LIME: Estimating the interaction depth z

Best efforts with Linear Regression

R. Roque | CYGNO Reconstruction & Analysis Meeting | 20/10/2022

An Update of the Last Efforts

Data Information

- Runs 5861 -> 5911 taken on 04/11
- Water cooled, dark lab, He-40%CF₄
- Scan in z with ⁵⁵Fe source

I am working with 19.6% of the original dataset (background clusters were discarded).

Linear Regression with the Transverse Profile, $\boldsymbol{\eta}$

	1st order	2nd order	3rd order	4th order
r²	0.0170(16)	0.246(32)	0.271(33)	0.278(15)
RMSE [cm]	11.25(14)	10.73(24)	10.54(25)	10.49(13)

To guarantee a model valid for other energies, the energy-dependent features were discarded:

• sc_integral • sc_corrintegral • sc_tgaussamp • sc_size • sc_nhits • sc_length • sc_width

I also **discarded quasi-constant features** from the dataset:

• sc_energy • sc_pathlength • sc_lstatus • slimness • sc_pearson • sc_tstatus

Groups of features with redundant information (r²>0.9).

New features were created by multiplying and dividing all the original features. The following interactions show a promising correlation with z:

sc_lgausssigma*sc_tfullrms
sc_lgausssigma*sc_tgausssigma
sc_tgausssigma*sc_lfullrms
sc_tgausssigma*sc_longrms
sc_tfullrms/sc_rms

Almost all of them are a combination of the transverse and longitudinal profile of the clusters.

 $r^{2}=0.686(12)$, RMSE = 6.92(13) cm

Conclusions

• With a well developed linear model, the model accuracy is significantly improved

The RMSE can be improved from 11.25(14) cm to 6.92(13) cm.

Linear Regression, Transverse profile		Linear Regression, TSigma*LRMS	Multi-Linear Regression, 10 features	
	r ² =0.0170(16)	r²=0.647(12)	r ² =0.686(12)	
	RMSE = 11.25(14) cm	RMSE = 7.34(13) cm	RMSE = 6.92(13) cm	

Next steps

- Explore other Non-Linear Regression Models. BDTs, NN and Random Forests
- Consider cluster variables that are not in the trees Flaminia suggested using kurtosis/integral

2020 2020

