selected topics of BSM physics with IceCube

NEUTEL 2023, Venice

the IceCube Neutrino Observatory

event signatures

track

cascade

double-bang

monopole

double track

neutral lepton

particle physics with IceCube

Our "beams" are

- atmospheric muons (~10¹¹/y)
- atmospheric neutrinos ($\sim 10^5$ /y)
- astrophysical neutrinos (~10²/y)
- exotica (of cosmic origin or from CR interactions in the atmosphere)

and we have > 10yr of data

particle physics with IceCube

Our "beams" are

- atmospheric muons (~10¹¹/y)
- atmospheric neutrinos ($\sim 10^5$ /y)
- astrophysical neutrinos ($\sim 10^2/y$)
- exotica (of cosmic origin or from CR interactions in the atmosphere)

and we hav

see talk by Mauricio Bustamante for BSM searches with neutrino telescopes

neutrino oscillations from the atmospheric neutrino flux

150.000 sub-100 GeV atmospheric neutrinos in9 years of DeepCore data

CNNs for energy, direction and particle ID classification

Focus on ν_{μ} disapearance

search for non-standard neutrino interactions

Phys. Rev. Lett 129 011804 (2022). See also Phys. Rev. D 104, 072006 (2021)

• Distorted oscillation pattern due to NSI mediated by non-SM bosons

$$H_{\alpha\beta} = \frac{1}{2E} U_{\alpha j} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} (U^T)_{k\beta} + V_{MSW} + \sqrt{2} G_F N_f \begin{pmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\tau} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

standard MSW NSI

- \rightarrow 6 additional "interaction terms" (if hermicity and unitarity are imposed)
- Effect proportional to LxE ← advantage of NTs
- shows in complementary range of parameter space with respect to standard oscillations

 $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \left| \sin(2\theta_{23}) \frac{\Delta m_{31}^2}{2E_{\nu}} + 2V_d \epsilon_{\mu\tau} \right|^2 \left(\frac{L}{2}\right)^2$

- IceCube analysis on $\epsilon_{\mu\tau}$ (see Phys. Rev. D 104 072006 (2021) for other parameters
 - 305.000 upgoing CC events in 8 years of data
 - 500 GeV < E < 1 TeV

search for Lorenz invariance violation

 Distorted oscillation pattern due to NSI mediated by non-SM bosons

$$\begin{split} H_{\alpha\beta} = \frac{1}{2E} U_{\alpha j} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} (U^{\dagger})_{k\beta} + V_{\rm MSW} + \\ & {\rm standard} \qquad {\rm MSW} \end{split}$$

$$\frac{p_{\lambda}}{E} \begin{pmatrix} a_{ee}^{\lambda} & a_{e\mu}^{\lambda} & a_{e\tau}^{\lambda} \\ a_{e\mu}^{\lambda^{*}} & a_{\mu\mu}^{\lambda} & a_{\mu\tau}^{\lambda} \\ a_{\mu\tau}^{\lambda^{*}} & a_{e\tau}^{\lambda^{*}} & a_{\tau\tau}^{\lambda} \end{pmatrix} - \frac{p_{\lambda}p_{\sigma}}{E} \begin{pmatrix} c_{ee}^{\lambda\sigma} & c_{e\mu}^{\lambda\sigma} & c_{e\tau}^{\lambda\sigma} \\ c_{e\mu}^{\lambda\sigma^{*}} & c_{\mu\tau}^{\lambda\sigma} & c_{\mu\tau}^{\lambda\sigma} \\ c_{\mu\tau}^{\lambda\sigma^{*}} & c_{e\tau}^{\lambda\sigma} & c_{\tau\tau}^{\lambda\sigma} \end{pmatrix}$$
$$\text{LIV}$$

- Distorsion of the vertical versus horizontal neutrino flux
- Shows in complementary range of parameter space with respect to standard oscillations
- IceCube ongoing analysis

(See also Nature Physics, vol 14, September 2018 and Phys. Rev. D104 072006 (2021))

search for sterile neutrinos

Search for v_{μ} dissapearance in 10.7 y of data (conservatively assume $\theta_{14} = \theta_{34} = 0$)

Using new energy reconstruction, ice model and background flux

Best fit:
$$\Delta m^{2}_{41}=7.1 \text{ eV}^{2}$$
, $\theta_{24}=15^{\circ}$

search for sterile neutrinos

Search for ν_{μ} dissapearance in 10.7 y of data (conservatively assume $\theta_{14} = \theta_{34} = 0$)

Using new energy reconstruction, ice model and background flux

Best fit:
$$\Delta m^{2}_{41}=7.1 \text{ eV}^{2}$$
, $\theta_{24}=15^{\circ}$

neutrino decoherence from Quantum Gravity

arXiv:2308.00105

• Distorted oscillation pattern due to propagation in

spacetime foam

 \rightarrow evolution of neutrino "beam" includes a decoherence operator D, $\dot{\rho} = -i[H,\rho] - D[\rho] = -i[H,\rho] - \begin{pmatrix} 0 & \rho_{12}\Gamma_{21} & \rho_{13}\Gamma_{31} \\ \rho_{21}\Gamma_{21} & 0 & \rho_{23}\Gamma_{32} \\ \rho_{31}\Gamma_{31} & \rho_{32}\Gamma_{32} & 0 \end{pmatrix}$

standard decoherence oscillations

$$\Gamma_{ij} = \Gamma_{ij}(E_0) \left(\frac{E}{E_0}\right)^n = \Gamma_0(E_0) \left(\frac{E}{E_0}\right)^n$$

term

 Γ_0 and n free parameters

look for deviations from standard oscillations in atmospheric neutrinos of 500 GeV <E< 10 TeV

search for Quantum Gravity with astrophysical neutrinos

New physics

 $\dot{c}_{ee}^{(6)}(1:0:0)_{s}$

 $\mathring{C}_{eu}^{(6)}(1:0:0)_{s}$

 $\mathring{C}_{\mu\nu}^{(6)}(1:0:0)_{s}$

 $\dot{c}_{\mu\nu}^{(6)}(0:1:0)_{s}$

 $\hat{c}_{\mu\tau}^{(6)}(0:1:0)_{s}$

 $= \mathring{c}_{e_{\tau}}^{(6)}(1:0:0)_{s}$

 $\dot{c}_{\tau\tau}^{(6)}(1/3:2/3:0)_{s}$

 $\log_{10} \left[c_{\alpha\beta}^{(6)} \times E_{\rm Pl}^2 \right]$

1.0

IceCube has access to a high-statistics, high-energy neutrino beam (atm. neutrinos), and to a ultra high-energy beam from cosmological distances (the astrophysical flux)

→ Extremely rich particle physics program

~10 years of operation: statistics starts to be sufficient to test BSM effects: many analyses are systematics limited

Results on neutrino oscillations (and v cross section) complementary to accelerator physics: different energy regimes. Consistent picture so far.

Reach Planck scale on QG searches

IceCube is sensitive to any light-emitting particle besides muons \rightarrow possibility to search for new particles: monopoles, DM, SUSY...

FINE