

Prospect for the Detection of the Geo-neutrino Signal with JUNO

XX International Workshop on Neutrino Telescopes

Zhao Xin (IHEP, Beijing) on behalf of JUNO collaboration Oct. 2022

- 1. Motivation
- 2. JUNO Experiment
- 3. Geo-neutrino Sensitivity Study
- 4. Summary

Motivation

Geoneutrino is one of central topics of JUNO

- The intersection of particle physics and geophysics
- An independent method to study the matter composition deep within the Earth

- Crust: high U & Th
- CLM (Continental Lithospheric Mantle): relatively low U & Th
- Mantle: very low U & Th, large volume

Borexino (2020) Phys. Rev. D 101, 012009

- Located in Gran Sasso, Italy
- Liquid Scintillator ~ 0.3 kton
- In 10 years ~ 50 geoneutrinos
- Precision $\sim 17\%$
- Favors high U and Th abundances BSE models

KamLAND (2022) Phys. Rev. C, 80, 015807

- Located in Hida, Gifu, Japan
- Liquid Scintillator 1 kton
- In almost 18 years ~ 170 geoneutrinos
- Precision $\sim 15\%$
- Favors **medium** U and Th abundances BSE models

• JUNO will collect more geo-neutrino events than all the other experiments with 1 year data !

Jiangmen Underground Neutrino Observatory

JUNO

Jiangmen Underground Neutrino Observatory

 Located in Kaiping, Jiangmen, Guangdong province in China

JUNO

- Designed to measure reactor neutrinos from 2 NPPs at 52.5 km distance (~ 650 m overburden)
- 17,612 20-inch PMTs and 25,600 3-inch PMTs. → Large PMT coverage (~78%)!
- 20 kton of liquid scintillator → high statistics
- Designed for unprecedented energy resolution (~ 3% at 1 MeV)
- Potential to study various sources of neutrinos.

Chin.Phys.C 46 (2022) 12, 123001

A Multi-purpose Observatory

More details in Yury Malyshkin's plenary talk

Oct. 2023

Geo-neutrino Rate

based on lithosphere and mantle models

Geo- $\bar{v_e}$ = Lithosphere + Mantle

Lithosphere model	Signal [TNU]
Global model Prog. in Earth and Planet. Sci. 2 , 5 (2015)	$30.9^{+6.5}_{-5.2}$
JULOC model Phys.Earth Planet.Interiors 299 (2020) 106409	$40.4^{+5.6}_{-5.0}$

Mantle model	Signal [TNU]
Cosmochemical (CC)	~ 2
Geochemical (GC)	~ 10
Geodynamical (GD)	~ 20

1 TNU (Terrestrial Neutrino Unit): one interaction over a year-long fully efficient exposure of 10^{32} free protons.

Geo-neutrino Shape

based on Enomoto flux model

- ²³⁸U and ²³²Th decay chains
- Summation model

https://www.awa.tohoku.ac.jp/~sanshiro/research/geoneutrino/spectrum/

Inverse Beta-Decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$

Selection of IBD candidates:

- Muon veto
- Selection cuts (~ 10⁴ suppression of IBD-like events):
 - Prompt energy: [0.7, 12.0] MeV
 - Delayed energy: [1.9, 2.5] MeV & [4.4, 5.5] MeV
 - Time difference: 1 ms
 - Distance: 1.5 m

Neutrino selection efficiency: 82.2%

Geo-neutrino Signal and Backgrounds at JUNO

Geo-neutrino signals

JUNO

- From the decay chains of ²³²Th and ²³⁸U
- About 1 event per day

Reactor neutrinos

 contributed by two near NPPs (52.5 km) and Daya Bay NPP (~200 km)

	Rate [cpd]	Rate uncert.	Shape uncert.	
Geo-neutrinos	1.2	-	5%	
Reactor neutrinos	47.1	-	Daya Bay/ TAO	
Accidental	0.8	1%	-	
⁹ Li/ ⁸ He	0.8	20%	10%	
¹³ C(α, n) ¹⁶ O	0.05	50%	50%	
Fast neutron	0.1	100%	20%	
World reactor neutrinos	1	2%	5%	
Atmospheric neutrinos	0.16	50%	50%	

Neutrino selection efficiency: 82.2%

World reactor neutrinos

contributed by the NPPs (>300km)

JUNO will measure in 1y ~400 geo-neutrinos events more than Borexino and KamLAND in >10y!

Oct. 2023

Reactor neutrinos Irreducible background

- Much higher rate ($4 \sim 10$ times than geo-neutrino rate in geo-neutrino energy window)
 - No way to distinguish \implies Reactor shape is very precise \rightarrow TAO or Daya Bay constraint
- Affected by neutrino oscillation
- JUNO's measurement can reach sub-percent precision
- Neutrino oscillation parameters are the largest systematic uncertainties (Δm_{21}^2 is the most important one)

Oct. 2023

- 2.8 ton detector
- Energy resolution (< 2% at 1 MeV)
- \sim 94% coverage with SiPM (50% PDE)
- Detector at -50°C (reduce SiPM dark noise)

Measurement of reactor antineutrino spectrum with no oscillations (within Taishan NPP building)

- Sensitive to fine structure with better precision
- Model-independent reference spectrum for JUNO

Sensitivity to the Total Geo-neutrino Flux (U/Th Ratio Fixed)

Fit configuration:

- Th/U abundance fixed to the chondritic ratio (3.9)
- Geo- and reactor neutrino rates are free
- Geo- and reactor neutrino shape uncertainty included
- Other background rates are constrained
- Oscillation parameters free the largest systematic uncertainties

Expected geoneutrino precision* (assuming Th/U mass ratio fixed to 3.9)			
1 year	~22%		
6 years	~10%		
10 years	~8%		

Phys. Rev. D 101, 012009 Borexino 17% with 8.9 years KamLAND 15% with 14.3 years

Phys. Rev. C, 80, 015807

fit results with **fixed oscillation parameters** Only for illustration

Th and U are strongly anticorrelated:

JUNO can disentangle the Th and U contributions and make a very good measurement of their sum

Expected precision fit results with **free oscillation parameters**

	6 years	10 years
²³² Th:	~40%	~35%
²³⁸ U:	~35%	~30%
²³² Th+ ²³⁸ U:	~18%	~15%
²³² Th/ ²³⁸ U ratio:	~70%	~55%

- Geo-neutrinos can provide a unique probe to the Earth's composition and structure
- JUNO will collect the highest geo-neutrino statistics more geo-neutrino events than all the other experiments with 1 year data
- Precise measurement of total geo-neutrino flux:
 - Borexino ~17% precision (10 years)
 - KamLAND ~15% precision (18 years)
 - JUNO $\sim 22\%$ precision (1 year) and $\sim 8\%$ precision (10 years)

JUNO will provide the World's most precise measurements

- JUNO can measure U and Th individual contributions with high statistical significance
- The study of potential to observe **signal from mantle** in JUNO is ongoing
- Full release of updated sensitivities soon

Thanks! Grazie !