
LIME: Estimating the interaction 
depth z

Best efforts with Linear Regression
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Data Information
● Runs 5861 -> 5911 taken on 04/11

● Water cooled, dark lab, He-40%CF4

● Scan in z with ⁵⁵Fe source

I am working with 19.6% of the original dataset 

(background clusters were discarded).

An Update of the Last 
Efforts
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Linear Regression with the Transverse Profile, η

1st order 2nd order 3rd order 4th order

r² 0.0170(16) 0.246(32) 0.271(33) 0.278(15)

RMSE [cm] 11.25(14) 10.73(24) 10.54(25) 10.49(13)



A New Strategy based on Feature Engineering
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https://github.com/RitaROK/Analysis/blob/main/Estimation_of_z.ipynb
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To guarantee a model valid for other energies, the energy-dependent features were discarded:

• sc_integral     • sc_corrintegral     •sc_tgaussamp     • sc_size      • sc_nhits     • sc_length     • sc_width

I also discarded quasi-constant features from the dataset:

• sc_energy     • sc_pathlength     • sc_lstatus     • slimness     • sc_pearson     • sc_tstatus
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Groups of features with redundant information (r²>0.9).
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New features were created by multiplying and dividing all the original features. The following 

interactions show a promising correlation with  z:

• sc_lgausssigma*sc_tfullrms     • sc_lfullrms*sc_tfullrms     • sc_longrms*sc_tfullrms   

• sc_lgausssigma*sc_tgausssigma      • sc_tgausssigma*sc_lfullrms     • sc_tgausssigma*sc_longrms

• sc_tfullrms/sc_rms

Almost all of them are a combination of the transverse and longitudinal profile of the clusters.
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Using the original features and relevant interactions, 

forward and backward feature selection were applied. 

The best 10 features for multilinear regression are:

sc_tfullrms

sc_lp0fwhm

sc_tchi2

sc_lgausssigma*sc_tfullrms

sc_tp0fwhm

sc_rms

sc_lp0prominencesc_lfullrms

sc
_tg

au
ss

sig
m

a*
   

sc
_lfu

llr
m

s

sc_tfullrms/sc_rms

sc_lgausssigma

Transverse 

Profile

The RMSE and r² score 

stabilizes for linear models of 

more than 10 features.
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The Best Linear Regression
z = -7.52(5) + 1.0233(15) * sc_lgausssigma*sc_tfullrms

The Best Multilinear Regression

r²=0.647(12), RMSE = 7.34(13) cm r²=0.686(12), RMSE = 6.92(13) cm

Regression coefficients:

● Intercept: 18.4(8)

● sc_lgausssigma: -2.26(10)

● Transverse profile: 1.27(23)

● sc_lp0fwhm: 1.557(21)

● sc_tfullrms: -2.00(12)

● sc_tchi2: 0.1130(24)

● sc_lgausssigma*sc_tfullrms: 0.896(17)

● sc_tp0fwhm: 0.752(25)

● sc_rms: -1.826(29)

● sc_lfullrms: 0.52(5)

● sc_lp0prominence: 0.00639(13)



Conclusions
● With a well developed linear model, the model accuracy is significantly improved

The RMSE can be improved from 11.25(14) cm to 6.92(13) cm.
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Next steps
● Explore other Non-Linear Regression Models.

BDTs, NN and Random Forests

● Consider cluster variables that are not in the trees

Flaminia suggested using kurtosis/integral

Linear Regression, 
Transverse profile

Linear Regression, 
TSigma*LRMS

Multi-Linear Regression, 
10 features

r²=0.0170(16)

RMSE = 11.25(14) cm 

r²=0.647(12)

RMSE = 7.34(13) cm

r²=0.686(12)

RMSE = 6.92(13) cm


