THE TRANTY CONCEPT AND DEMONSTRATOR

Michele Doro, University of Padova, Italy <u>michele.doro@unipd.it</u> XX International Workshop on Neutrino Telescopes

UNIVERSITÀ

DEGLI STUDI

of PADONA

Dipartimento

e Astronom

di Fisica

DSIAMR

 $\langle \mathbf{y} \rangle$

During Trinity demonstrator installation campaign fall '23 with master and PhD students

Nepomuk Otte

Pl of Trinity School of Physics & Center for Relativistic Astrophysics Georgia Institute of Technology Atlanta, GA

TRINTY IDEA AND OUTLINE

- Detect UHE earthskimming astrophysical tau-neutrinos (1-100 PeV)
- One demonstrator in place at Frisko Peak (Utah) reported here

Michele Doro - Trinity - XX Neutrino Telescopes

 ³⁺ arrays of <=6 groundbased air-Cherenkov telescopes

EARTHSAMMINGTAU NEUTRINCS

10⁶-10¹⁰ GeV UHE nu-tau, when crossing 1-100 km of rock have significant **probability of emerge as tau-lepton** The emerging UHE tau-leptons can generate e.m. atmospheric (sub)showers

Decay	Secondaries	Probability	Air-shower
$\tau \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$	μ^-	17.4%	weak showers
$ au ightarrow e^- ar{ u}_e u_ au$	<i>e</i> ⁻	17.8%	1 Electromagnetic
$ au ightarrow \pi^- u_{ au}$	π^-	11.8%	1 Hadronic
$ au ightarrow \pi^- \pi^0 u_ au$	$\pi^-, \pi^0 o 2\gamma$	25.8%	1 Hadronic, 2 Electromagnetic
$ au ightarrow \pi^- 2 \pi^0 u_ au$	$\pi^-, 2\pi^0 o 4\gamma$	10.79%	1 Hadronic, 4 Electromagnetic
$ au ightarrow \pi^- 3 \pi^0 u_{ au}$	$\pi^-, 3\pi^0 \rightarrow 6\gamma$	1.23%	1 Hadronic, 6 Electromagnetic
$ au ightarrow \pi^-\pi^-\pi^+ u_ au$	$2\pi^{-},\pi^{+}$	10%	3 Hadronic
$\tau \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$2\pi^-,\pi^+,\pi^0 \rightarrow 2\gamma$	5.18%	3 Hadronic, 2 Electromagnetic

 Imaging Cherenkov telescopes (IACT) record image of air shower →

DEVONSTRATED BY MAGCTELESCOPES

Two 17-m diameter ground-based Imaging Cherenkov telescopes for TeV astrophysics at ORM, La Palma (Spain)

• Operating since 2003

- They can point toward the ocean (-2 deg altitude)
- A window of 60x5 deg², but FOV is 3x3 deg²

Astroparticle Physics Volume 102, November 2018, Pages 77-88

Limits on the flux of tau neutrinos from 1 PeV to 3 EeV with the MAGIC telescopes

Proton injected at the top of the atmosphere (~800 km to the detector for 87°)

Deep tau-induced shower (~50 km to the detector)

Very easy discrimination

between tau-induced (closeby, intense) showers and muons

Michele Doro - Mr. in Dibro XXIN My rin Pathle Anne Physics 2021

It works, but very poor sensitivity, how to cope?

THE MACHETE IDEA

MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy $\gamma\text{-ray}_{\rm sky}$

J. Cortina^a, R. López-Coto^a, A. Moralejo^a

Trinity optics borrows from MACHETE optics concept *Astropart.Phys.* 72 (2016) 46-54

Keys for FOV of 60x10deg²:

- Thoroidal section as primary dish
- Curved rectangular camera
- Different camera regions see different mirror regions

M. Doro - Trinity - Latin American Webinars on Physics 2021

TRINTY DESGN

Based on J. Cortina et al., Astrop. Physics 72 (2016) 46

FoV 5° X 60°.

- 5.6 m focal length.
- 68 m² mirror area \rightarrow **16 m²** in any direction.

• 0.3° optical PSF.

- 3,300 pixel camera.
- 20 mm Winston cones coupled to **9 mm SiPMs**.
- Thin-glass replica mirror technology ~\$2k/m².
- Implementation based on MAGIC structure.
- Rotates in elevation.
- \$170k for one telescope.
- \$330k for one camera.

AN ARRAY OF THEM

- Each telescope has 60deg wide FOV:
- Array of of <=6 telescopes to cover entire horizon
- Mountain peak and arranged in a circle
- Sensitivity computed for 3x such installations over different sites

Michele Doro - Trinity - XX Neutrino Telescopes

FRENDS AND FOES

Georgia Tech

- Prof. Nepomuk Otte Prof. Ignacio Taboada
- Dr. Mahdi Bagheri
- Dr. Mariia Fedkevych
- Dr. Mathew Potts
- Graduate Student Jordan Bogdan
- Graduate Student Eliza Gazda
- Graduate Student Sofia Stepanoff
- Graduate Student Oscar Romero Matamala
- Undergraduate Srikar Gadamsetty
- Prof. Anthony Brown
- Prof. Dave Kieda
- Prof. Wayne Springer
- Prof. Michele Doro
- Prof. Mosè Mariotti

Michele Doro - Trinity - XX Neutrino Telescopes

Trinity The Extreme Neutrino Observatory

Science Technique The Demonstrator Collaboration Publications Contact

The Trinity Tau Neutrino Observatory

Webcams, info, etc+

Indoor Camera

Outdoor Camera

DEVONSTRATOR FROF OF CONCEPT

- Davies Cotton optics
- 0.75 m² mirror area
- 5°x5° field of view
- 256 pixel camera (0.3° resolution)
- 100 MS/s AGET readout

https://www.youtube.com/watch?v=Qp5-jweuQBc

- Facility with optical telescopes funded by Ekkels, managed by W.
 Springer and D. Kieda (U. Utah)
- N38 W113, at 3,000 m asl, about 1,500 m above the surrounding terrain

DO/E

- Funded by NSF grant PHY-2112769 (800k\$, PI N. Otte).
 - NSF MRI calls under prep.
 - Custom-design building built by U. Utah (commercial contractor)

The telescope points towards an azimuth of 280° and one degree above the horizon.

Michele Doro - Trinity - XX Neutrino Telescopes

DEVONSTRATOR FACTS

- 84 spherical mirrors (1.5f, 15cm) for a total of 0.75 m2 area
- Provided by U. Delaware (J Holder)
- Mirror alignement with drone emitting blue light (see reference)

- SiPM-based camera from SPB2 balloon experiment
- 256 pixel 6x6 mm2
- Curved focal plane
- See ICRC...

DEVONSTRATOR FACTS#2

- 32 Commercial MUSIC board used to set/read 8 SiPMS
- Single SIPM trigger
- Topological SW trigger on FPGA

- ✓ Dome built in 2022
- ✓ Telescopes and subsystem installed in two weekly campaing in 2023
- ✓ All systems check
- ✓ First 'light' in September 2023
- First 'image' under preparation

DEVONSTRATOR FROF OF CONCEPT

demonstrate:

- Atmospheric monitoring
- Long-term stability
- Backgrounds
- Camera concept
- Remote operation
- Analysis
- ...

TXS 0506+056 and NGC 1068 both passing through FOV

- Imaging Cherenkov works for tauneutrinos
- Effective 'volume' is 100/1000x time that of IC, but atmosphere and not ice
- Wide FOV is key
- Simpler design than g-ray IACTs

Full Trinity bridges gap between IC/radio (1-100 PeV)

Demonstrator has good science output forecasts

