

Sensitivity to core-collapse supernovae neutrino signals in DarkSide-20k

<u>Giuseppe Matteucci^{1,2} on behalf of the DarkSide Collaboration</u> ¹Università degli Studi di Napoli Federico II ²Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

XX NEUTRINO TELESCOPES

4TH, 2023

Overview

- Introduction
- The DarkSide-20k experiment
 - Structure
 - Underground Argon
 - Photoelectronics
 - Current status of the experiment
 - Sensitivity
- Core-Collapse Supernovae Neutrino Signals in DS-20k
- Conclusions

Direct detection of Dark Matter

- WIMP hypothesis: Weakly Interacting Massive Particle
- Interaction: Coherent elastic WIMP-Nucleus scattering ($\propto A^2$)
- **Expected signal**: nuclear recoils 1-100 keV (non relativistic)
- **Signatures**: exponential single-recoil spectra (handful of events expected)
- **Requirements:** high exposure, ultra-low background (accurate PID, material choice)

$$\frac{dR}{dE_R}(E_R,t) = N_N \frac{\rho_0}{M_\chi} \cdot \int_{v > v_{\min}} v f(\vec{v},t) \frac{d\sigma}{dE_R}(E_R,v) d^3v$$

Two-phase Argon TPCs

- Full 3D reconstruction:
 - xy from S2 geometrical distribution
 - z from drift time
 - Good fiducialization

• Highly efficient PID with Ar PSD

DarkSide-50

- Underground experiment at LNGS (3800 m w.e.)
- Inner Detector: fiducial volume = (46.4 ± 0.7) kg
- Two veto detectors: LSV and WCD
- 532.4 live days of UAr blinded data
- b < 0.1 for the full exposure
- + 1.14 \times 10 $^{-44}\,cm^2$ 90% CL limit on DM-Nucleon cross-section for 100 GeV/c² DM

The DarkSide-20k Experiment

Inner Veto (UAr)

TPC (UAr)

- In construction at Hall C of LNGS (3800 m w.e.)
- Nested detector structure:
 - Outer Veto:
 - Muon veto
 - ProtoDUNE like membrane cryostat 8x8x8 m³
 - Inner Detector:
 - Stainless steel vessel containing the TPC and inner veto
 - 100 t of UAr (including TPC UAr)
 - Veto:
 - Veto for neutrons and gammas
 - Neutron capture with Gd-infused PMMA walls of the TPC
 - Two-phase Ar time projection chamber
 - ...next slide
- Target background < 0.1 (excluding neutrinos) in 200 t yr

The two-phase TPC of DS-20k

• DarkSide-20k TPC:

- Walls:
 - Gd-PMMA
 - WSR Reflector
 - TPB wavelenght shifter
- Top and bottom:
 - PMMA
 - TPB wavelenght shifter
 - Optical planes comprised of SiPM photo-detector units

• Fields:

- Clevios coating for Anode, Cathode, Field Cage
- Wire grid of stainless steel, supported by a suited frame
- Drift field (nominal) = 200 V/cm
- Extraction field (*nominal*) = 2.8 kV/cm
- Luminescence field (*nominal*) = 4.2 kV/cm
- Drift length = 348 cm
- Active UAr mass in TPC = 49.7 t
- Gas pocket thickness = (7.0 ± 0.5) mm
- Spatial resolution: xy < 5 cm, z ~ 1 mm

Argon procurement for DS-20k

- Atmospheric Argon (AAr): ~1 Bq/kg from ³⁹Ar
 - Cosmogenic radio isotope, β endpoint 565 keV
 - Pile-up issue (no background)
- Underground Argon: ~ 1/1400 Bq/kg
 - Demonstrated by DS-50 [Phys. Rev. D 93, 081101(R)]
- Argon in DS-20k will be UAr:
 - URANIA
 - Extraction facility in a CO2 mine in Cortez, CO, USA
 - 99.99% purity @ extraction rate 250-330 kg/day
 - ARIA [arxiv:2301.09639]
 - Distillation tower in Nuraxi-Figus (SU), Italy
 - Chemical purification rate: 1 t/day
 - First run of isotopic separation with Ar (EPJC (2023) 83: 453)
 - DArTinArDM
 - Facility at LSC in Canfrac (JINST 15 (2020) 02, P02024)
 - Measurement of ³⁹Ar abundance in Uar from Urania/Aria
 - First test with DS-50 UAr

Photoelectronics of DS-20k

Total PDUs used: 525 100% coverage PDU: 20x20 cm² 16 Tiles assembled on a Motherboard 4 Readout Channel 24 SiPMs directly mounted on a FEB SiPM: NUV-HD-CRYO developed by FBK and produced by LFoundry

PDU: Modular photosensor unit

- TPC PDU:
 - PDU assembled in Nuova Officina Assergi (NOA)
 - NOA is a 420 m² ISO-6 clean room with a reduced Rn concentration
 - 525 TPC PDUs to be tested at the Naples Test Facility
- VETO PDU:
 - Assembled in UK
 - 120 VETO PDUs to be tested in multiple facilities in UK and Poland

Prototype PDU data from Naples Laser calibration (1 CH, 7 V o.v.)

NOA at LNGS

Current Status of DS-20k

• Infrastructure:

- Steel support for the cryostat built at Hall C in LNGS
- Procurement for cryogenics and cryostat cold structure in progress → installation in 2024H1

• Prototypes:

- Darkside Proto-0 will run in 2023Q4 in Naples
- DS-20k Mockup operations started, functional in 2024 at LNGS

Photo-electronics:

- NOA operational and testing SiPM wafers
- Naples PDU Test Facility ready for mass testing before 2023Q4
- vPDU production in UK starting before end of year
- vPDU test facilities in commissioning

Sensitivity of DS-20k

- Upper limits for a 1 TeV/c² WIMP (90% C.L. exclusion) of 6.3 x 10⁻⁴⁸ cm²
- First measurement of the neutrino "fog" for n > 1.5
- Expected 3.2 neutrinos in 200 t-y
- What about core-collapse supernovae neutrinos?

11

Detection of a Supernova via CEvNS

ton

Events/[keV $_{
m nr}$

CCSN interaction for neutrino telescopes

- Charged Current:
 - High energy [O(10 MeV)]
 - Mostly electron (anti-)neutrinos
- CEvNS (Neutral Current):
 Low energy [O(10 kow)

 - Flavor Blind
 - "High" cross-section:

$$d\sigma(E_{\nu}, E_{r}) = \frac{G_{F}^{2}}{4\pi} Q_{W}^{2} m \left(1 - \frac{mE_{r}}{2E_{\nu}^{2}}\right) F^{2}(q) dE_{r}$$

ER equivalent energy [keV_{er}]

Background and No. of events

- Time resolution of 1.1 ms
- Background dominated by $^{\rm 39}{\rm Ar}$ above 10 $\rm N_e$
 - 0.5 Hz below 100 N_e cut from ³⁹Ar
 - 0.2 Hz of external background
- Below 10 N_e, background is single-electrons
 - 380 mHz/ton, reduced to ~0.5% with 3 $\rm N_{e}\,cut$
- Time window: 8 s

Source	No. Of Events
11 M_{\odot} SN-vs	181
$27~M_{\odot}~SN-vs$	337
³⁹ Ar	4.3
External background	1.8
Single-electrons	0.7

S/B of 24 (45) for a 11 (27) M_{\odot}

Sensitivity to SN neutrinos

- Discovery potential covers distances up to the edge of the Milky Way for a 11 $\rm M_{\odot}$ SN
- Slightly higher discovery sensitivity than XENONnT and LZ
- Will provide another input for triangulation of SN by joining SNEWS 2

Full Reference: The DarkSide-20k collaboration *et al* JCAP03(**2021**)043 DOI 10.1088/1475-7516/2021/03/043

Conclusions

- DarkSide-20k for WIMP direct search:
 - two-phase argon TPC with 20 t fiducial volume
 - at LNGS Underground Laboratories
 - ultra-low background goal
 - Cryogenic SiPM based optical readout
 - Underground-extracted radiopure argon
- The construction of DS-20k is ongoing...
- It will be sensitive to core-collapse supernovae up to the edge of the Milky Way
 - ... providing total neutrino flux normalization by measuring the flavorinsensitive CEvNS...
 - ...and will be part of SNEWS2

