XX International Workshop on Neutrino Telescopes Istituto Veneto di Scienze, Lettere ed Arti, Venezia, Italia

SNC Current results and 0vββ prospects

Ana Sofia Inácio, on behalf of the SNO+ collaboration

The SNO+ Detector

Multi-purpose neutrino detector located at SNOLAB in Sudbury, Ontario, Canada

The SNO+ Detector

Physics Programme

Searching for $0\nu\beta\beta$ with SNO+

Major advantages of ¹³⁰Te

- No need for enrichment
- Long $2\nu\beta\beta$ half-life (7.7x10²⁰ years)
- High Q-value at 2.527 MeV

Searching for $0\nu\beta\beta$ with SNO+

Major advantages of ¹³⁰Te

- No need for enrichment
- Long $2\nu\beta\beta$ half-life (7.7x10²⁰ years)
- High Q-value at 2.527 MeV

Major advantages of SNO+

- 1. Large detector
 - Rejection of external backgrounds through fiducialization
- 2. Loaded liquid scintillator
 - Fast timing allows rejection of coincidence backgrounds
 - High light yield for good resolution = target 460 PMT hits /MeV
 - Loading can be scaled
- The phased loading approach
 - Constrain and validate the detector model
 - Target-out measurement before and during Te loading

The journey towards OvBB Water Phase

Major Outcomes

- Improved limits for invisible modes of nucleon decay <u>Phys. Rev. D 99, 032008 (2019)</u> <u>Phys.Rev.D 105, 112012 (2022)</u>
- Measurement of ⁸B solar neutrinos <u>Phys. Rev. D 99, 012012 (2019)</u>
- First measurement of reactor antineutrinos using pure water <u>Phys.Rev.Lett 130, 091801 (2023)</u>

$0\nu\beta\beta$ Milestones

- Optical calibration of the detector components (external water, acrylic, PMTs) <u>JINST 16 P10021 (2021)</u>
- Measurement of external backgrounds

External Backgrounds

- Simple detector configuration
- Measure components that don't change with detector medium

Contribution of external backgrounds to 0vββ ROI is 50% smaller than expectations (some based on upper limits)!

Continuing to monitor the rate and source of the external backgrounds in the next phases

Water Phase

The journey towards $0v\beta \beta_{scintillator}$ Phase

Scintillator Backgrounds

• Monitoring internal U/Th levels

Solar Directionality in SNO+ scinkillator Phase

- Solar neutrino direction reconstructed event-by-event in 0.6 g/L PPO scintillator!
 - Directional Cherenkov light separated from isotropic scintillation light using timing information
 - First demonstration in a high light-yield, large-scale detector

Antineutrinos in SNO+ scintillator Phase

- On-going antineutrino analysis in scintillator
- (α, n) reactions are main background
 - Major source of α ²¹⁰Po factor ~3 smaller from partial fill to 2.2 g/L full fill phase
- Classifier will help separate ${}^{13}C(\alpha,n)$ reactions from anti-neutrinos
- Expect sensitivity to Δm_{21}^2 and geo-neutrino measurement

Target-Out Measurement scinkillakor Phase

- Prepare/test analysis and techniques using real data
- Determine the count rate in the ROI in the absence of Te

Partial fill: Expected 8 events, seen 2 Full fill + 2.2 g/L PPO: Analysis in progress

The journey towards $0\nu\beta\beta_{Te}$ Loading

2017	2018	2019	2020	2021	2022	2023	2024

Key milestones

• July 2023 – started addition of bisMSB to detector

- Tracking ²¹⁰Po peak
- BisMSB added to bottom of AV (0.5 kg) and started to mix
- Clear improvement in light output (1.5x)

The journey towards $0\nu\beta\beta_{\tau e}$ Loading

2017	2018	2019	2020	2021	2022	2023	2024

Key milestones

- July 2023 started addition of bisMSB to detector
- Fall 2023 test batch (~ 200 kg) of the TeA purification plant
 - First full-scale test of the SNO+ Te purification and loading systems
 - Samples will be collected for off-site ICP-MS analysis of U/Th
- From 2024 start adding TeLS cocktail components
- From 2025 start count with Te

l'el

Tellurium purification plant

Ονββ Prospects

Events in the Region Of Interest + Fiducial Volume 9.47 events/yr (at nominal backgrounds)

Ονββ Prospects

Ονββ Prospects

- Expected sensitivity of $2x10^{26}$ years
 - After 3 years
 - With 0.5% natTe loading
- Planned future higher loadings
 - Potential to cover the whole inverted ordering band
 - R&D shows good optical properties and long term stability

<u>NIMA 1051, 168204 (2023)</u>

Summary

- SNO+ has successfully completed its scintillator loading and is taking data with 2.2 g/L PPO as of April 2022
- On-going addition of bisMSB in preparation for Te phase
- Much work has happened in preparation for the $0\nu\beta\beta$ searches:
 - Constant monitoring of the scintillator
 - Initial measurements show radioactive backgrounds below the targeted values
- Many exciting physics analyses on-going with scintillator data!

