

Internal Sources

^{131m}Xe, ^{129m}Xe → Activated during AmBe calibration, lines at 163.9 keV and 236.2 keV with half-lives of 11.8 days and 8.9 days

²²⁰Rn → Continuous spectrum of ERs at low energy down to 1 keV

^{83m}Kr → Two-transition (32.1 keV and 9.4 keV) decay resulting in 41.5 keV line

³⁷Ar → Monoenergetic source producing 2.82 keV line (K-shell)

mminun

XX International Workshop on Neutrino Telescope | 24th October 2023

Next generation LXe experiment

minin

