T2K latest oscillation results

+ combined SK+T2K data fit results!

Adrien Blanchet For the T2K collaboration

XXth International Workshop on Neutrino Telescopes (2023) 2023-10-25 - Venezia / Italy

Super-Kamiokande

Mount Fuji !

Probably Tokyo..?

 $\nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{\tau}, \nu_{e}, \nu_{\mu}, \nu_{\mu}$

- $\nu_\mu, \nu_\mu, \nu_\mu, \nu_\mu, \nu_\mu, \nu_\mu, \nu_\mu, \nu_\mu$
- Measure oscillation parameters with accelerator neutrinos
- Understand better neutrino interactions with matter

Highlighting Super-Kamiokande and ND280

Super-Kamiokande

• Good particle identification using the ring shape and sharpness

- Neutrino energy reconstruction from lepton momentum and angle wrt beam direction
- Not magnetised: need near detector constraints for wrong-sign backgrounds

Oscillation analysis with 2022 data release

Presented at <u>Neutrino 2020</u>, paper published in <u>EPJC</u>

Nature (early 2020) — short paper **580, 339–344 (2020)** Phys. Rev. D — long paper Phys.Rev.D 103, 112008

Improved flux model

- More realistic beam line modelling + use of beam monitor data
- Using high-statistics NA61 2010 kaon dataset

Photo from this summer (by Eric D. Zimmerman, NA61/SHINE)

6

Reconstructed Neutrino Energy (GeV)

Robustness studies

 δ_{CP}

With Reactor Constraint, NH

Complementary fitting approaches

- (Semi-)Frequentist approach: (P-Theta software)
 - Using FD data only + constraints from ND as prior
 - Feldman-Cousins approach for estimating C.L.
- Bayesian credible intervals: (MaCh3 software)
 - Metropolis-Hastings MCMC algorithm
 - Joint ND + FD
- Very similar results in both approaches!

Alternative model studies

- Test how our parametrisation of the systematics is able to absorb mismodeling of interaction channels
- Using fits to "simulated data" from theory or data-driven alternative interaction models, pion production, nuclear models...
- Quantify biases induced on oscillation parameters
- No bias observed for θ_{23}
- Small effect on δ_{CP} but no change of the main conclusions
- Small bias observed for Δm^2_{32}
 - Additional gaussian uncertainty added to compensate:

 $\pm 2.7 \times 10^{-5} \text{eV}^2$

2022 (latest) oscillation results — δ_{CP}

Adding reactor oscillation angle as an external constraint

• θ_{13} constraints of T2K are consistent with reactor antineutrino experiments (PDG value)

Results on the CP phase measurement

- Large region excluded at 3σ
- CP-conservation values (sin $\delta_{CP} = 0$) excluded at 90% C.L.
- Weak preference of normal ordering

T2K Run 1-10, preliminary

Jarlskog Invariant, Both Hierarchies

2022 (latest) oscillation results – $\Delta m_{32}^2, \theta_{23}$

T2K Run 1-10, preliminary

Systematics treatment: paving the way for future HK analyses

- Flux model taken from each experiment separately
- Detector: same simulation + reconstruction tools used
 - Correlation of systematics fully treated
- Cross-section: use different models for low and high energy samples
 - Low energy (sub-GeV): Shared model at + ND280 constraints [ref]
 - High energy (multi-GeV): Use modified SK model [ref] with additional syst.

Atmospheric

detector

Beam

detector

Preliminary sensitivity results • Asimov sensitivities at true $\sin^2 \theta_{23} = 0.528$, $\delta_{CP} = -1.601$, Normal Ordering PoS NOW2022 (2023) 008 SK+T2K Preliminary Sensitivity • $\Delta m_{32}^2 \& \theta_{23}$ constraint is dominated by T2K 25₁ Main benefit of joint fit is that both experiments are sensitive to MO -SK+T2K 20 • Noticeable sensitivity boost for δ_{CP} in the ~0 region -T2K 15 Normal ordering --- Inverted ordering SK+T2K Preliminary Sensitivity 10 $\Delta \chi^2$ SK+T2K T2K 5 — SK (+ND) 20 0.35 0.4 0.45 0.5 0.55 0.6 0.65 Normal ordering **Ö.3** 0.7 True values: $\delta_{CP} = -1.601$ $\sin^2 \theta_{12} = 0.307$ $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2$ $\text{Fit } \sin^2 \theta_{23}$ Normal ordering $\sin^2 \theta_{23} = 0.528$ $\sin^2 \theta_{13} = 0.0218$ $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$ $\text{Fit } \sin^2 \theta_{23}$ ---- Inverted ordering 15 SK+T2K Preliminary Sensitivity $\Delta \chi^2$ 10 - SK+T2K 20 — T2K 5 15 Normal ordering ---- Inverted ordering 0 10 -3 -22 3 0 -1 True values: $\delta_{CP} = -1.601$ $\sin^2 \theta_{12} = 0.307$ $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2$ Normal ordering $\sin^2 \theta_{23} = 0.528$ $\sin^2 \theta_{13} = 0.0218$ $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$ Fit δ_{CP} 10^{-3} 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

True values: $\delta_{CP} = -1.601$ $\sin^2 \theta_{12} = 0.307$ $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2$ Fit Δm_{atm}^2 [eV²] 14 Normal ordering $\sin^2 \theta_{23} = 0.528$ $\sin^2 \theta_{13} = 0.0218$ $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$ Fit Δm_{atm}^2 [eV²] 14

TZR Data fit results (Bayesian analysis)

Improved δ_{CP} constraints

• CP conservation (sin $\delta_{CP} = 0$) is **excluded around** 2σ with the reactor constraints applied

Slight preference for the normal mass ordering

- With the Bias factor ~9.0 (ie. 1.64 σ deviation in a Gaussian assuming equal prior probabilities)
- Better constraint than T2K-only or SK-only fits

Almost equal preference to the upper and lower octant

Frequentist analysis will be reported in the near future. Stay tuned!

Upcoming analyses

Finalising run 11 analysis: first data with SK-Gd!

- 9% more exposure in neutrino-mode samples
- SK-Gd 0.01% (now moving 0.03% for better neutron tagging)
- Measurement of neutrino int. with neutrons (NCQE, 2p2h,...)
- Retuning of selection + Improved evaluation of uncertainties on detector modelling and reconstruction

$NO\nu A$ + T2K joint fit

- Different oscillation baselines, energies and detector tech.
- Important to understand systematic correlations

T2K extended runs

- Upgraded beamline TDR: arXiv:1908.05141 [physics.ins-det]
 - Increase beam power from ~500 kW to 1.3 MW via upgrades to main ring power supply and RF (mostly increased rep rate)
 - Increase horn current 250 kA → 320 kA for ~10% more neutrinos/beam-power and reduced wrong-sign background
- Upgrading ND280 with new detectors: TDR: arXiv:1901.03750 [physics.ins-det]
 - A new neutrino target: Super-Fine Grained Detector
 - Two new trackers: High-Angle TPCs
 - Time of Flight detector planes
 - Will allow to probe unreached phase-space
 - Reduce xsec systematics and better understanding of nuclear effects

ToF

SuperFGD

16

It's happening!!

5th of July 2023 installation of the first ToF planes!

mid October 2023 SFGD installed Bottom HATPC installed 4 / 6 ToF planes ready

First beam data taking should start at the end of November!

Summary

- Latest T2K neutrino oscillation results using $3.6 \times 10^{20} \, \rm protons$ on target
- 2022 oscillation analysis of T2K
 - Many improvements at each level of analysis
 - CP conserving values of δ_{CP} excluded at 90% C.L.
 - Weak preference for normal ordering and upper octant
- First SK+T2K combined analysis reported
 - CP conservation (sin $\delta_{CP} = 0$) is excluded around 2σ C.L.
 - Improved constraints in favour of normal ordering
 - Almost equal preference to the upper and lower octant
- Exciting perspectives for the future with T2K extended runs

Backup

The table below summarizes the conclusion on CP symmetry from different analyses

• Based on this, we concluded that CP conservation ($\delta_{CP} = \{0,\pi\}, J_{CP} = 0$) is excluded around when the reactor constraint is applied.

				5	SK+T2K pr	eliminary
Analysis	Prior	CP conserving value	$ 1\sigma$	90%	2σ	3σ
Analysis 1	Flat in δ	$\delta_{ ext{cp}} = 0, \pi$	 ✓ 	\checkmark	✓	×
	I lat III o _{CP}	$J_{\text{CP}} = 0$	\checkmark	\checkmark	\checkmark	×
	Flat in $\sin \delta_{\scriptscriptstyle \mathrm{CP}}$	$\delta_{ ext{cp}}=0,\pi$	\checkmark	\checkmark	×	×
		$J_{\scriptscriptstyle m CP}=0$	\checkmark	\checkmark	✓	×
Analysis 2	Flat in $\delta_{\scriptscriptstyle \mathrm{CP}}$	$\delta_{ ext{cp}}=0,\pi$	 ✓ 	\checkmark	✓	×
		$J_{\text{CP}} = 0$	✓	\checkmark	\checkmark	×
	Flat in $\sin \delta_{\rm CP}$	$\delta_{ ext{cp}}=0,\pi$	\checkmark	\checkmark	×	×
		$J_{\text{CP}}=0$	\checkmark	\checkmark	$\checkmark(\times)$	×

 \checkmark : excluded x: not excluded \checkmark (x): excluded but may not be robust against the possible bias from an out-of-model effect

Two Bayesian analyses

We check the validity of the results by performing multiple analyses.

- Four analysis methods have been prepared for this joint analysis.
- All of them use the same analysis model but use different implementations and fitting methods.

Results presented in this talk are from two analyses that can produce Bayesian results:

	Analysis 1	Analysis 2	
Oscillation probability Systematic response	bability Binned Event by event / Binned		
T2K sample binning	binning (E_{rec}, θ) for μ -like samples (E_{rec}) for μ -like (p, θ) for e -like samples (E_{rec}, θ) for e for e for e and e for e		
T2K near detector constraint	Gaussian approximation (Sequential fit)	Full likelihood (Simultaneous fit)	
Fast oscillation smearing	Semi-analytic averaging	Down-sampling finer to coarser grid	
Earth density	$\Big \ \text{Average density} + \text{deviations} \\$	Average density	

Cross-section models

Use a common cross-section model with T2K

	Low-energy sub-GeV atm + beam	High-energy multi-GeV atm				
	T2K model with ND280 constraint, correlated in low-E/highE (except for high-Q ²)					
CCQE	high-Q ² params w/ND280	high-Q ² params w/o ND				
	add v_e/v_μ ratio unc. (CRPA)					
2p2h	T2K model w/ND280	SK model (100% error) + T2K-style shape				
Resonant	T2K model w/ND280SK model+ new pion momentum dialfor 3 dials common with T2K+ NC1π0 uncertaintiesuse more recent larger T2K pri					
DIS	T2K model w/ND280	SK model				
ντ	SK model (25% norm for other systematics checked that we	on top of other syst) have no numerically unstable values				
FSI	T2K model w/ND280 T2K model w/o ND280 should be mostly same as SK m					
SI	T2K model, correlated in low-E/high-E only applied to FC and PC for atm, PN not applied to atm					

- Correlations between T2K and SK detector systematics are taken into account by reevaluating the T2K detector systematics using the atmospheric MC (reweighted to the T2K flux and the T2K selection is applied).
- Including the correlations makes the analysis more robust but has a limited impact at current statistics.

Sample Name	Category	Selection				
SubGeV elike 0dcy				e-like	0 decay-e	
SubGeV elike 1dcy			Single-ring		1 decay- e	
SubGeV mulike 0dcy		Sub CoV		μ -like	0 decay- e	
SubGeV mulike 1dcy		540-027			1 decay- e	
SubGeV mulike 2dcy					≤ 2 decay- e	
SubGeV pi0like			Multi-ring	Two e -like rings		
MultiGeV elike nue	Fully Contained (FC)		Single-ring		≤ 1 decay- e	
MultiGeV elike nuebar		Multi-GeV		e-like	0 decay- e	
MultiGeV mulike				μ -like		
MultiRing elike nue			Multi-ring	e-like	ν_e -like	
MultiRing elike nuebar					$\bar{\nu}_e$ -like	
MultiRing mulike					other	
MultiRingOther 1				μ -like		
PCStop	Dentially Contained (DC)	No charge deposition in OD				
PCThru	Partially Contained (PC)	Charge deposition in OD				
UpStop mu		Stopping				
UpThruNonShower mu	Up-going Muon (UpMu)	Through-going Non-showering				
UpThruShower mu		Through-going Showering				

Bayesian prior choices

Two widely accepted non-informative priors were tested in our analysis of CP violation.

- Uniform δ_{CP} : closer to Jensen's prior for Haar measure.
- Uniform $\sin \delta_{CP}$: closer to Jeffrey's prior for this analysis ($\propto \sqrt{\det(I_{\text{Fisher}})}$).

Model robustness studies

How good our systematic parametrisation is at absorbing alternative models

- Performing "fake data sensitivity studies", by trying to fit an alternative Asimov model
- Report possible observed biases on oscillation parameters

14 simulated data studies have been performed to test a possible bias in the analysis

	Model component
Martini 2p2h	2p2h
ND280 data-driven pion kinematics	$\mathrm{CC1}\pi$
$\rm CC0\pi$ non-QE alteration	${ m CC0}\pi$
Removal energy	Nuclear Model
Axial form factors	CCQE
Pion SI bug fix	$CC1\pi$, $CCn\pi$
LFG	Nuclear model
CRPA	Nuclear model
Pion multiplicity	$\mathrm{CC}n\pi$
Energy-dependent $\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	$\sigma_{ u_e}/\sigma_{ u_\mu}$
Xsec-only fit	Fit
Atmospheric down-going ${\rm CC1}\pi$	$\mathrm{CC1}\pi$
Atmospheric full-zenith ${\rm CC1}\pi$	${ m CC1}\pi$
No-migration energy scale fit	Fit

Coverage Studies using Feldman-Cousins Method

- 50k toy experiments for a couple of δ_{CP} /MO values, randomly sampling θ_{13} (reactor prior) and atmospheric samples from the Asimov contour set at current data-BF point
- Map the critical values of $\Delta \chi^2$ for each C.L.
- Linear interpolation for reporting CPV contours

A = Neutrino2020 results including PDG 2019

Systematics budget

	1	R	MR			$1 \mathrm{R}e$		
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC	
Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5	
Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5	
SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3	
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6	

Dro-ND fit

T2K Run 1-10, preliminary

Post-ND fit

	1R		MR	$1 \mathrm{R} e$			
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

T2K Run 1-10, preliminary

2022 OA — μ -like samples

2022 OA — e-like samples

Bayesian analysis

Jarlskog Invariant, Both Hierarchies

- Priors flat in plotted variables are assumed
- Top two plots marginalized over mass ordering with uniform prior
- Qualitatively similar results to frequentist fits
- Application of reactor constraint on θ_{13} results in preference of upper octant.

Hyper-Kamiokande era

Crucial role of improving our interaction models

- NOT an issue for measuring osc!
- Only washing out the osc. prob signal with the proxy variable
- Best proxy for probing the oscillation probability
- Carry most of the sensitivity

The near detectors in Tokai

INGRID: On-axis

- Iron-scintillator sandwich
 detector
- Monitors the beam direction and intensity

ND280: Off-axis

- Active scintillator (C) and passive water (O) neutrino targets
- Tracking particles with time projection chambers
- Magnetised for charge and momentum reconstruction

Wagasci/Baby MIND: Off-axis

- Water target and cuboid lattice scintillators for high angle acceptance
- Compact **magnetised** iron muon range detector

Neutrino beam production

- JPARC provides accelerated protons at ~30GeV
- Protons collide with a 90cm graphite target, producing π, K
- 3 successive magnetic horns selectively focus positively or negatively charged hadrons that decay into neutrinos or antineutrinos
- Two production modes
 - Forward Horn Current (FHC) / Neutrino mode
 - Reverse Horn Current (RHC) / Antineutrino mode
- Off-axis technique for sending a narrow and sub-GeV energy spectrum to the far detector

