XX International Workshop on Neutrino Telescopes

Istituto Veneto di Scienze, Lettere ed Arti, Venezia, Italia

Current results and $0 v \beta \beta$ prospects

Ana Sofia Inácio, on behalf of the SNO + collaboration

The SNO+ Detector

Multi-purpose neutrino detector located at SNOLAB in Sudbury, Ontario, Canada

2070 m of rock overburden,
$\sim 70 \mu$ /day

Acrylic vessel (AV)
12 m diameter 5 cm thick

Holds the target medium:
I. 905 tonnes of UPW
II. 780 tonnes of $\mathrm{LAB}+\mathrm{PPO}$
III. LAB+PPO+Te cocktail

The SNO+ Detector

Physics Programme

Searching for $0 \vee \beta \beta$ with SNO+

Major advantages of ${ }^{130} \mathrm{Te}$

- No need for enrichment
- Long $2 v \beta \beta$ half-life (7.7x10 ${ }^{20}$ years)
- High Q-value at 2.527 MeV

Searching for $0 \boldsymbol{\nu} \boldsymbol{\beta} \boldsymbol{\beta}$ with SNO+

Major advantages of ${ }^{130} \mathrm{Te}$

- No need for enrichment
- Long $2 v \beta \beta$ half-life (7.7x10 ${ }^{20}$ years)
- High Q-value at 2.527 MeV

Major advantages of SNO+

1. Large detector

- Rejection of external backgrounds through fiducialization

2. Loaded liquid scintillator

- Fast timing allows rejection of coincidence backgrounds
- High light yield for good resolution = target 460 PMT hits $/ \mathrm{MeV}$
- Loading can be scaled
- The phased loading approach
- Constrain and validate the detector model
- Target-out measurement before and during Te loading

The journey towards $\mathbf{0} v \boldsymbol{\beta} \boldsymbol{\beta}$ water

May - December 2017
(~115 gold physics days)
First SNO+ water phase

October 2018 - June 2019 (~185 gold physics days) Second SNO+ water phase

Much lower Rn backgrounds from installation of cover gas shielding

Major Outcomes

- Improved limits for invisible modes of nucleon decay

Phys. Rev. D 99, 032008 (2019) Phys.Rev.D 105, 112012 (2022)

- Measurement of ${ }^{8} \mathrm{~B}$ solar neutrinos

Phys. Rev. D 99, 012012 (2019)

- First measurement of reactor antineutrinos using pure water

Phys.Rev.Lett 130, 091801 (2023)

$0 v \beta \beta$ Milestones

- Optical calibration of the detector components (external water, acrylic, PMTs) IINST 16 P10021 (2021)
- Measurement of external backgrounds

External Backgrounds

- Simple detector configuration
- Measure components that don't change with detector medium

AV	$5.55 \mathrm{~m}<R_{A V}<5.7 \mathrm{~m}$
	$U \cdot R_{A V}>0.4$
External Water	$6.3 \mathrm{~m}<R<6.8 \mathrm{~m}$
	$U \cdot R>0.4$
PMT	$1.6<R^{3}<2.0$
	$U \cdot R<-0.8$
Internal Water	$R_{A V}<4.7 \mathrm{~m}$

Background	Rate (Fraction of Nominal)
AV+Ropes	$0.21 \pm 0.009_{-0.21}^{+0.64}$
External Water	$0.44 \pm 0.003_{-0.27}^{+0.32}$
PMT	$1.48 \pm 0.002_{-0.60}^{+1.65}$

Contribution of external backgrounds to $0 v \beta \beta \mathrm{ROI}$ is 50% smaller than expectations (some based on upper limits)!

Continuing to monitor the rate and source of the external backgrounds in the next phases

The journey towards $0 v \beta \beta_{\text {cintillator }}$ qhase 2017
$2018 \quad 2019$
$2020 \quad 2021$

Scintillator Fill
INST 16 P05009 (2021)
April - October 2020
(92 gold physics days) Bonus phase: half-filled detector with $0.6 \mathrm{~g} / \mathrm{L}$ PPO

LAB , the solvent

The journey towards $0 \vee \boldsymbol{\beta} \boldsymbol{\beta}$

April - June 2021
Bonus phase: full-filled detector with $0.6 \mathrm{~g} / \mathrm{LPPO}$

April 2022 - March 2023
Full detector with 2.2 g/L PPO

Scintillator Backgrounds Scintillator Phase

- Monitoring internal U/Th levels

Below DBD-phase requirements!

Solar Directionality in SNO+ scintillator

- Solar neutrino direction reconstructed event-by-event in $0.6 \mathrm{~g} / \mathrm{LPPO}$ scintillator!
- Directional Cherenkov light separated from isotropic scintillation light using timing information
- First demonstration in a high light-yield, large-scale detector

Antineutrinos in SNO+

- On-going antineutrino analysis in scintillator
- (α, n) reactions are main background
- Major source of α - ${ }^{210}$ Po - factor ~ 3 smaller from partial fill to $2.2 \mathrm{~g} / \mathrm{L}$ full fill phase
- Classifier will help separate ${ }^{13} \mathrm{C}(\alpha, n)$ reactions from anti-neutrinos
- Expect sensitivity to $\Delta \mathrm{m}_{21}^{2}$ and geo-neutrino measurement

Prompt Reconstructed Energy (MeV)

Target-Out Measurement phase

- Prepare/test analysis and techniques using real data
- Determine the count rate in the ROI in the absence of Te

Partial fill:
Expected 8 events, seen 2

Full fill + $2.2 \mathrm{~g} / \mathrm{L} \mathrm{PPO}$
Analysis in progress

The journey towards $0 v \beta \beta_{\text {Te Loading }}$

2017	2018	2019	2020	2021	2022	2023	2024

Key milestones

- July 2023 - started addition of bisMSB to detector

- Tracking ${ }^{210}$ Po peak
- BisMSB added to bottom of AV $(0.5 \mathrm{~kg})$ and started to mix
- Clear improvement in light output (1.5x)

The journey towards $\mathbf{0} \boldsymbol{v} \boldsymbol{\beta} \boldsymbol{\beta}_{\text {Te Loading }}$

$$
\begin{array}{lll}
2017 & 2018 & 201
\end{array}
$$

Key milestones

- July 2023 - started addition of bisMSB to detector
- Fall 2023 - test batch ($\sim 200 \mathrm{~kg}$) of the TeA purification plant
- First full-scale test of the SNO+ Te purification and loading systems
- Samples will be collected for off-site ICP-MS analysis of U/Th
- From 2024 - start adding TeLS cocktail components
- From 2025 - start count with Te

Ov $\beta \beta$ Prospects

Events in the Region Of Interest + Fiducial Volume
9.47 events/yr (at nominal backgrounds)

Ov $\beta \beta$ Prospects

Telluric acid has been "cooling" underground for several years

+ Te purification
+ can be verified with multi-site analysis

Well known from other measurements

Internal Th chain

Internal U chain

\uparrow
LS contribution measured, below target for $\beta \beta$
U and Th from the Te addition to be minimized with the purification systems

Ov $\beta \beta$ Prospects

- Expected sensitivity of 2×10^{26} years
- After 3 years
- With 0.5\% natTe loading
- Planned future higher loadings
- Potential to cover the whole inverted ordering band
- R\&D shows good optical properties and long term stability

NIMA 1051, 168204: (2023)

Summary

- SNO+ has successfully completed its scintillator loading and is taking data with $2.2 \mathrm{~g} / \mathrm{LPPO}$ as of April 2022
- On-going addition of bisMSB in preparation for Te phase
- Much work has happened in preparation for the $0 v \beta \beta$ searches:
- Constant monitoring of the scintillator
- Initial measurements show radioactive backgrounds below the targeted values
- Many exciting physics analyses on-going with scintillator data!

Thank YOu!

 Pracmen
20

