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These are the lectures notes for the “Theoretical Aspects of Astroparticle
Physics, Cosmology and Gravitation” school in 2023 at Galileo Galilei Insti-
tute for Theoretical Physics in Florence. This course, taught by José Luis
Bernal and Sarah Libanore, focuses on cosmic tensions, and it is structured
in 5 lectures and 2 applied sessions. The Applied Sessions are mainly meant
for discussion and brain storming, so to increase the students’ awareness and
understanding of the physical quantities, processes and implications of what
the main lectures present from a more theoretical point of view. The notes
represent a guideline through the reasoning, but they can possibly be not
exhaustive with respect to what is discussed during the meeting.

These notes contain significantly more detail than what was covered in
the lectures, especially regarding derivations and expressions in synchronous
gauge. Throughout, natural units c = ℏ = 1 will be used unless other-
wise stated and we will use the mostly positive signature, i.e., for which the
Minkowski space is determined by a diagonal metric given by {−1, 1, 1, 1}. As
a disclaimer, the references explicitly cited in these notes are far from being
a representative sample of the community’s work in the field. Always that it
is possible, reviews will be referenced so that the reader can find the relevant
references in them.



CONTENTS IN BRIEF

1 Lecture 0: Basics 1

2 Lecture 1: Growth of structures 35

3 Lecture 2: CMB primary anisotropies 53

4 Applied Session 1
Cosmological parameters from the early Universe 71

5 Lecture 3: Measuring the Hubble constant and the background
expansion 85

6 Lecture 4: Measuring the amplitude of clustering 101

7 Applied Session 2
Clustering in the late Universe 113

8 Lecture 5: Cosmic tensions and how to resolve them 127

iii





CONTENTS

1 Lecture 0: Basics 1

1.1 The FLRW metric and the Einstein equations 2

1.2 Boltzmann Equations 4

1.2.1 Boltzmann Equation in FLRW 6

1.2.2 Collision terms 7

1.3 Perturbed Universe 8

1.3.1 Fourier-space computations 10

1.3.2 Perturbed stress-energy tensor 11

1.3.3 Evolution of metric perturbations 12

1.3.4 Perturbed Boltzmann equations 15

1.4 Evolution of matter and radiation perturbations 19

1.4.1 Dark matter 19

1.4.2 Massless neutrinos 21

1.4.3 Massive neutrinos 23

1.4.4 Photons 24

1.4.5 Baryons 26

1.4.6 Others 28

v



vi CONTENTS

1.5 Initial conditions 28

2 Lecture 1: Growth of structures 35

2.1 Large scales 37

2.1.1 Super-horizon solutions 38

2.1.2 Horizon crossing 39

2.2 Small scales 41

2.2.1 Horizon crossing 41

2.2.2 Sub-horizon evolution across the matter-radiation

transition 44

2.3 Transfer function 46

2.3.1 Growth factor 50

2.4 Limit of linear theory 52

3 Lecture 2: CMB primary anisotropies 53

3.1 Large-scale anisotropies 57

3.2 Baryon acoustic oscillations 58

3.3 Diffusion damping 61

3.4 Projection to anisotropies on the sky 63

3.5 CMB angular power spectrum 67

4 Applied Session 1

Cosmological parameters from the early Universe 71

4.1 Summary on the physics of the CMB peaks 72

4.2 Effect of the cosmological parameters 75

5 Lecture 3: Measuring the Hubble constant and the background

expansion 85

5.1 The local distance ladder 88

5.2 Measuring the late-time expansion history 91

5.2.1 Cosmological supernovae type Ia 92

5.2.2 Baryon acoustic oscillations 92

5.2.3 Strong-lensing time delays 99

6 Lecture 4: Measuring the amplitude of clustering 101

6.1 Basics of weak gravitational lensing 102

6.2 CMB lensing 104

6.2.1 CMB lensing tomography 107



CONTENTS vii

6.3 Galaxy weak lensing 108

6.3.1 Galaxy weak-lensing statistics 110

7 Applied Session 2

Clustering in the late Universe 113

7.0.1 The S8 parameter 114

7.0.2 CMB lensing 115

7.0.3 Thermal SZ cluster 116

7.0.4 Galaxy weak lensing 119

7.0.5 Intrinsic alignment problem 122

7.0.6 How results can be affected by uncertainties 125

8 Lecture 5: Cosmic tensions and how to resolve them 127

8.1 The H0 tension 129

8.1.1 Features to solve the H0 tension 130

8.1.2 Proposals beyond ΛCDM 131

8.2 The S8 tension 136

8.2.1 Features to solve the small-scale clustering tension 137

8.2.2 Beyond ΛCDM potential solutions 140

8.2.3 Last remarks 141





CHAPTER 1

LECTURE 0: BASICS

In this initial chapter we provide a long discussion on some of the basics of
cosmological perturbation theory, which are required to fully understand the
content of the most formal bits of the course. Of course, this preliminary
chapter provides a lot of detail, in particular for some derivations, but we
prefer to include it in case some of the participants in the school want to
deepen in the study of cosmological perturbations or to have as a focused
reference which uses the same notation as the rest of the course.

Cosmology deals with the nature and evolution of the Universe and its
components in a statistical manner, therefore it is at its core the application
of general relativity and statistical mechanics, combined with the astrophysics
that drive the physics of the tracers that we can observe. However, we will
ignore the latter for the time being and focus on the statistical properties of
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2 LECTURE 0: BASICS

matter and radiation in the Universe, and how they affect and are affected by
gravity,1 which is the only relevant long-range force that we will consider.

Some approaches prefer to treat some of the components of the Universe
as fluids. Instead, we will treat each component from a statistical point of
view: since we do not care about the behavior of individual particles, but
their collective properties, all the information that we need is enclosed in
the distribution function f of the number of particles N in an infinitesimal
phase-space element around position x and momentum p, such as

N(x,p, t) = f(x,p, t)d3x
d3p

(2π)3
, (1.1)

where we assume that the number of particles is large enough for f to approach
the continuous limit. The (2π)3 factor appears because by Heisenberg’s prin-
ciple, no particle can be localized into a region of phase space smaller than
(2πℏ)3, which makes it the size of the fundamental element. The equations
describing the evolution of f as function of time and phase-space coordinates
are the Boltzmann equations.

As we will see, the Boltzmann Equations already include the continuity
and Euler equation that are usually applied to describe the dynamics of flu-
ids for cosmological perturbation theory, but in addition provide a framework
to straightforwardly include any additional interaction between the particles
of the fluid or between different components of matter and radiation. Fur-
thermore, some components impact cosmological perturbations beyond their
density, velocity and anisotropic stress (the monopole, dipole and quadrupole
of the phase-space distribution), and higher-order moments, not considered in
the continuity and Euler equations, must be taken into account. This is why
we prefer to develop the cosmological perturbation theory with full generality,
and then specify the properties for each component.

1.1 The FLRW metric and the Einstein equations

For most of the derivations and discussions in these lectures we will assume a
flat spatial sector in our metric, i.e., an Euclidean Universe. Special relativity
is described by the Minkowski metric gµν = γµν = Diag{−1, 1, 1, 1}. For an
expanding Universe, if we limit our description to the background, we have
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, given by

ds2 = −dt2 + a2(t)dxidxi , (1.2)

where a(t) is the scale factor, which evolves with time.

1Studies of general relativity usually refer as matter to all components that appear in the
right-hand side of the Einstein equations, i.e., including also radiation. We may use that
language in certain situations.
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The shortest (or extremal) path between two points in space time is defined
by the geodesic. General relativity states that this is the path that a particle
follows in the absence of any force apart from gravity. Therefore, we can
understand the geodesic as a generalization of Newton’s law with no forces to
general relativity. Defining the parameter λ as the evolution parameter of the
system, which monotonically increases along the particle’s path, the geodesic
equation can be written as

d2xµ

dλ2
+ Γµ

αβ
dxα

dλ

dxβ

dλ
= 0 . (1.3)

Γµ
αβ in the equation above is the Christoffel symbol, which is transformation

tensor (more exactly, the affine connection) between the Newtonian, Euclidean
case and its relativistic generalization. Expressed as function of the metric,
they are given by

Γµ
αβ =

gµv

2

[
∂gαv
∂xβ

+
∂gβv
∂xα

− ∂gαβ
∂xv

]
, (1.4)

where you can note that the Christoffel symbols are symmetric for the low
indices. Therefore, it is evident that calculating the Christoffel symbols is a
basic step for any calculation.

However, the Universe is not empty, and it contains matter and radiation
which determines its evolution. The relation between the metric and the
constituents of the Universe is contained in the Einstein equations:

Gµν + Λgµν = 8πGTµν , (1.5)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor, which depends on the
Ricci tensor and the Ricci scalar, Λ is the cosmological constant, G is the
gravitational constant and Tµν is the stress-energy tensor (or ten energy-
momentum tensor). The Ricci tensor is given by

Rµν = ∂λΓ
λ
µν − ∂νΓλ

µλ + Γλ
λρΓ

ρ
µν − Γρ

µλΓ
λ
νρ , (1.6)

and the Ricci scalar is the contraction of this tensor: R ≡ gµνRµν . For the
FLRW metric, all Christoffel symbols are 0 except for

Γ0
ij = δij ȧa , Γi

0j = δijH , (1.7)

where the dot denotes a time derivative, δij is the Kronecker delta, and we
have defined the Hubble parameter H ≡ ȧ/a. Similarly, the non-vanishing
components of the Ricci tensor and the Ricci scalar are given by

R00 = −3 ä
a
, Rij = δij(2ȧ

2 + aä) , R = 6

(
ä

a
+H2

)
. (1.8)

Focusing again only in the background and mean quantities, the stress-
energy tensor only features the mean density ρ̄ and pressure P̄ : there cannot
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be any mean net momentum or velocity since that would break the isotropy
of the Universe postulated by the cosmological principle. Therefore, in the
isotropic smooth Universe the stress-energy tensor is a diagonal tensor given
by Tµ

ν = Diag{−ρ̄, P̄ , P̄ , P̄}. As this tensor describes the energy and momen-
tum of the components of the Universe, it must respect the local energy and
momentum conservation:

∇µT
µ
ν ≡

∂Tµ
ν

∂xµ
+ Γµ

αµT
α
ν − Γα

νµT
µ
α = 0. (1.9)

Now we have all the pieces to write the Einstein equations correspondent
to the Euclidean FLRW metric. First, we take the time-time component of
the equation and find

H2 =
8πG

3
ρ̄ , (1.10)

where ρ̄ is the mean energy density of all components (including the cosmo-
logical constant). This equation is known as the first Friedmann equation.
However, it may be more familiar if we rewrite it in terms of the density pa-
rameter of each component s, Ωs ≡ ρ̄s/ρcrit, where ρcrit ≡ 3H2

0/8πG is the
critical density of the Universe today. Thus,

H2 = H2
0

∑

s

Ωs(a)
−3(1+ws) , (1.11)

where ws ≡ P̄s/ρ̄s is the equation of state parameter of each component. If
we consider a curved Universe, we can define ΩK = 1−∑s Ωs and add a term
ΩKa

−2 to the right-hand side of the equation above.
Taking the trace of the Einstein equations we get to

−3ä

a
= 4πG

[
3P̄ + ρ̄

]
− Λ, (1.12)

which is known as the second Friedmann equation.

1.2 Boltzmann Equations

A system of particles is statistically determined by its distribution function
f in phase space, so we just need an equation that describe its evolution.
Neglecting for now any interaction between particles (e.g., scatter, decays,
annihilation, etc), the total number of particles must be conserved. This
case is referred to as ‘collisionless’ in the context of the Boltzmann equations.
Therefore, the total (rather than partial) time derivative of the distribution
function must vanish:

df(x,p, t)

dt
= 0 ; where

d

dt
=

∂

∂t
+ ẋ ·∇x + ṗ ·∇p , (1.13)
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where dot denote time derivatives and the subscript of the gradients denote
the arguments they must be taken with respect to. The forces driving the
problem at hand are included substituting the equations of motion in the
expression above. But before that, we need to generalize this expression to
the case of an expanding Universe.

One of the main benefits of working in terms of the distribution function
f is that we can use it to derive all macroscopic properties of the particles
under study. In all generality, the relativistic energy-momentum tensor is

Tµ
ν (x, t) =

g∗√
−det(gαβ)

∫
dP1dP2dP3

(2π3)

PµPν

P 0
f(x,p, t) , (1.14)

where g∗ accounts for all the degenerate particle state that are described by
f (e.g., g∗ = 2 for a particle with spin 1/2) and Pµ is the four-momentum,
defined in terms of the affine parameter of the geodesic with λ (to avoid
confusion with the shear stress σ, which will be introduced at the end of this
chapter) as

Pµ ≡ dxµ

dλ
. (1.15)

Equation (1.14) shows that the energy-momentum tensor gives the current
density of the four-momentum carried by the particles with distribution func-
tion f . The momentum integral over f gives you the number density; weighted
by Pν it gives you the four-momentum density; and additionally weighted by
the four-velocity Pµ/P 0 gives you the current density of the four-momentum.
Finally, the prefactor is a geometric factor to ensure the conservation of the
energy-momentum tensor: ∇µT

µ
ν = 0.

We will first consider a smooth Universe, expanding according to the FLRW
metric. However, f still depends on a six-dimensional phase space: we will
track time separately as before, and we can express P 0 as function of p using
the norm p of the three-momentum and the mass-shell constraint. Then, for
the FLRW metric, we have

(
P 0
)2 ≡ E2 = p2 +m2 . (1.16)

Furthermore, it is convenient to separate the dependence on p into a depen-
dence on its magnitude p and the unitary vector p̂i = p̂i which determines its
direction and satisfies δij p̂

ip̂j = 1.2 Since p̂i is expected to be proportional to
P i, such as P i = Cp̂i; then

p2 = gijP
iP j = gij p̂

ip̂jC2 = a2δij p̂
ip̂jC2 ⇒ C = p

a
⇒ P i =

p

a
p̂i , (1.17)

and we can interchange always P i by p and p̂i. Therefore, we can generalize
f(x,p, t) = f(xi, p̂i, p, t) and express the Boltzmann Equation as

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
= 0 . (1.18)

2In general, we will use hats as the notation to denote unitary 3-vectors.
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This is the most general expression of the Boltzmann equation in the absence
of interactions between particles. In the rest of the section we will discuss a
specific simple case and discuss generally the source term that encloses the
microphysics determining the particle interactions.

1.2.1 Boltzmann Equation in FLRW

Let us specify the Boltzmann Equation for a smooth expanding Universe,
as the one described by the FLRW. In this scenario, the direction of the
momentum does not change, hence we can drop the last term in Eq. (1.18).
The term than depends on ∂f/∂xi could also be dropped (the background is
homogenous and isotropic), but it is easy to handle and will be useful once we
add perturbations. We need to obtain then the values of the total derivatives
of xi, and p with respect to time. Using Eq. (1.15), we get

dxi

dt
=

dxi

dλ

dλ

dt
= P i 1

P 0
=

p

E

p̂i

a
. (1.19)

In order to obtain the total derivative of p with respect to time we start from
the time component of the geodesic,

dP 0

dλ
= −Γ0

αβP
αP β = −a2HδijP iP j , (1.20)

where the last equality relies on the Christoffel symbols for the FLRW metric.
Since P 0 = dt/dλ, we have (multiplying and deriving by dt)

P 0 dP
0

dt
= p

dp

dt
= −Hp2 → dp

dt
= −Hp , (1.21)

where the first equality is obtained from applying the time derivative to
Eq. (1.16) in the form d(P 0)2/dt = 2P 0d(P 0)/dt = d(E0)2/dt = 2pdp/dt.
The equation above shows that the physical momentum of any particle de-
cays as 1/a in a smooth expanding Universe. Then the collisionless Boltzmann
equation in an unperturbed expanding Universe is given by

∂f

∂t
+
p

E

p̂i

a

∂f

∂xi
−Hp∂f

∂p
= 0 . (1.22)

Similarly, we can derive the evolution of the number density, since it is the
momentum integral of f , as discuss above. For a homogeneous Universe (i.e.,
∂f/∂xi = 0), and integrating by parts the momentum component as

H

∫
d2Ωp

(2π)3

∫ ∞

0

p2dpp
∂f

∂p
= −3H

∫
d2Ωp

(2π)3

∫ ∞

0

p2dpf = −3Hn , (1.23)

where Ωp is the solid angle for the momentum vector and we have used that
for any regular distribution function fp3 vanishes at p = 0 and p = ∞, we
find

dn

dt
+ 3Hn = 0 . (1.24)



BOLTZMANN EQUATIONS 7

This is, in the absence of collisions, the number density decays as a−3 in a
homogeneous expanding Universe. However, collisions can change this be-
haviour, as well as the evolution of the distribution function. We briefly
introduce below the collision term.

1.2.2 Collision terms

So far we have studied the evolution of the distribution function for parti-
cles that do not interact between them or have any interaction with other
components beyond long-range forces (e.g., gravity). However, when these
conditions do not apply there is a source term in the Boltzmann equation,
called the collision term.3 As it is expected, the collision term depends on the
actual phase-space distribution of the particles involved; hence, in general,
the Boltzmann equation becomes

df

dt
= C[f ] . (1.25)

In order to show in a simple example how to derive the collision term, let
us consider a reaction where particles of type (1) and (2) interact to form
particles of type (3) and (4):

(1)p + (2)q ←→ (3)p′ + (4)q′ , (1.26)

where the subscripts denote each particle’s momenta.4 Of course, the reaction
conserves energy and momentum, and each particle has its own distribution
function fs, with some states that can be degenerate (e.g., often in cosmology,
the spin does not play an active role, hence instead of tracking it directly, we
weight the distribution function with a suitable degeneracy weight g∗).

We assume that this reaction is local, e.g., the reaction occurs at (x, t) and
we only need to determine the momenta. Furthermore, we need to compute
the collision term for each independent particle type (which most likely will
couple the evolution equations for the fours types of particles).

At the end of the day, the collision term (say, for particles of type 1), as
a source term, accounts for all particles that get scattered away from p by
the forward reaction (subtract them from f1(x,p, t)) and all particles that get
scattered to p by the backward reaction (add them to f1(x,p, t)). The for-
ward and backward reaction rates are determined by the scattering amplitude
|M|2, which can be computed using Feynman diagrams, and the number of
particles of each type with the momenta required. In this case we have the

3In the context of the Boltzmann equation, the effect of direct particle interactions is
referred to as ‘collisions’, and it is a way to describe the microphysics driving the particle
interaction in an effective statistical way.
4This reaction can be of scattering and annihilation, depending on the nature of particles
3 and 4 with respect to particles 1 and 2. The derivation of this subsection can straightfor-
wardly be extended to other cases involving a different number of particles.
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products f1(p)f2(q) and f3(p
′)f4(q

′) for the forward and backward reactions.
We need to account for stimulated emission (i.e., Bose enhancement) and
Pauli exclusion principle (i.e., Pauli blocking), too, which amounts to include
factors of (1 ± f3(p))(1 ± f4(q′)) to the forward reaction (and equivalently
to the backward reaction), depending on whether the particle involved is a
fermion or a boson. What matters is the occupation of the phase-space ele-
ment in the result state from each reaction; this is why they are interchanged.
If the particle is a boson the reaction is enhanced, since bosons occupying the
same state are favored, while if the particle is a fermion, if a specific state is
occupied the reaction cannot happen. Finally, the conservation of momentum
and energy is enforced using corresponding Dirac delta functions.

In order to consider the whole phase space in position (x, t) that affects
particle 1 with momentum p we need to integrate over all momenta of particles
2, 3, and 4. However, there is a small subtlety: in a relativistic setting, phase-
space integrals are four-dimensional (three momentum components and the
energy), but energy and momentum are related by the mass-shell constraint,
therefore

∫
d3p

(2π)3

∫
dEδ

(1)
D (E2 − p2 −m2) =

∫
d3p

(2π)3

∫
dE

δ
(1)
D

(
E −

√
p2 +m2

)

2E
,

(1.27)
which adds a factor of 1/2E after integrating over the energy.

Taking all these considerations into account, the collision term becomes

C[f1(p)] =
1

2E1(p)

∫
d3q

(2π)32E2(q)

∫
d3p′

(2π)32E3(p′)

∫
d3q′

(2π)32E4(q′)
|M|2×

× (2π)4δ
(3)
D (p+ q − p′ − q′)δ

(1)
D [E1(p) + E2(q)− E3(p

′)− E4(q
′)]×

× {f3(p′)f4(q
′) [1± f1(p)] [1± f2(q)] −

− f1(p)f2(q) [1± f3(p′)] [1± f4(q′)]} .
(1.28)

1.3 Perturbed Universe

So far, we have considered only a smooth expanding Universe described by
the FLRW metric. This is enough to study the background expansion and
thermal history of the Universe, but the Universe has small inhomogeneities
that grow over time and host the galaxies and large scale structure that we
observe today. Fortunately to us, these inhomogeneities are very small, which
allows us to treat them perturbatively. In particular, the linear approximation
will be enough except for the small scales at late times.

As we have discussed previously in the context of a smooth Universe, the
metric perturbations and the perturbations in the phase-space distributions
of the matter components are coupled. Metric perturbations produce per-
turbations in the background properties of matter and radiation, which in
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turn affect the metric perturbations, as expected from the energy-momentum
tensor term in the Einstein equations and the presence of gravity (through
the time derivatives of position and momentum) in the Boltzmann equations.
Therefore, we need to treat perturbatively both set of equations to derive the
system that describes the evolution of cosmological perturbations.

In what follows we will assume a flat Universe described by the ΛCDM
model and where general relativity is an accurate description of gravity, with
dark matter, baryons, neutrinos and photons. Also, for convenience, we will
work with the conformal time τ , which is related with the physical time
through dt = adτ . Derivatives with respect to conformal time are denoted
with a prime, and a′/a = H is the conformal Hubble parameter. Using the
conformal time, the FLRW metric satisfies

ds2 = a2(τ)
[
−dτ2 + δijdx

idxj
]
. (1.29)

Consider now a small perturbation to this metric, which can be written in
full generality as gµν = ḡµν + hµν , where the bar denotes background values.
Since all these perturbations are very small, we can restrict our work to linear
order in perturbation theory. Therefore, we can consider the perturbations
a three-tensors and raise and lower indices in the spatial indices always with
Kronecker delta (this is not the case for four-vector indices).

The perturbation (actually, any tensor) can be decomposed in scalar, vector
and tensor contributions. The decomposition theorem is a very important
result in general relativity (which we will not prove here, can be found in
Ref. (1)), which states that perturbations of each type evolve independently
at linear order. Taking this into account, let us express the perturbed metric
as

g00 = −a2(τ) {1 + 2Ψ(x, τ)} , g0i = a2(τ)wi(x, τ) ,

gij = a2(τ) {[1 + 2Φ(x, τ)] δij + χij(x, τ)} ,
(1.30)

where Ψ and Φ are scalars, wi is a vector and χij is a symmetric trace-
free tensor (δijχij = 0); χij can be taken to be traceless since any trace
can be reabsorbed into Φ.5 We will make use of the scalar-vector-tensor
decomposition theorem and consider only scalar perturbations.
wi can be decomposed in a curl-free and divergence-free components in

such a way that it depends on a scalar and a transverse vector. In turn,
χij can be decomposed in a longitudinal, solenoidal and traceless-transverse
parts, which involve a scalar, a transverse vector and a trace-free divergence-
free tensor. Therefore, we have 4 scalar perturbations (4), 2 transverse vector
perturbations (2×2 = 4) and a trace-free divergence-free tensor (2) for a total

5A warning regarding different references is in place regarding this decomposition and the
derivation below. Different references use different conventions (signature of the metric,
signs of the perturbations, notation of the perturbations, etc), which may impact final
expressions in factors and signs for each of the perturbations.
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of 10 (4+4+2) degrees of freedom. This means that the metric perturbations
from Eq. (1.30) are not uniquely defined (metric perturbations must have 6
degrees of freedom and we counted 10 above) and depend on the coordinate
choice. In general relativity, the choice of coordinates and fixing of degrees of
freedom is called gauge choice. Any time a metric is written, a time slicing is
chosen and specific spatial coordinates are defined within it.

A suitable gauge eases significantly the computations but a poor choice may
complicate them and even introduce spurious perturbations can arise. This
is why gauge-invariant quantities are so important: actually any cosmological
observable must be gauge invariant, since physics cannot depend on the choice
of coordinates. In any case, transforming between gauge with ease is very
important for almost any cosmological computation.

Two of the most used gauges for cosmological perturbation theory are
the synchronous and the conformal Newtonian gauges (also called in some
contexts longitudinal gauge). The conformal Newtonian gauge (we will refer
to this gauge as simply Newtonian from now on) is a particularly simple gauge,
and we will use it throughout this study. This gauge has the drawback that
is limited to only scalar perturbations, although it has been generalized to
tensor perturbations too. In this gauge the metric is given by

ds2 = a2(τ)
{
−(1 + 2Ψ)dτ2 + (1 + 2Φ) δijdx

idxj
}
, (1.31)

which leaves the metric tensor diagonal. In this case, the metric perturbations
are Ψ and Φ.

1.3.1 Fourier-space computations

Before going deeper in the derivation of the evolution equations, let us step
back to discuss the benefits of working in Fourier space (rather than in con-
figuration space), determined by wavevectors k. As reference, we follow the
Fourier convention

f̃(kkk) =

∫
d3xxx f(xxx)e−ikxkxkx, f(xxx) =

∫
d3kkk

(2π)3
f̃(kkk)eikxkxkx , (1.32)

where the tilde denotes Fourier-space functions.6 Spatial derivatives simplify
significantly in Fourier space:

∂iF (x, t) = ikiF̃ (k, t) , (1.33)

where ki = ki is a 3-vector in Euclidean space. We will drop the tilde later for
convenience, but the arguments and the presence of k avoids any confusion
between configuration-space and Fourier-space quantities.

6As above, Fourier conventions usually lead to confusion and missing factors. Usually
conventions differ in how the (2π)3 factor is distributed between the expressions above.
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As an example of how working in Fourier space simplifies computations,
let us consider a linear partial differential equation

∂2

∂t2
δ +A(t)

∂

∂t
δ +B(t)∇2C = 0 , (1.34)

which in Fourier space becomes

∂2

∂t2
δ +A(t)

∂

∂t
δ −B(t)k2C = 0 , (1.35)

a set of decoupled ordinary differential equations: we can solve the equation
independently for each k mode, which means that every Fourier model evolves
independently of the rest (instead of solving an infinite number of coupled
equations in configuration space). At linear order in cosmology, each mode
evolves independently of the rest, hence cosmological perturbation theory is
solved in Fourier space; non linearities couple different Fourier modes, which
significantly complicates the computations.

1.3.2 Perturbed stress-energy tensor

The Einstein equations relate the Einstein tensor and the stress-energy tensor
(i.e., gravity with matter). Therefore, before deriving the equations describing
the evolution of the metric perturbations, we need to find the form of the linear
perturbations for the stress-energy tensor.

For a perfect fluid, the stress-energy tensor is Tµν = (ρ+ P )uµuν + Pgµν ,
where ρ and P are the total proper energy density and pressure in the rest
frame and uµ = dxµ/dλ is the 4-velocity.7 In locally flat coordinates in the
fluid rest frame, T 00 = ρ is the energy density, T i0 = 0 is the momentum den-
sity, and T ij = Pδij is the spatial stress tensor. However, an imperfect fluid
may have additional components describing shear, bulk viscosity or thermal
conduction. The most general stress tensor is defined as

Tµ
ν = (ρ+ P )uµuν + Pgµν +Σµ

ν , (1.36)

where Σµν can be taken traceless and flow orthogonal (Σµ
νu

ν = 0). In locally
flat coordinates in the fluid rest frame, only the spatial coordinates are non-
zero. Under these definitions, ρuµ is the energy-current 4-vector, including
heat conduction, while P includes the bulk viscosity and Σµν (called the shear
stress), includes the shear viscosity.

This situation is very similar for a perturbed system, where we have the
perturbed metric from Eq. (1.31). Let us express the perturbed stress energy
tensor as Tµ

ν = T̄µ
ν + δTµ

ν . The total stress energy tensor is

T 0
0 = −ρ , T i

0 = −(ρ+ P )vi ,

T 0
j = (ρ+ P )vj , T i

j = Pδij +Σi
j .

(1.37)

7Do not confuse the notation for the pressure and the 4-momentum. The latter will always
have an index.
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The perturbation term is to linear order

δTµ
ν = (δρ+ δP )ūµūν + (ρ̄+ P̄ )(δuµūν + ūµδuν) + δPδµν +Σµ

ν , (1.38)

where we are only taking into account that the shear stress is a perturbation,
and we also consider the 4-velocity as its mean value plus a perturbation δuµ.
Starting from the normalization of the 4-velocity gµνu

µuν = −1, at linear
order its perturbation is

δgµν ū
µūν + 2ūµδu

µ = 0 . (1.39)

Since ūµ = a−1δµ0 , ūµ = −aδ0µ, and δg00 = −2a2Ψ, we find that δu0 = −Ψ/a.
On the other hand, δui is proportional to the coordinate velocity vi ≡ dxi/dτ ,
finding δui = vi/a. Then, at linear order,

uµ = a−1
[
1−Ψ, vi

]
, uµ = a [−(1 + Ψ), vi] . (1.40)

Substituting this expression and Eq. (1.31) in Eq. (1.38) we find at linear
order

δT 0
0 = −δρ , δT i

0 = −(ρ̄+ P̄ )vi ,

δT 0
j = (ρ̄+ P̄ )vi , δT i

j = δPδij +Σi
j .

(1.41)

If there are several matter components, each of the quantities appearing above
is the sum of all of the component contributions, except for the velocities, for
which the momentum densities (ρ̄ + P̄ )vi is the quantity that is additive.
Finally, a similar scalar-vector-tensor decomposition can be applied to the
stress-energy tensor.

1.3.3 Evolution of metric perturbations

We are now ready to derive the Einstein equations at linear order. It is a
straightforward exercise, but with very cumbersome tensor manipulations.
As a reference, the metric is

g00 = −a2(1 + 2Ψ) , gi0 = 0 , gij = a2δij(1 + 2Φ) ,

g00 = −a−2(1− 2Ψ) , gi0 = 0 , gij = a−2δij(1− 2Φ) ,
(1.42)

and the Einstein equations are

Rµ
ν −

1

2
Rgµν = 8πGTµ

ν . (1.43)

To evaluate the left-hand side we need to compute the Christoffel symbols for
the perturbed metric, use them to obtain the Ricci tensor and contract this
one to form the Ricci scalar. We will work in Fourier space (changing spatial
derivatives to ikkk factors) directly to ease the computations. We need two
independent equations (one for Ψ and another one for Φ), which are easily
identifiable with the 00 and scalar ij components of the Einstein equations.
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1.3.3.1 Computing the pieces for the perturbed Einstein tensor
The Christoffel symbols are given by

Γµ
νρ =

1

2
gµλ(∂νgλρ + ∂ρgλν − ∂λgνρ). (1.44)

The components Γ0
µν = −(1 − 2Ψ)/2a2 [∂µg0ν + ∂νg0µ − ∂0gµν ]. For the 00

component the three elements in the brackets are identical, which leaves Γ0
00 =

H+Ψ′. Using a similar approach, the Christoffel symbols at linear order are

Γ0
00 = H+Ψ′ ,

Γ0
0i = ikiΨ ,

Γ0
ij = δij (H+ 2H [Φ−Ψ] + Φ′) ,

Γi
00 = iδijkjΨ ,

Γi
j0 = δij (H+Φ′) ,

Γi
jk =

[
δijkk + δikkj − δjkδilkl

]
iΦ .

(1.45)

The Ricci tensor is given by

Rµν = ∂λΓ
λ
µν − ∂νΓλ

µλ + Γλ
λρΓ

ρ
µν − Γρ

µλΓ
λ
νρ . (1.46)

As we did before, let us explore the time-time component: R00 = ∂αΓ
α
00 −

∂0Γ
α
0α +Γα

βαΓ
β
00−Γα

β0Γ
β
α0. When α = 0 all terms cancel directly. For the rest

we have (remember that ∂τH = a′′/a−H2)

R00 = −k2Ψ− 3

(
a′′

a
−H2 +Φ′′

)
+ 3H (H+Ψ′ +Φ′)− 3H (H+ 2Φ′) =

= −k2Ψ− 3

(
a′′

a
−H2 +Φ′′

)
+ 3H (Ψ′ − Φ′) .

(1.47)

We will skip the 0i component for reasons that will be apparent later, and
finally the space-space part is

Rij = δij

[(
a′′

a
+H2

)
(1 + 2Φ− 2Ψ)+

+H (5Φ′ −Ψ′) + Φ′′ + k2Φ
]
+ kikj (Φ + Ψ) .

(1.48)
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Now we can contract the Ricci tensor to obtain the Ricci scalar, R ≡ gµνRµν =
g00R00 + gijRij , as

a2R =− (1− 2Ψ)

[
−k2Ψ− 3

(
a′′

a
−H2 +Φ′′

)
+ 3H (Ψ′ − Φ′)

]
+

+ (1− 2Φ)

[
3

{(
a′′

a
+H2

)
(1 + 2Φ− 2Ψ) +

+ H (5Φ′ −Ψ′) + Φ′′ + k2Φ

}
+k2 (Φ + Ψ)

]
=

=6
a′′

a
+ 2k2(Ψ + 2Φ) + 6Φ′′ − 12

a′′

a
Ψ+ 6H(3Φ′ −Ψ′) ,

(1.49)

where we have separated the background and linear-order terms.
Now we have all the pieces to compute the perturbed Einstein tensor.

Remember that

Gµν = Rµν −
1

2
gµνR . (1.50)

For the time-time component we have then

G00 = 3H2 + 6HΦ′ + 2k2Φ , (1.51)

where many terms cancel between the Ricci tensor and the Ricci scalar, and
others are neglected due to being second order. We can skip the time-space
component, since we only need two equations. For the space-space component,

Gij = δij

[
−2a

′′

a
+H2

]
+ 2δij

[
2
a′′

a
(Ψ− Φ) +H2 (Φ−Ψ)+

+H (Ψ′ − 2Φ′)− 2Φ′′ − k2 (Φ + Ψ)

]
+ kikj (Φ + Ψ) .

(1.52)

1.3.3.2 Perturbed Einstein Equations
Now we just need to manipulate the elements listed above to solve the Ein-

stein equations. Note that substituting the elements derived in the previous
subsection, we find the background solution for the Einstein Equations (i.e.,
the Friedman equations), hence we can cancel all background terms below,
but we cannot do this directly, since some multiplicative terms may survive.

Let us consider first the trace-free part of the space-space component of
the equations. The longitudinal trace-free part of the space components of
a tensor Aij can be obtained contracting it with (k̂ik̂j − δij/3), therefore:

(k̂ik̂j − 1
3δ

ij)δGij = 8πG(k̂ik̂j − 1
3δ

ij)δTij), such as

k2 (Φ + Ψ) = −12πGa2(ρ̄+ P̄ )σ , (1.53)

where we have defined (ρ̄ + P̄ )σ = −
(
k̂ik̂j − δij/3

)
Σi

j =
∑

s(ρ̄s + P̄s)σs as

the shear (note that Σi
j is by definiton the traceless component of T i

j ). This
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is a very important result in cosmology: at linear order, and in the absence
of shear, Ψ = −Φ. In the standard cosmological model, there is a very small
shear that is generated by photons and neutrinos, as we will see in the next
section.

Now let us consider the time-time component. In this case T 0
0 = −ρ, and

in the Newtonian gauge T00 = g00T
0
0 = a2(1 + 2Ψ)ρ, so that we have

3H2+6HΦ′+2k2Φ = 8πGa2(1+2Ψ)(ρ̄+ δρ) = 8πGa2ρ̄(1+2Ψ+ δ) , (1.54)

where we have defined δ = δρ/ρ̄ and the last equality retains only linear terms.
Then, canceling the background solution 3H2 = 8πGa2ρ̄, we find

k2Φ+ 3H (Φ′ −HΨ) = 4πGa2ρ̄δ . (1.55)

Therefore, the two Einstein equations of interest for scalar perturbations
in the Newtonian gauge are given by

k2 (Φ + Ψ) = −12πGa2(ρ̄+ P̄ )σ ,

k2Φ+ 3H (Φ′ −HΨ) = 4πGa2ρ̄δ .
(1.56)

The second equation is the generalization of the Poisson equation to an ex-
panding and perturbed Universe. We recover the behavior of Newtonian grav-
ity in the Newtonian regime, which is achieved for very small scales, in which
expansion can be neglected, and k ≫ H.

There are two other possible equations, obtained from the 0i component
and the trace of the spatial sector of the Einstein equation. These are

− k2 (Φ′ −HΨ) = 4πGa2(ρ̄+ P̄ )θ ,

− Φ′′ +H(Ψ′ − 2Φ′) +

(
2
a′′

a
−H2

)
Ψ− k3

3
(Φ + Ψ) =

4π

3
Ga2δT i

i ,
(1.57)

where (ρ̄ + P̄ )θ =
∑

s(ρ̄s + P̄s)θs and θ = ikiv
i is the divergence of the

coordinate (or fluid) velocity.

1.3.4 Perturbed Boltzmann equations

At the beginning of this chapter we discussed the Boltzmann equations in a
smooth expanding Universe. Now it is time to introduce metric perturbations
in the formalism. Metric perturbations affect how particles move, which in
turn affect the phase-space distribution. We need to know how the position,
momentum and direction of the momentum change with time.

The mass-shell constrain gµνP
µP ν = −m2, accounting for metric pertur-

bations, is now given by

a2(1 + 2Ψ)(P 0)2 + p2 = −m2 , (1.58)
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where as always p2 = gijP
iP j . Defining still the energy as in the unperturbed

case, E =
√
p2 +m2, the time component of Pµ is determined by the energy

and the metric perturbation. At linear order,

Pµ = [E(1−Ψ)/a, pi(1− Φ)/a] . (1.59)

The conjugate momenta is Pi = api(1 + Φ).
Note that the phase-space distribution is a scalar and is invariant under

canonical transformations. Its zeroth-order is either a Fermi-Dirac (+) or a
Bose-Einstein (−) distribution:

f0 = f0(ϵ) =
g∗
h3P

1

exp {ϵ/kBT0} ± 1
, (1.60)

where we have defined ϵ = aE = a
√
p2 +m2 and T0 = aT as the temperature

of the particles today for convenience, and hP and kB are the Planck and the
Boltzmann constants, respectively. ϵ is related to the time component of the
4-momentum by P0 = −ϵ(1 + Ψ).

Also, for convenience, let us replace the conjugate momentum Pi by the
comoving momentum qi ≡ api in order to eliminate the metric perturbations
from the definition of the momenta, and as we have done before we separate
qi = qq̂i on its magnitude and direction. Then, f(xi, Pj , τ) → f(xi, q, q̂j , τ).
qj is not the conjugate momentum and we cannot consider the phase-space
volume element to be d3xxxdqqq/(2π)3. In practice we have moved the impact of
the perturbations from the variable to the phase-space volume element.

Remember that the general expression for the stress-energy tensor can be
written as

Tµν =
1√
−|gαβ |

∫
d3PPP

PµPν

P 0
f(xi, Pj , τ) , (1.61)

and, as done with all quantities so far, we can treat the distribution function
perturbatively,

f(xi, Pj , τ) = f0(q,m)
(
1 + φ(xi, q, q̂j , τ)

)
, (1.62)

such as the only thing left is to transform the geometric factors from Eq. (1.61).
First, (−|gαβ |)−1/2 = (1−Ψ− 3Φ)/a4 and d3PPP = (1 + 3Φ)q2dqdΩq at linear
order, where Ωq is the solid angle for q̂j . Now we can express the components
of the stress-energy tensor in terms of the perturbed phase-space distribution
(substituting the 4-momenta in Eq. (1.61)):

T 0
0 = −a−4

∫
dqdΩqq

2
√
q2 +m2a2f0(q,m)(1 + φ) ,

T 0
i = a−4

∫
dqdΩqq

2qq̂if0(q,m)φ ,

T i
j = a−4

∫
dqdΩqq

2 q2q̂iq̂j√
q2 +m2a2

f0(q,m)(1 + φ) ,

(1.63)
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where we have used that
∫
dΩqq̂i =

∫
dΩqq̂iq̂j q̂k = 0 (which cancels the

unperturbed f0 term in T 0
i ) and

∫
dΩqq̂iq̂j = 4πδij/3 (which makes that the

term in T i
j survives).

The general Boltzmann equation is, in terms of the variables discussed now,

df

dτ
=
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂q

dq

dτ
+
∂f

∂q̂i

dq̂i
dτ

= C[f ] . (1.64)

Then, we need to obtain the total derivatives as function of τ to obtain the
expression in each gauge. The total derivatives (how position and momentum
change with time in the absence of collisions) is where gravity (through the
determination of the geodesics) chimes in. Remember that P i ≡ dxi/dλ and
P 0 ≡ dτ/dλ, such as at linear order

dxi

dτ
=

dxi

dλ

dλ

dτ
=
P i

P 0
, (1.65)

which corresponds to

dxi

dτ
= qq̂i(1− Φ+Ψ)/ϵ . (1.66)

Remember the geodesic equation

dPµ

dλ
= −Γµ

αβP
αP β . (1.67)

Using that d/dλ = (dxµ/dλ)(d/dxµ) = Pµd/dxµ, we have for the space
component,

P 0 dP
i

dτ
+ P j dP

i

dxj
= −Γi

αβP
αP β . (1.68)

Now we can straightforwardly obtain the derivative with respect qi doing some
algebra: we start from P i and go to pi, and from this to p and q. Then, we
need to use Eq. (1.59) in the equation above and propagate. To start, note
that

dP i

dτ
=

1− Φ

a

dpi

dτ
− pi

a
(H[1− Φ] + Φ′) ,

dP i

dxj
= − ip

ikjΦ

a
.

(1.69)

Substituting this in Eq. (1.68) and isolating dpi/dτ , we find that the geodesic
equation is transformed to

dpi

dτ
=
a2(1 + Φ +Ψ)

E
×

×
{
−Γi

αβP
αP β +

ipipjkjΦ

a2
+
Epi

a2
(H[1− Φ−Ψ] + Φ′)

}
.

(1.70)
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We have to compute now the term with the Christoffel symbols, using Eq. (1.45).
Expanding the expression we have

−Γi
αβ = −

(
Γi
00P

0P 0 + 2Γi
0jP

0P j + Γi
jkP

jP k
)
. (1.71)

Note that the Christoffel symbols in the first and last terms are already first
order, so we can ignore the contributions from the perturbations in the mo-
menta. Neglecting higher-order terms, we have

−Γi
αβ = −iE

2

a2
kiΨ−

− 2Epi

a2
(H[1−Ψ− Φ] + Φ′)−

− iΦ

a2
(
pipkkk + pipkkk − p2ki

)
.

(1.72)

Therefore, adding all contributions, we have

dpi

dτ
= −pi(H+Φ′)− iEkiΨ− i

Φ

E
(pipjkj − p2ki) , (1.73)

and using that

dp

dτ
=

d

dτ

√
δijpipj = δij

pi

p

dpj

dτ
, (1.74)

we have
dp

dτ
= −p(H+Φ′)− iEp̂ikiΨ . (1.75)

However the cumbersome calculation, it would have been possible to quali-
tatively guess the result, since the first term corresponds to the loss of mo-
mentum due to the Hubble expansion (including cosmological redshift and
decay of the peculiar velocity) and the second term encodes the effect of the
particle traveling into a potential well. The last two terms in Eq. (1.73) cancel
when taking the norm, and this is because they do not change the particle’s
momentum at linear order, but they do change its direction.

The expression above in the variables we want to use, q = ap and ϵ = aE,
converts to

dq

dτ
= −qΦ′ − iϵq̂ikiΨ . (1.76)

Finally, since ∂f/∂q̂ is also a first-order quantity, the last term in the left-
hand side of Eq. (1.64) can be neglected to first order. Joining all the terms
and keeping only first-order quantities, the perturbed boltzmann equation is
given by

∂φ

∂τ
+ i

q

ϵ
kkkq̂qqφ+

∂ log f0
∂ log q

(
−Φ′ − i ϵ

q
kkkq̂qqΨ

)
=
C[f ]

f0
. (1.77)
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The Boltzmann equation only depends on the direction of the momentum
through its angle with kkk, so unless there is further dependence in the collision
term, φ only depends on q̂qq through the product k̂kkq̂qq.

In some cases, it is also useful to keep the perturbed Boltzmann equation
for the whole distribution (assuming that the zero-th order is homogeneous
and does not depend on the direction of the momentum), and using the proper
momentum p and energy E. Then, we have

∂f

∂τ
+ i

p

E
kkkp̂ppf +

∂f

∂p
p

(
−H− Φ′ − iE

p
kkkp̂ppΨ

)
= C[f ] . (1.78)

1.4 Evolution of matter and radiation perturbations

Now we have all the tools to compute the perturbations of all components in
the Universe that contribute to the stress-energy tensor.8 We will consider
cold dark matter, baryons, massless and massive neutrinos and photons.

1.4.1 Dark matter

Dark matter makes up for most of the non-relativistic matter in the Universe,
and it is mostly cold. We will consider a completely collisionless cold dark
matter, i.e., the dark matter does not interact with any other species in the
Universe or itself other than gravitationally and it is completely non relativis-
tic. This means C[f ] = 0, and that factors q/ϵ = p/E ∼ p/m will be very
small: we will only retain up to linear-order terms in p/m, which accounts for
the bulk motion of dark matter but not its velocity dispersion. These assump-
tions make that dark matter can be treated as a pressure-less effective fluid
which is described by its density and velocity. We will derive the evolution
equations taking moments of the Boltzmann equations.

From the phase-space distribution we can take the description of a collec-
tion of particles if we integrate over phase-space volume elements. Remember
that the number density and the fluid velocity can be obtained by integrating
over the proper momentum; denoting dark matter with a subscript ‘c’,

nc =

∫
d3ppp

(2π)3
fc , ncv

i
c =

∫
d3ppp

(2π)3
pp̂i

E
fc . (1.79)

8For effective fuilds, the fluid equations can be obtained by taking moments in q of the
Boltzmann equations, similar to Eq. (1.61).
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Then, if we multiply the Boltzmann equation in Eq. (1.78) for the whole
distribution by the phase-space element and integrate we have

∂

∂τ

∫
d3ppp

(2π)3
fc + i

∫
d3ppp

(2π)3
pkkkp̂pp

E
fc − (H+Φ′)

∫
d3ppp

(2π)3
∂fc
∂p

p−

−
∫

d3ppp

(2π)3
∂fc
∂p

iEkkkp̂ppΨ = 0 ,

(1.80)

where we can substitute the first two terms by the number density and fluid
velocity and integrating by parts the integral in the third term is

1

(2π)3

∫
dpp3

∂

∂p

∫
dΩpfc =

−3
(2π)3

∫
dpp2

∂

∂p
fc = −3nc , (1.81)

and the fourth vanishes. Then, the zero-th moment of the Boltzmann equation
returns

∂nc
∂τ

+ inckkkvvvc + 3(H+Φ′)nc = 0 , (1.82)

which is the cosmological generalization of the continuity equation, including
the last term to account for the perturbations of the metric and the expansion
of the Universe. The zero-th order in perturbations above returns (remember
that the velocity is already a first-order perturbation)

∂n̄c
∂τ

+ 3Hn̄c = 0 , (1.83)

which shows that nc ∝ a−3 for non-relativistic matter, as discussed before in
the course. Perturbing this number density as nc = n̄c(1 + δc) (which also
fulfills previous definitions of δ), and dividing by a3n̄c we find

δ′c = −θc − 3Φ′ , (1.84)

where we have recovered the definition of θ as the velocity divergence. We
still need another equation to determine the evolution of δc and θc, which we
can get by using the first moment of the Boltzmann equation (weighting the
integral with pp̂j/E):

∂

∂τ

∫
d3ppp

(2π)3
pp̂j

E
fc + i

∫
d3ppp

(2π)3
p2p̂jkkkp̂pp

E2
fc − (H+Φ′)

∫
d3ppp

(2π)3
∂fc
∂p

p2p̂j

E
−

−
∫

d3ppp

(2π)3
∂fc
∂p

pp̂jikkkp̂ppΨ = 0 .

(1.85)

The first term is the time derivative of a3ncv
j
c and the second can be neglected,

since it is second order in p/E. Integrating by parts the third term we get
∫

d3ppp

(2π)3
∂fc
∂p

p2p̂j

E
=

∫
dΩp

(2π)3
p̂j
∫

dp
p4

E

∂fc
∂p

=

= −
∫

dΩp

(2π)3
p̂j
∫

dpfc

(
4p3

E
− p5

E3

)
.

(1.86)
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the first term in the brackets yields −4a3ncvjc , while the second term is higher
order in p/E and thus can be neglected. Applying the same approach to the
last term in the weighted integral of the Boltzmann equation and considering
that

∫
dΩpp̂

ip̂j = δij4π/3, we get that the first moment of the Boltzmann
equation is

∂(ncv
j
c)

∂τ
+ 4Hncvjc + inck

jΨ = 0 . (1.87)

Since all terms are already first order, we can directly write nc as n̄c, and use
its background evolution. After multiplying by ikj , we find

θ′c = −Hθc + k2Ψ . (1.88)

This is the momentum conservation, or Euler equation, although in this case
it does not contain the standard (vvv ·∇)vvv term because it is second order. Even
if the dark matter perturbations are the simplest ones, we can already see a
common feature of integrating the Boltzmann equations: the integrated n-th
moment always depends on the (n+ 1)-th moment. This leads to an infinite
hierarchy of equations that needs to be closed at some moment. In the case
of cold dark matter the hierarchy is closed setting the second moment to zero
(which follows from the assumption that the dark matter is cold) and the drop
of (p/E)2 and higher terms. This will not be possible for relativistic species
as neutrinos and photons, as we will see below.

To summarize, the Boltzmann equations for dark matter are

δ′c = −θc − 3Φ′ , θ′c = −Hθc + k2Ψ . (1.89)

1.4.2 Massless neutrinos

The perturbations of the stress-energy tensor corresponding to neutrinos are

δρν = 3δPν = a−4

∫
q2dqdΩqqf0(q)φ ,

δT 0
νi = a−4

∫
q2dqdΩqqq̂

if0(q)φ ,

Σi
νj = a−4

∫
q2dqdΩqq(q̂

iq̂j −
1

3
δij)f0(q)φ ,

(1.90)

where, for massless particles, q = ϵ. Since the quantities involved in the
stress-energy tensor are weighted integrals of the phase space, we can further
reduce the number of variables if we integrate out the q-dependence of φ and
expand the angular dependence in a series of Legendre polynomials Pℓ(µ),

where µ = k̂kkq̂qq. Let us define

Fν(kkk, q̂, τ) ≡
∫
q2dqqf0φ∫
q2dqqf0

≡
∑

(−i)ℓ(2ℓ+ 1)Fνℓ(kkk, τ)Pℓ(µ) , (1.91)
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where the factor (−i)ℓ(2ℓ+1) has been chosen to simplify the expansion of a
plane wave: Fν = exp(−ikrµ) has expansion coefficients Fνℓ = jℓ(kr) given
by the spherical Bessel functions. The purpose of the expansion in Legendre
polynomials is to remove the explicit dependence in µ, which complicates the
computations.

The fluid variables of interest (δ ≡ δρ/ρ̄, θ ≡ ikjδT 0
j /(ρ̄ + P̄ ), and σ ≡

−(k̂ik̂j − δji /3)Σi
j/(ρ̄ + P̄ )) can be expressed in terms of the expansion co-

efficients of the new variable Fν by performing the corresponding weighted
angular integral to Fν . From Eq. (1.90):

δν =
1

4π

∫
dΩqFν = Fν0 ,

θν =
3i

16π

∫
dΩq(k̂kkq̂qq)kFν =

3

4
kFν1 ,

σν = − 3

16π

∫
dΩq

[
(k̂kkq̂qq)2 − 1

3

]
Fν =

1

2
Fν2 ,

(1.92)

where the division of the background quantities is already in the denominator
of the definition of Fν and the numerical prefactors account for the angular
integrals of the background, homogeneous distribution function and the match
with the Legendre coefficients.

Applying the definition of Fν above to Eq. (1.77), the Boltzmann equation
for massless neutrinos becomes

F ′
ν = −ikµFν − 4(Φ′ + ikµΨ) , (1.93)

where
[∫
q2dqf0d log f0/d log q

]
/
∫
q2dqf0 = −4 and P2(µ) = (3µ2 − 1)/2.

Now we can mix Eqs. (1.93) and (1.91) to obtain the evolution for the
coefficients. For instance, in the Newtonian gauge,

∑
(−i)ℓ(2ℓ+ 1)F ′

νℓPℓ(µ) =− k
∑

(−i)ℓ+1(2ℓ+ 1)FνℓµPℓ(µ)

− 4(Φ′ + ikµΨ) .
(1.94)

We can use the orthonormality of the Legendre polynomials and the recursion
relation of (2ℓ+1)µPℓ(µ) = ℓPℓ−1(µ)+ (ℓ+1)Pℓ+1(µ), such as if we multiply
each side of the equation above by Pℓ′ and integrate over µ we can get the
relations that we need:

δ′ν = −4

3
θν − 4Φ′ ,

θ′ν = k2
(
1

4
δν − σν

)
+ k2Ψ ,

F ′
νℓ =

k

2ℓ+ 1
[ℓFνℓ−1 − (ℓ+ 1)Fνℓ+1] , ℓ ≥ 2 .

(1.95)

Note that for a given ℓ, Fνℓ is coupled to the two neighbouring modes, and
that a priori the Boltzann hierarchy is infinite. Therefore, we need to truncate
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at some ℓmax. One option is to set Fνℓ = 0 for ℓ > ℓmax, but this is inaccurate
because the error in the coupling at ℓmax propagates to smaller ℓ due to the
coupling between modes.9 An improved truncation scheme is based in the ex-
trapolation of the behavior of Fνℓ at ℓ = ℓmax+1. More sophisticated schemes
have been developed to improve the accuracy of the Boltzmann equations, in-
cluding an exact solution transforming Eq. (1.93) into an integral equation,
which allows to solve the system iteratively.

1.4.3 Massive neutrinos

Massive neutrinos are a very particular species in the Universe. Their mass,
which sums to 0.06 eV ≤ ∑mν ≲ 0.1 eV implies that they were relativistic
particles until z ∼ 100, when they become non relativistic as the Universe
expands and they get colder. They can be considered hot dark matter, and
we will denote them with the subscript ‘h’. The evolution of the perturbations
to their distribution function is more complicated than in the case of massless
neutrinos due to the finite mass.

Experimental and observational evidence cannot distinguish between the
normal and the inverted hierarchy yet, and cannot determine whether any
of the neutrinos is effectively massless or not. However, cosmological per-
turbations are practically sensitive only to the total neutrino mass, not able
to distinguish between individual neutrino masses. Since the evolution of
massless neutrinos is significantly simpler (and cheaper to compute), it is cus-
tomary to consider a single massive neutrino and 2 massless neutrinos in the
set of Boltzmann equations.

In this case, we cannot ignore the neutrino mass (i.e., q ̸= ϵ = (q2 +
m2

νa
2)1/2). From Eqs. (1.63) and (1.90), the unperturbed energy density and

pressure, and the corresponding perturbations, are

ρ̄h = a−4

∫
q2dqdΩqϵf0 , P̄h =

1

3
a−4

∫
q2dqdΩq

q2

ϵ
f0φ ,

δρh = a−4

∫
q2dqdΩqϵf0φ , δPh =

1

3
a−4

∫
q2dqdΩq

q2

ϵ
f0φ ,

δT 0
hi = a−4

∫
q2dqdΩqqq̂if0 , Σi

hj = a−4

∫
q2dqdΩq

q2

ϵ

(
q̂iq̂j −

1

3
δij

)
f0φ .

(1.96)

Now we can proceed with the same philosophy as for the massless neutrinos,
but note that here there is a critical difference. The energy-momentum rela-
tion depends both in time and the momentum (since ϵ does not completely
describe the case), which prevents us to integrate out the q dependence as
we did before. This forces us to expand φ in the Legendre polynomial series

9The error propagates to ℓ = 0 in a time τ ≈ ℓmax/k and the reflects back to increasing ℓ,
due again to the coupling, increasing the errors even more.
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directly:

φ(kkk, q̂qq, q, τ) =
∑

(−i)ℓ(2ℓ+ 1)φℓ(kkk, q, τ)Pℓ(µ) , (1.97)

which, after integration over the angular variables, leaves the perturbations
of interest as

δρh = 4πa−4

∫
q2dqϵf0φ0 ,

δPh =
4π

3
a−4

∫
q2dq

q2

ϵ
f0φ0 ,

(ρ̄h + P̄h)θh = 4πka−4

∫
q2dqqf0φ1 ,

(ρ̄h + P̄h)σh =
8π

3
a−4

∫
q2dq

q2

ϵ
f0φ2 .

(1.98)

We can then substitute the Legendre expansion in Eq. (1.77) and match the
coefficients multiplying each Legendre polynomial (and the µ dependence on
the metric perturbations). Following that approach and using the same re-
cursion relation as above:

φ′
0 = −qk

ϵ
φ1 +Φ′ d log f0

d log q
,

φ′
1 =

qk

3ϵ
(φ0 − 2φ2)−

ϵk

3q
Ψ
d log f0
d log q

,

φ′
ℓ =

1k

(2ℓ+ 1)ϵ
[ℓφℓ−1 − (ℓ+ 1)φℓ+1] , ℓ ≥ 2 .

(1.99)

Note that in this case, the set of equations to solve is much larger, since due
to the q dependence, we need to solve ℓmax×Nq equations, where ℓmax comes
from the Boltzmann hierarchy and Nq comes from the number of evaluations
in q used to approximate the q-integration for the phase-space distribution
required to obtain the quantities that contribute to the stress-energy tensor,
shown in Eq. (1.98).

1.4.4 Photons

Photons (which we will denote with γ) are massless particles that interact
with baryons. Therefore, in this case we need to take into account the collision
term in the Boltzmann equations, which describes the effects of the Compton
scattering.10 At zero-th order the distribution function follows an unperturbed
Bose-Einstein distribution. This is because the collision term includes the
forward and backward reactions and we assume photons are in equilibrium,

10Actually, electrons are not relativistic in the times of interest, so that we could talk about
Thomson scattering.
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hence both reactions cancel and we can assume a Bose-Einstein distribution
with no collision term. However, the perturbations from the unperturbed
phase distributions are going to be determined by the collision term.

The scattering process of interest is

e−(qqq) + γ(ppp)←→ e−(q′q′q′) + γ(p′p′p′) , (1.100)

where the proper momentum of each particle is indicated between parenthe-
ses. We are interested in f(ppp), so we need to integrate over the other three
momenta.

We will skip the derivation of the collision term, but it is important to note
that there are three main contributions. The dominant contribution comes
from the isotropic, polarization-averaged scattering. In addition, there is a
small correction coming from the anisotropic scattering that is proportional
to the quadrupole of the of the photon phase-space distribution. Finally,
since the quadrupole of the distribution generates linear polarization, pho-
ton perturbations and polarization perturbations are coupled. Denoting the
difference between the two linear polarization components as Gγ , the final
Boltzmann equations for both Fγ and Gγ , which satisfy Eq. (1.77) with a
right-hand side given by

C[Fγ ] =

(
∂Fγ

∂τ

)

C

= aneσT

[
−Fγ + Fγ0 + 4q̂qqvvvb −

Fγ2 + Gγ0 + Gγ2
2

P2(µ)

]
,

C[Gγ ] =
(
∂Gγ
∂τ

)

C

= aneσT

[
−Gγ +

Fγ2 + Gγ0 + Gγ2
2

(1− P2(µ))

]
,

(1.101)

where vb is the baryon bulk velocity, ne is the electron number density and
σT is the Thomson scattering cross section. Note that G depends on the
quadrupole of the photon distribution.

Now we can proceed as for the case in the massless neutrinos: we expand
Fγ and Gγ in Legendre series and use the relations q̂qqvvvb = −(iθb/k)P1(µ) and
those analog to Eq. (1.92), we rewrite the collision terms as

C[Fγ ] = aneσT

[
4i

k
(θγ − θb)P1(µ) +

(
9σγ −

Gγ0 + Gγ2
2

)
P2(µ)

−
∑

ℓ≥3

(−i)ℓ(2ℓ+ 1)FγℓPℓ(µ)


 ,

(1.102)

and

C[Gγ ] = aneσT

[
1

2
(Fγ2 + Gγ0 + Gγ2) (1− P2(µ))−

−
∑

ℓ≥0

(−i)ℓ(2ℓ+ 1)GγℓPℓ(µ)


 .

(1.103)
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Then, expanding the terms in the left-hand side of the Boltzmann equations
in Legendre polynomials and matching the angular dependences, we find

δ′γ = −4

3
θγ − 4Φ′ ,

θ′γ = k2
(
1

4
δγ − σγ

)
+ k2Ψ+ aneσT(θb − θγ) ,

F ′
γ2 = 2σ′

γ =
8

15
θγ −

3

5
kFγ3 −

9

5
aneσTσγ +

1

10
aneσT(Gγ0 + Gγ2) ,

F ′
γℓ =

k

2ℓ+ 1
[ℓFγℓ−1 − (ℓ+ 1)Fγℓ+1]− aneσTFγℓ , ℓ ≥ 3 ,

G′γℓ =
k

2ℓ+ 1
[ℓGγℓ−1 − (ℓ+ 1)Gγℓ+1] +

+ aneσT

[
−Gγℓ +

1

2
(Fγ2 + Gγ0 + Gγ2)

(
δℓ0 +

δℓ2
5

)]
.

(1.104)

Note that, as in the case for neutrinos, there is an infinite Boltzmann hierarchy
that also needs to be closed, or solved using integral equations.

Let us take a short detour here. While we have preferred to decompose the
phase-space distribution between the background unperturbed value (i.e., the
Bose-Einstein distribution f0 for photons) and a perturbation, we can also
expand the Bose-Einstein distribution in terms of a temperature perturbation
Θ ≡ (T − T̄ )/T̄ . Then, in this case we have

f = f0

(
q

1 + Θ

)
, (1.105)

such as, by definition,

Θ = −
(
d log f0
d log q

)−1

φ . (1.106)

Since both the gravitational source terms and the linearized collision term in
the Boltzmann equation for φ are proportional to the logarithmic derivative
of f0, Θ is independent of q. This means that the photon perturbations still
have a Planck spectrum with a temperature that only depends on the photon
direction (and not its moment).11 From the equation above, we see that Θ =
Fγ/4, which also relates the photon density and temperature perturbations
by the same factor.

1.4.5 Baryons

The last component that we will study are the baryons. This misnomer is mo-
tivated by the fact that most of the energy density is dominated by the proton

11This does not hold for nonlinear perturbations, which indeed change the spectrum of
the CMB. This is the case of for instance the Sunyaev-Zeldovic effect, among many other
processes, that generate what is known as spectral distortions: deviations from the black-
body spectrum of the CMB.
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and neutron masses (since electrons are much lighter and heavier metals are
much less abundant), and by the fact that Coulomb scattering (which couples
protons and electrons) has a rate that is much larger than the expansion rate
at all times of interest, which makes that the perturbations of all particles are
the same. Hence, we will use the subscript ‘b’ for all of them collectively.

Baryons can be treated as cold and non relativistic, and therefore we will
consider only the first two moments of their Boltzmann equations, as we did
for dark matter. However, in this case we need to take also into account the
coupling with photons due to the Compton scattering. Hence, the left hand
side of the Boltzmann equations have the same form than for the dark matter.
At the epochs of interest (around and after recombination), the reactions that
change the number of electrons and nucleons (e.g., pair production, annihi-
lation, etc.) are rare and therefore irrelevant. This means that there is no
source term for the continuity equation, and thus the zero-th moment of the
Boltzmann equation is as for cold dark matter,

δ′b = −θb − 3Φ′ . (1.107)

While the number of baryons is conserved, their momentum is not, since there
is momentum transfer with the photons. The derivation of the second moment
is similar than for the dark matter, but instead of weighting the integrals by
ppp/E, we use only ppp, which makes the cold dark matter derivation correct if
we multiply by a factor of mass m. Since the proton mass vastly dominates,
we have

mp
∂(nbv

j
b)

∂τ
+ 4Hmpnbv

j
b + impnbk

jΨ = F j
eγ , (1.108)

where mp is the proton mass and the force density FFF eγ encodes the momen-
tum transfer between photons and electrons due to Compton scattering.12

Dividing both sides by ρ̄b = mpn̄b we are left with

∂vjb
∂τ

+Hvjb + ikjΨ =
F j
eγ

ρ̄b
. (1.109)

We have left to compute the momentum transfer between photons and elec-
trons. Since momentum is conserved, the force term has to be precisely equal
and opposite to the force term in the photon analog of the baryon Euler equa-
tion. Therefore, momentum conservation introduces a term (4ρ̄γ/3ρ̄b)aneσT(θγ−
θb), where the prefactors in the mean densities come from the different time
dependence for each component.

In addition there is another term coming from the baryon sound speed
c2s = δPb/δρb. This is because baryons, although being non relativistic, are not
completely cold as dark matter (which we assume it has zero temperature).
The finite temperature of baryons introduces this non-zero (although very

12Electrons transfer the momentum to the nuclei immediately, and the nuclei-photon inter-
action is suppressed by a m2

e/m
2
p factor, hence neglected.
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small) sound speed, which can be neglected in all terms except the acoustic
term c2sk

2δ. The sound speed for baryons depends on the gas temperature, the
evolution of which can also be tracked using the first law of thermodynamics.
The perturbations of the gas temperatures are therefore coupled to the baryon
perturbations and therefore to the whole system to solve, although its effect is
limited to very small scales and usually neglected in most studies that involve
only linear scales and do not depend directly in the gas temperature.

Then, in Newtonian gauge, we have

δ′b = −θb − 3Φ′ ,

θ′b = −Hθb + k2Ψ+ c2sk
2δb +

4ρ̄γ
3ρ̄b

aneσT(θγ − θb) .
(1.110)

1.4.6 Others

We have considered the standard components of the Universe in the ΛCDM
model, but this does not mean that there may be other components and new
physics. New components, or new interaction between the standard species
can be included in the system of differential equations that describe the evo-
lution of the matter, radiation and metric perturbations in the Universe, fol-
lowing a similar analysis that we have done in this section.

1.5 Initial conditions

So far we have discussed how perturbations evolve in an inhomogeneous ex-
panding Universe, but we need to determine some initial condition to be able
to solve the problem. These are determined by the physics of the primordial
Universe, usually studied under the umbrella general theory of inflation (the
most studied and plausible theory of the primordial Universe), although there
are other alternatives such as ekpyrosis or bouncing Universes.

We will not enter to discuss inflation or the generation of the initial con-
ditions, but discuss the essential pieces to our interest. Inflation proposes an
exponential expansion of the primordial Universe, which solves some of the
problems of the Big Bang, in particular the horizon problem and the flatness
problem.

The accelerated expansion can be achieved with negative pressure, but we
do not know any kind of matter that fulfills this requirement. The simplest
possibility is the potential energy of a scalar field ϕ.13 The scalar field has an

13Indeed, one of the simplest models of dark energy beyond a cosmological constant is
quintessence, which is also based on the inclusion of scalar field(s). Note, however, that
both quintessence and inflation cannot be trivially explained by the only scalar field we
know, the Higgs boson, since its properties are too constrained by now for us to know that
we cannot make it work for these purposes.
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energy momentum tensor

Tα
β = gαν

∂ϕ

∂xν
∂ϕ

∂xβ
− δαβ

[
1

2
gµν

∂ϕ

∂xµ
∂ϕ

∂xν
+ V (ϕ)

]
, (1.111)

where V (ϕ) is the potential for the field. For its background behavior, the
stress-energy tensor is the diagonal {−ρ, P, P, P}. For the time-time compo-
nent T 0

0 = −ρ, so that

ρ =
ϕ̇2

2
+ V (ϕ) , (1.112)

which are the kinetic and potential energy densities of the field: a homoge-
neous scalar field has the same dynamics as a single particle in a potential.
The pressure P = T i

i is

P =
ϕ̇2

2
− V (ϕ) . (1.113)

Therefore, if the potential energy is larger than the kinetic energy, a negative
pressure is possible. We can see the same in terms of the equation of state

w =
P

ρ
=
ϕ̇2/2− V (ϕ)

ϕ̇2/2 + V (ϕ)
, (1.114)

for which we approximate the behaviour (at background level) of a cosmolog-
ical constant, e.g., w = −1, if V (ϕ)≫ ϕ̇2.

To quantify slow-roll, we can define variables that vanish in the limit in
which ϕ is perfectly constant. There are many conventions, but we will use
one of the most directly linked to observables. For scalar perturbations the
most important inflation variable is

ϵsr ≡
d

dt
H−1 = − Ḣ

H2
= − H ′

aH2
, (1.115)

which yields the fractional change during an e-fold in the Hubble rate. Since
H decreases, ϵsr is always positive. Note that an alternative definition is

ϵsr − 1 =
d

dτ
(aH)−1 . (1.116)

1.5.0.1 Primordial perturbations
At any given point and time during inflation, there are small perturbations

due to quantum fluctuations of the field against the uniform background.
Statistically, the mean fluctuation is null because overdensity regions cancel
with underdensities. However, the variance of these perturbations is not zero,
and will be the main focus of our study. In principle we would have to specify
the predicted perturbations for each species that results from inflation. In
general, we can distinguish between two kind of perturbations: adiabatic and
isocurvature perturbations.
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Adiabatic perturbations fulfill that the local state of matter at some space
time point of the perturbed Universe is the same as in the background at some
slightly different time (where the time shift varies with the location). One way
to understand adiabatic perturbations is to interpret that some regions of the
Universe are ahead or more evolved than others. This local shift in time is
common to all species involved, fulfilling that

δρ(τ,xxx) = ρ̄(τ + δτ(xxx),xxx) = ρ̄′(τ)δτ(xxx) (1.117)

for all species, which means that

δρx
ρ̄′x

=
δρy
ρ̄′y

. (1.118)

Neglecting any energy transfer between fluid components at the background
level, ρ̄′x = −3H(1 + wx)ρ̄x, so that

δx
1 + wx

=
δy

1 + wy
. (1.119)

Thus, all matter species have the same fractional perturbations, while all
radiation and relativistic species obey δγ = 4δm/3, since wγ = 1/3. The
relation for the velocity divergences is analog.

On the other hand, instead of corresponding to a change in the total energy
density, isocurvature perturbations correspond to perturbations between dif-
ferent species that explicitly leave the total perturbations unchanged. There-
fore, isocurvature perturbations can be defined as

Sxy =
δx

1 + wx
− δy

1 + wy
. (1.120)

There are different sets of isocurvature perturbations, usually defined with
respect to the photon perturbations (e.g., neutrino isocurvature perturbations
involve neutrino and photons in the expression above).

Single-field inflation, since it involves a single clock (scalar field), predicts
only the generation of adiabatic perturbations. This is because any point
during inflation is completely characterized by the value of the single scalar
field involved. Actually, isocurvature perturbations are very constrained by
current observations of the CMB anisotropies. Some exceptions are compen-
sated dark-matter-baryon isocurvature perturbations (i.e., isocurvature per-
turbations involving only dark matter and baryons). Anyways, since we are
focusing on single-field inflation, we restrict the discussion to adiabatic per-
turbations and we only need to derive δρ. We can therefore specify the initial
conditions in terms of a single metric perturbations.

The power spectrum of the perturbations of the scalar field within the
horizon is

Pδϕ =
1

2k3a2τ2
=

(
H2

2k3

)

hor. cross.

. (1.121)



INITIAL CONDITIONS 31

where we have used that during inflation, assuming a constant Hubble rate,
τ ≃ −1/Ha = −1/H. However, as inflation progresses, a connection between
δϕ and Ψ arises and freezes outside the horizon. Therefore, the primordial
metric perturbations are determined by the scalar field perturbations at hori-
zon crossing.

Let us define the curvature perturbation

R(kkk, τ) ≡ ikiδT
i
0(kkk, τ)a

2H(τ)

k2
[
ρ̄+ P̄

]
(τ)

−Ψ(kkk, τ) . (1.122)

During inflation, the first term dominates, and applying the energy-momentum
tensor we have

R = −aH
ϕ̄′
δϕ , (during inflation) . (1.123)

Enough time after inflation ends, when we are fully in the radiation dominated
epoch, the stress-energy tensor is fully dominated by radiation and neutrinos
(denoted by ‘r′ collectively). Using the equation of state of radiation in the
denominator of R, we have

R = −3aHFr1

4k
−Ψ = −3

2
Ψ , (post inflation ; rad.dom) , (1.124)

where we will discuss the last equality in a bit.
It can be demonstrated that R (which a gauge invariant quantiy) is con-

served outside the horizon.14 Therefore, the value of R is determined at
horizon crossing, and we can therefore relate superhorizon values of Ψ with
δϕ, finding

(PΨ)post (k) = (PΦ)post (k) =
8πG

9k3

(
H2

ϵsr

)2

aH=k

, (1.125)

where we also use the non-anisotropic stress quality of Φ = −Ψ. Similarly,
the curvature power spectrum is

PR(k) =

(
aH

ϕ̄′

)2

Pδϕ(k) =

(
2πGH2

ϵsrk3

)

aH=k

. (1.126)

In natural units, the Planck mass MP = G−1/2, and let us rephrase

PR(k) =

(
2πH2

ϵsrM2
Pk

3

)

aH=k

≡ 2π2Ask
−3

(
k

kp

)ns−1

, (1.127)

where As is the variance of curvature perturbations in a logarithmic wavenum-
ber interval centered around the pivot scale kp and ns is the scalar spectra

14For this computation, the spatially flat gauge is very convenient.
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index. For the Planck convention, kp = 0.05Mpc−1, As = 2.1 × 10−9, which
corresponds to a perturbation amplitude ∼ 4.6 × 10−5, of similar order of
magnitude than the temperature fluctuations in the CMB.

We can describe the primordial power spectrum from the slope of k3PΦ.
For instance, if it is constant, it is called a scale-invariant power spectrum.
However, there is a small deviation from scale invariance, due to small changes
in the slow-roll parameter. The field rolls down the potential slowly in such a
way that the Hubble rate, nearly constant, decreases very slowly. This makes
that the actual power spectrum is red-tilted, with the larger-scale perturba-
tions (those that leave the horizon earlier) slightly larger than the smaller-scale
ones. This feature has been confirmed by CMB observations, where the slope
can be related to ϵsr and another inflation parameter δsr.

1.5.0.2 Primordial matter and radiation perturbations
The only piece left is to relate the metric perturbations after inflation to the

matter and radiation perturbations. These are the initial conditions for the
system of differential equations derived before. Thanks to the fact that the
primordial perturbations in single-field inflation are adiabatic, this derivation
is significantly simplified.

We can start by taking the large-scale limit in the Boltzmann equation
for the momentum-averaged perturbation of the phase-space distribution of
photons from the previous chapter (Eqs. (1.93) and (1.102)). In this limit,
F ′

γ ∼ Fγ/τ , while ikµFγ ∼ kFγ : the former is larger than the latter by a 1/kτ
factor, which in this limit is very large. This argument allows us to neglect any
factor multiplied by k in the Boltzmann equation. Physically, this means that
the scales under consideration are much larger than the size of the horizon and
therefore are not causally connected. In this regime, only gravity is relevant:
dark matter and baryons behave similarly, and their velocities are smaller
than overdensity by the same factor kτ . Furthermore, an observer within
their causal horizon would only see a uniform sky, so that higher multipoles
of the phase space distribution perturbation are negligible. Therefore, we have
for radiation (photons and neutrinos alike),

Fr0 + 4Φ′ = 0 , (1.128)

and for the non-relativistic matter

δ′c = −3Φ′ . (1.129)

Note that since we consider adiabatic perturbations and large scales, Fγ0 =
Fν0 and δc = δb.

Now we focus on the Einstein equations from Eq. (1.56). The k2 term can
be neglected in this limit and assuming that all energy density is given by
radiation (radiation-domination epoch),

3H (Φ′ −HΨ) = 4πGa2ρ̄rFr0 . (1.130)
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During radiation domination, a ∝ τ , so that H = 1/τ , and

Φ′

τ
− Ψ

τ2
= 4πGa2ρ̄rFr0 =

Fr0

2τ2
, (1.131)

where the last equality uses the Friedmann equation. Multiplying by τ2,
differentiating both sides and using Fr0 = −4Φ′ we have

Φ′′τ +Φ′ −Ψ′ = −2Φ′ =⇒ Φ′′τ + 4Φ′ = 0 , (1.132)

where the last part neglects anisotropic stress, hence Φ = −Ψ. Inserting the
ansatz of Φ = τp we have

p(p− 1) + 4p = 0 , (1.133)

which has p = −3 and p = 0 as solutions. p = −3 is a decaying mode, so that
it will quickly vanish without contributing to the growth of perturbations.
Therefore, we focus on p = 0. In this case, from Eq. (1.131), after multiplying
by τ2 and under the same assumptions, for the initial time τi

Φ =
Fr0

2
=
Fγ0

2
=
Fν0

2
. (1.134)

For dark matter and baryons we have δc(kkk) = δb(kkk) = 3Fγ0(kkk)/4+constant(kkk).
Since adiabatic perturbations must have a uniform matter-to-radiation ratio
is

nc
nγ

=
n̄c
n̄γ

[
1 + δc

1 + 3Fγ0/4

]
, (1.135)

where the 3/4 factor for the photon perturbations comes from changing from
energy density to number density (at linear order). The combination in the
brackets linearizes to 1 + δc − 3Fγ0/4 must therefore be independent of the
position, which forces the constant above to be null for the perturbations to
sum up to zero.

From the space-time component of the Einstein equation (Eq. (1.57)) we
can get the initial condition for the velocities, using that ρr ≫ ρm and ne-
glecting the k2 term. We find

Fγ1 = Fν1 =
4θc
3k

=
4θb
3k

= − k

6aH
Φ , (1.136)

which returns the R = −3Ψ/2 we used in the previous section.





CHAPTER 2

LECTURE 1: GROWTH OF STRUCTURES

The preliminary material discussed the equations describing the evolution of
matter, radiation and metric perturbations in the Universe to linear order, as
well as the primordial perturbations resulting from inflation that determine
the initial conditions for the evolution equations. The evolution of pertur-
bations consists of a system of coupled differential equations (metric pertur-
bations depend on the total stress-energy tensor, which receive contributions
from the perturbations of each independent component of the Universe, the
evolution of which is in turn determined by the metric perturbations). Usu-
ally, this system is solved by Boltzmann codes like CLASS (2) or CAMB (3).
In this chapter we want to get a qualiative understanding of the growth of
matter perturbations, which are the ones that will determine the distribution
of galaxies in the late Universe.1

In general, we can use the Poisson equation to relate the gravitational
potential with the matter perturbations, which is correct for perturbations

1More details can be found in Modern Cosmology (Ref. (1)), which we closely follow in this
chapter, homogenizing nomenclature and altering slightly the order of the discussion.

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)
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well within the horizon and in matter domination

k2Φ = 4πGa2ρ̄mδm , (a≫ aeq, k ≫ aH) . (2.1)

Turning the background matter density using the density parameter and the
critical density and the definition of the latter, we can express the matter
overdensity as

δm =
2k2a

3ΩmH2
0

Φ , (a≫ aeq, k ≫ aH) . (2.2)

This kind of conversion will appear many times in this chapter.
Here we attempt to get an approximate description of the growth of per-

turbations, hence we will reduce significantly the number of equations and
limit ourselves to specific limits and regimes. Remember that before recom-
bination, the photon distribution can be characterized by only the monopole
and dipole of the momentum-averaged distribution, since all other moments
are suppressed due to the tight coupling between photons and baryons. This
breaks down after recombination, but at that time the photon perturbations
play a negligible role in the growth of structures since the energy-density of the
Univese is totally dominated by non-relativistic matter.2 We will also neglect
high multipoles of neutrinos. This is a bad approximation, since neutrinos
free stream and are never tightly coupled, but it is better than neglecting
them completely. Therefore we will consider the monopole and dipole of the
whole relativistic species, photons and neutrinos, all together.

Tight-coupling also allows us to eliminate baryons from the Boltzmann
equations, if we are only interested in the qualitative evolution of matter
perturbations. This is because the collision term for photons can be neglected
in the limit of small baryon density (with respect to photons).3 Similarly, we
will consider than matter perturbations are entirerly determined by cold dark
matter.

In this limit, the photon distribution reduces to two equations for the
monopole and dipole. Therefore, considering only cold dark matter and total
radiation in this limit, we have the following set of differential equations for

2Following the evolution of the whole photon phase-space distribution is required to under-
stand CMB observations, as primary anisotropies propagate through an evolving Universe,
and also to model secondary anisotropies accurately. We will study this problem in the
next chapter.
3First, since the quadrupole and the polarization are very small, we can neglect the terms
multiplying P2. Then we can show the collision term is proportional to the baryon-to-
photon energy ratio R ≡ 3ρ̄b/4ρ̄γ .
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matter and radiation:

F ′
r0 + kFr1 = −4Φ′ ,

F ′
r1 −

k

3
Fr0 = −4k

3
Φ ,

δ′c + θc = −3Φ′ ,

θ′c +Hθc = −k2Φ .

(2.3)

Under these approximations, there is no anisotropic stress, thus Φ = −Ψ
(as used above). Then, we have the time-time component for the Einstein
equations (Eq. (1.56)) and the redundant equation from the combination of
this one and the time-space components (Eq. (1.57)) to describe metric per-
turbations and their relations with matter and radiation:4

k2Φ+ 3H (Φ′ +HΦ) = 4πGa2(ρ̄cδc + ρ̄rFr0) ,

k2Φ = 4πGa2
[
ρ̄cδc + ρ̄rFr0 +

3H
k

(
ρ̄cθc
k

+ ρ̄rFr1)

)]
.

(2.4)

This set of 5 differential equations is very easy to solve numerically. Analytical
solutions are harder to obtain since there is no analytic solution valid on all
scales at all times. We need to take limits and specific regimes to study
individual pieces of the cosmic evolution and patch them together afterwards.

We will study large scales (matter-radiation transition while outside the
horizon and horizon crossing during matter domination) and small scales
(horizon crossing during radiation-dominated era and matter-radiation tran-
sition within the horizon) analytically. We cannot treat analytically modes
that enter the horizon around the epoch of equality, and numerical solutions
solving the Boltzmann equations are required, but the physics are similar.

The approximations to obtain the equations above are rough. We have ne-
glected the effects of baryons, which are ∼ 16% of matter in the Universe, and
the mass of neutrinos (as well as high multipoles of the neutrino and photon
perturbations). We will indicate the impact of these additional components
as we progress in the chapter.

2.1 Large scales

We can distinguish two different regimes for the large scales. First, the transi-
tion from radiation to matter domination takes place while the perturbations
are outside the horizon. Second, perturbations enter the horizon already in
the matter domination.

4Note that only one of them is needed to close the Boltzmann system, since we already fix
Φ = −Ψ.
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2.1.1 Super-horizon solutions

Consider modes far outside the horizon, kτ ≪ 1: then we can drop all terms
depending on k, which shows that velocities decouple from the system, leaving
only three equations to solve.5 We are left with

F ′
r0 = −4Φ′ , δ′c = −3Φ′ ,

3H (Φ′ +HΦ) = 4πGa2(ρ̄cδc + ρ̄rFr0) ,
(2.5)

with the first two equations showing that the combination 3δc − 4Fr0 is con-
stant, and zero (since they are adiabatic perturbations, see the discussion
below Eq. (1.135)). Therefore we drop the equation for radiation. If we now
introduce

y ≡ a

aeq
=
ρ̄m
ρ̄r

, (2.6)

and use it as evolution variable, rather than τ or a.6 Then, the Einstein
equations become

3H (Φ′ +HΦ) = 4πGa2ρ̄cδc

(
1 +

4

3y

)
=⇒

y
dΦ

dy
+Φ =

y

2(y + 1)
δc

(
1 +

4

3y

)
=

3y + 4

6(y + 1)
δc ,

(2.7)

where we have used d/dτ = Hyd/dy, a′ = aH, and the last equality uses the
Friedmann equation as function of y. Using the dark-matter equation we have
dδc/dy = −3dΦ/dy. Then if we express the equation above as an equation
for δc and derive with respect to y to get dδc/dy we have

− 3
dΦ

dy
=

d

dy

[
6(y + 1)

3y + 4

{
y
dΦ

dy
+Φ

}]
=⇒

d2Φ

d2y
+

21y2 + 54y + 32

2y(y + 1)(3y + 4)

dΦ

dy
+

Φ

y(y + 1)(3y + 4)
= 0 .

(2.8)

Kodama and Sasaki found a solution to this equation in 1984 introducing a
new variable

u ≡ y3√
1 + y

Φ , (2.9)

which turns the equation above into

d2u

dy2
+

du

dy

[
−2

y
+

3/2

1 + y
− 3

3y + 4

]
= 0 , (2.10)

5Remember that θ = ikv, hence we also neglect θ terms here.
6We could use ρ̄c in the numerator to get a slightly more accurate solution, since we are
ignoring baryons. But this is not necessary since we are aiming for a qualitative result
anyways.



LARGE SCALES 39

where there is no term proportional to u and leaves a first-order equation that
is integrable. Denoting here u′ ≡ du/dy to ease the notation, we have

du′

u′
= d

[
2

y
− 3/2

1 + y
+

3

3y + 4

]
=⇒

log u′ = 2 log y − 3

2
log(y + 1) + log(3y + 4) + constant =⇒

u′ = A
y2(3y + 4)

(1 + y)3/2
,

(2.11)

where A is an integration constant to be found. Using the definition of u we
can integrate the expression above to get

y3√
y + 1

Φ = A

∫ y

0

dỹ
ỹ2(3ỹ + 4)

(1 + ỹ)3/2
, (2.12)

where we have already eliminated the second integration constant since y3Φ→
0 as y → 0 (e.g., early times). The second constant can be obtained approxi-
mating the integrand in the small y limit, for which we obtain that Φ = 4A/3,
thus A = 3Φ(0)/4. The integral above has an analytical solution, which leaves

Φ =
1

10y3

(
16
√
1 + y + 9y3 + 2y2 − 8y − 16

)
Φ(0) . (2.13)

Although it is not obvious, this expression fulfills that at small y, Φ = Φ(0). At
large y, in turn, once matter dominates, y3 terms dominates and we find Φ =
9Φ(0)/10. This means that even at the largest scales, those which never enter
the horizon, the gravitational potential drops a factor 9/10 as the Universe
undergoes the matter-radiation transition. Remembering that after inflation
R = 3/2Φ, we obtain an important result for super-horizon scales

(Φ(kkk, τ))super−horizon =

{
2
3R(kkk) , (radiation domination) ,
3
5R(kkk) , (matter domination) .

(2.14)

We have provided solutions in two limiting times, but the transition be-
tween pure radiation and pure matter domination epochs is very long.

Finally this analytic limit solution works reasonably well when compared
with numerical results. The main difference is due to the neutrino quadrupole,
which introduces a small anisotropic stress and therefore a small slip in the
gravitional potentials (i.e., Φ ̸= −Ψ). Accounting for this effect drops the
9/10 factor to ≃ 0.86.

2.1.2 Horizon crossing

Large scales enter the horizon already in the matter-domination epoch. We
have studied their evolution outside the horizon, and now we want to show
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that also within the horizon the gravitational potential does not evolve over
time.

Let us go back to our set of 5 differencial equations from Eqs. (2.3) and (2.4),
and focus on scales within the horizon during matter domination. Therefore,
we can neglect any role from radiation components, and we keep now the
second of the two Einstein equations, which allow us to substitute Φ in the
two differential equations for the cold dark matter.

Now we have a set of two differential equations, but we can also add some
prior knowledge about the initial conditions: we know that deep in the matter-
domination epoch, the gravitational potential on super horizon scales is con-
stant. Therefore, we can set Φ′ = 0 as our initial condition. Therefore we
need to check if the set of equations admits a solution with constant Φ:

δ′c + θc = 0 ,

θ′c +Hθc = −k2Φ ,

k2Φ =
3

2
H2

[
δc +

3Hθc
k2

]
,

(2.15)

where we have used the Friedmann equation to simplify the last expression.
In the matter-dominated era, H ∝ a−3/2, so that dH/dτ = −H2/2. We use
the last equation above to obtain δc as function of Φ and θc and substitute in
the first equation, obtaining

2k2Φ′

3H2
+

2k2Φ

3H − 3Hθ′c
k2

+
3H2θc
2k2

+ θc = 0 . (2.16)

Now we can use the equation for θ′c to obtain a second order equation on Φ.
We substitute θ′c above obtaining

2k2Φ′

3H2
+

[
θc
k2

+
2Φ

3H

](
9H2

2
+ k2

)
= 0 . (2.17)

One condition for constant Φ to be a solution of the system is if we obtain a
second-order equation for Φ of the form αΦ′′ + βΦ′ = 0. Therefore, we can
test if Φ constant is a solution by deriving the expression above as function
of τ and dropping terms proportional to derivatives of Φ. Using the fact that
the conformal time derivative of H−1 is 1/2 during matter domination and
again the equation for θ′c, we see that the remaining terms are

−
[Hθc
k2

+
2Φ

3

]
(9H2 + k2) = 0 , (2.18)

where the term in square brackets can be identified with the one in the previ-
ous expression, which is proportional to Φ′. Therefore, there is no term pro-
portional Φ and Φ =constant is a valid solution for the system in the matter-
domination era. Since it comes also from an initial condition, Φ =constant is
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the solution. The other solution to the system involves a decaying solution,
thus not relevant to the problem at hand.

Therefore, gravitational potentials remain constant inside of the horizon
during matter-domination era. This means that the matter accretion (which
makes the potential grow) and the expansion of the Universe (which dilutes the
potential) exactly counteract each other. When dark energy becomes relevant,
accelerating the expansion of the Universe, makes the latter dominate and
potentials will decay.

In this situation, since the gravitational potential is constant and we are in
matter domination and well within the horizon, we can use Eq. (2.2) to relate
the potential and the matter perturbations to find that matter perturbations
grow as ∝ a.

2.2 Small scales

We have broken the study of large scales perturbations as the matter-radiation
transition outside of the horizon, and the horizon crossing during matter dom-
ination. The situation for small scales is mirrored: perturbations enter the
horizon during radiation domination, and they experience the transition to
matter domination when they are well within the horizon.

2.2.1 Horizon crossing

During radiation domination, matter perturbations are determined by the
gravitational potential, but they are not significant to influence it back, since
the energy density is dominated by radiation. Therefore, the gravitational
potential is influenced by radiation perturbations, and it determines the mat-
ter perturbations. The study of the dark matter perturbations in this regime
requires a two step process: solve the radiation and potential perturbations,
and then translate these into matter perturbations. To start we take the ra-
diation equations in Eq. (2.3) and the second Einstein equation in Eq. (2.4)
dropping the matter terms, which leaves

Φ =
3H2

2k2

[
Fr0 +

3H
k
Fr1

]
, (2.19)

where as before we have substituted ρ̄r using the Friedmann equation. Fur-
thermore, in radiation domination, H = 1/τ , and substituting Fr0 by Φ and
Fr1 using the equation above in the radiation equations we find

− 3

kτ
F ′

r1 + kFr1

[
1 +

3

k2τ2

]
= −4Φ′

[
1 +

k2τ2

6

]
− 4k2τ

3
Φ ,

F ′
r1 +

1

τ
Fr1 = −4k

3
Φ

[
1− k2τ2

6

]
.

(2.20)
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As done before, we will turn these two first-order equations into a second
order for Φ. We can use the second equation to express F ′

r1 as function of Φ
and Fr1, and substitute in the first equation, which is left as

Φ′ +
1

τ
Φ = − 3

2kτ2
Fr1 . (2.21)

Now we can differentiate, and remove terms depending on Fr1 and F ′
r1 with

the expression above. We find

Φ′′ +
4

τ
Φ′ +

k2

3
Φ = 0 , (2.22)

which is the wave equation in Fourier space with a damping term due to the
expansion of the Universe. This implies oscillatory solutions, which must be
connected to the initial condition of a constant Φ (before horizon crossing).
Therefore, let us define u ≡ Φτ , such as

u′′ +
2

τ
u′ +

(
k2

3
− 2

τ2

)
u = 0 . (2.23)

This is the Bessel equation of order 1, with solutions j1(kτ/
√
3) (the spherical

Bessel function) and n1(kτ/
√
3) (the spherical Neumann function). The latter

diverges as τ → 0, so that we must discard it due to the initial conditions.
We can use the exact expression for j1(x) = (sinx− x cosx)/x3, which tends
to 1/3 as x→ 0. Since Φ(0) = 2R/3, we obtain

Φ(kkk, τ) = 2
j1(kτ/

√
3)

kτ/
√
3
R(kkk) . (2.24)

As soon as the mode enters the horizon during radiation-dominated era, its
potential starts to decay and oscillate. Effectively, the solution corresponds
to a damped standing wave in Fourier space. Physically, this is because radi-
ation pressure counteracts (and overcomes) gravity, preventing overdensities
to grow. This is evident from Eq. (2.19), ignoring the dipole (which is much
smaller than the monopole within the horizon): since Fr0 oscillates with fixed
amplitude, the potential also oscillates but proportionally to H2 ∝ τ−2.

Neglecting the influence of dark matter induces an error in the evolution of
the gravitational potential at large scales, due to its gravitational effect. The
effect of free-streaming neutrinos leads to additional damping of the potential
after horizon crossing.

Now we can determine the evolution of the cold dark matter perturbations,
which are determined by Φ, following Eq. (2.3). Merging both equations, we
find (using that H = 1/τ in radiation domination)

δ′′c +
1

τ
δ′c = S = −3Φ′′ + k2Φ− 3

τ
Φ′ . (2.25)
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Two solutions to the homogeneous equation (i.e., having the source term
S = 0) are δc =constant and δc = log τ . Therefore, we anticipate a logarith-
mic growth of the matter perturbations within the horizon in the radiation-
dominated epoch.

Remember that the solution to a second-order equation is the linear com-
bination of the two homogeneous solutions and a particular solution. In this
case, we do not have prior intuition about the particular solution, so we can
construct it from the two homogeneous solutions (denoted by s1 and s2) and
the source term. Such solution is the integral of the source term weighted
by the Green function [s1(τ)s2(τ̃)− s1(τ̃)s2(τ)]/[s′1(τ̃)s2(τ̃)− s1(τ̃)s′2(τ̃)]. So
here we have (adding factor of k to the arguments of the logarithms, since
they will be convenient later)

δc = C1 + C2 log(kτ)−
∫ τ

0

dτ̃S(k, τ̃)τ̃(log(kτ̃)− log(kτ)) . (2.26)

At very early times, the integral can be neglected, and matching the initial
condition (δc = R, from previous chapter), we find C2 = 0 and C1 = R.
S decays as it enters the horizon (since the potential does), hence most of
the contribution to the integral comes from kτ ∼ 1. Therefore, the first
integral will asymptote to a constant, and the second one will lead to a term
proportional to log(kτ). Therefore, after entering the horizon

δc = AR log(Bkτ) , (2.27)

which is a constant plus a logarithmic growing mode. The constant term is
C1 plus the first integral, while the logarithmic term is the second integral:

AR logB = R−
∫ ∞

0

dτ̃S(k, τ̃)τ̃ log(kτ̃) ,

AR =

∫ ∞

0

dτ̃S(k, τ̃)τ̃ .

(2.28)

The upper limit set to infinity is allowed since the potential decays (and thus
S) and the integrand vanishes at large τ . Solving this equations return A = 6
and B = 0.44. A more precise treatment, using more precise expressions for
the potentials, leads to slightly different values, as found by Hu and Sugiyama
in 1996.

In summary, dark matter perturbations grow even during radiation-domination
era. This is in contrast of the radiation perturbations, which oscillate with
constant amplitude (determining the decay of the potential) and the baryon
perturbations, which are tightly coupled to photons. This is because cold dark
matter does not feel any pressure that counteracts the effect of gravity, hence
even if the gravitational potential decays and the Universe expands faster it
keeps clustering (although not as fast as during matter domination era, where
the constant potential implied δc ∝ a). As the Universe gets closer to matter
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domination, the expansion slows down and the perturbations start to grow
faster. This growth eventually makes that the matter perturbations must be
taken into account (i.e., ρ̄cδc ∼ ρ̄rFr0), which produces the small offset at
large scales in our prediction for the gravitational potential inside the horizon
during radiation domination mentioned before.

2.2.2 Sub-horizon evolution across the matter-radiation transition

As we mentioned, even during radiation domination, the growth of matter
perturbations joint to the fact that the radiation perturbations oscillate at
fixed amplitude eventually leads to ρ̄cδc ∼ ρ̄rFr0 even if ρ̄c < ρ̄r. Once
this point is reached, the gravitational potential is determined by the matter
perturbations independently of the radiation perturbations. Therefore, Fr

can be ignored. In this subsection we will solve the evolution of perturbations
in this regime and match it to the logarithmic growth from the previous
subsection, which happened when the potential decays.

We start from Eq. (2.3), neglecting the role from radiation in this case,
and the second Einstein equation in Eq. (2.4), and once again we want to get
to a second order equation from a system of three equations. In this regime,
the sub-horizon dark-matter perturbations experience the matter-radiation
transition, so we will use again the variable y defined in Eq. (2.6) as the
evolution variable. The three equations therefore become

dδc
dy

+
θc
Hy = −3dΦ

dy
,

dθc
dy

+
θc
y

= −k
2Φ

Hy ,

k2Φ =
3Hy

2(y + 1)
δc .

(2.29)

Note that expressed in this way the gravitational potential only depends on
δc and not on the velocity divergence because perturbations are well within
the horizon and terms that are divided by H/k ≪ 1 (remember that θ = ikv).
Following the same routine as above, we differentiate the first equation above
to get

d2δc
dy2

− (2 + 3y)θc
2Hy2(1 + y)

= −3d
2Φ

dy2
+

k2Φ

H2y2
, (2.30)

where we have used the second equation above to substitute the derivative of
θc, and considered that d(Hy)−1/dy = −(1 + y)−1(2Hy)−1. The first term
in the right is much smaller than the second one, which has a k2/H2 factor,
hence we drop it, and we can substitute the second term using the Einstein
equation above. Using the first equation for δc we can substitute the θc factor
(neglecting the potential, which is much smaller than δc within the horizon,
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according to the Poisson equation). Thus, we have

d2δc
dy2

+ 2
(2 + 3y)

2Hy2(1 + y)

dδc
dy
− 3

2y(y + 1)
δc = 0 , (2.31)

which is known as the Meszaros equation, and governs the evolution of sub-
horizon cold dark matter perturbations after radiation perturbations have
become negligible.

Now we need to find the two solutions and match the to the logarithmic
evolution found above. We can use our prior knowledge about the perturba-
tions deep in the matter era, which we have seen they grow proportionally to
a. Therefore, one of the solutions must be a polynomial of y of order 1 (which
would imply d2δc/dy

2 = 0). In this case,

dδc
dy

1

δc
=

3

2 + 3y
, (2.32)

the solution of which is δc ∝ y + 2/3, or

δc ∝ a+
2aeq
3

, (2.33)

which approximates to the growth proportional to a for a≫ aeq.
The second solution can be found using u ≡ δc/(y + 2/3), which satisfies

(1 + 3y/2)
d2u

dy2
+

(21/4)y2 + 6y + 1

y(y + 1)

du

dy
= 0 , (2.34)

and involves a first-order equation in the derivative of u. We can therefore
integrate to get the solution for this derivative, and then integrate again. The
first integral returns

du

dy
∝ (y + 2/3)−2y−1(y + 1)−1/2 , (2.35)

and the subsequent integral leads to

δc ∝ (y + 2/3) log

[√
1 + y + 1√
1 + y − 1

]
− 2
√

1 + y . (2.36)

At early times y ≪ 1, the first solution is constant, and the second, propor-
tional to log y; at late times y ≫ 1, the first solution scales as y and the
second decays as y−3/2. Therefore, we can denote them as the growing D+

and decaying D− modes, respectively.
Note that the decaying mode cannot be neglected because we need to match

the solution to the logarithmic evolution from horizon crossing derived in
the previous subsection, which is valid within the horizon before equality.
Therefore, we can aspire to get a qualitative solution only for the modes that
enter the horizon before equality.
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For those modes we can match the two solutions and their first derivatives
(with respect to y),

AR log(Bym/yH) = C1D+(ym) + C2D−(ym) ,

AR
ym

= C1D
′
+(ym) + C2D

′
−(ym) ,

(2.37)

where ym is the matching time, which must satisfy yH ≪ ym ≪ 1, and yH
is the horizon crossing time, which replaces kτ in the logarithm with y/yH ,
valid as long ym is deep in the radiation era. As you can see, at late times,
the only term that matters is D+, since D− decays with time.

2.3 Transfer function

We have seen that at linear order each mode kkk evolves independently from the
rest for all species and metric perturbations. Furthermore, while the initial
conditions are random given a distribution function, the linear evolution is
deterministic. Therefore, we can express any property of a field as function of
its initial condition using a transfer function TX . In the absence of anisotropic
stress (e.g., as the one introduced by the massive neutrinos), the transfer func-
tion can be decomposed in the time and k dependence T (a, k) = T (k)D(a),
where D is known as the linear growth factor, and will be discussed later.
Since the effect of neutrinos is not large, and its anisotropic stress is small,
there is only a small scale-dependence on the growth factor. However, as we
will discuss later, it is key to accurately describe the growth of perturbations.

Let us focus on a specific flavor of the transfer function, regarding the re-
lation between the gravitational potential at a given time with respect to the
large-scale beyond-horizon gravitational potential during matter domination
(i.e., after accounting for the reduction by the 9/10 factor). Let us also con-
sider that we can completely separate the scale and time dependence on the
transfer factor into two different multiplicative factors (the transfer function
and the growth factor).7 Therefore, we can write

Φ(kkk, a) =
3

5
R(kkk)T (k)D+(a)

a
, (2.38)

where the prefactor accounts for the 9/10 factor of super-horizon scales af-
ter matter-radiation equality. The normalization of the growth factor D,
although seemingly strange, is like that because it is defined in term of the
matter perturbations during matter domination, rather than the gravitational
potential.

7Massive neutrinos and, in more generality, a non-negligible anisotropic stress introduces
a scale dependence in the time evolution of the matter perturbations, which breaks down
this assumption.
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Using the Poisson equation (in matter domination, well within the horizon),
and using the matter density parameter and the definition of the critical
density as we have done many times in this chapter, we have (in this limit)

δm(kkk, a) =
2k2a

3ΩmH2
0

Φ(kkk, a) =
2k2

5ΩmH2
0

R(kkk)T (k)D+(a) , (2.39)

which by definition implies that the time evolution of matter perturbation is
linearly proportional to the growth factor. Note that this definition of the
transfer function can be extended to any variable, especially if we define in
full generality

δx(kkk, a) = R(kkk)T (k, a) . (2.40)

As we saw before, modes that enter the horizon after matter-radiation
equality have a constant potential. Therefore, the transfer function is very
close to unity at scales beyond the size of the horizon at matter-radiation
equality, those that fulfill k ≪ keq = Heq. For the consensus cosmology,
keq = 0.073Mpc−1Ωmh

2 = 0.010Mpc−1.
Now, recovering the definition of the power spectrum of primordial cur-

vature perturbations from Eq. (1.126), we find that the linear matter power
spectrum is given by

P (k, a) =
8π

25

As

Ω2
mH

4
0

T 2(k)D2
+(a)

kns

kns−1
p

. (2.41)

The power spectrum is the Fourier transform of the correlation function
⟨δ(xxx)δ(xxx′)⟩, hence it must have units of volume; we can see in the expres-
sion above that this is fulfilled.

To get an analytic expression for the transfer function in this limit, we
can recover the results from Eq. (2.37) and get the value for the constant
multiplying the growing mode:

C1 =
D′

−(ym) log(Bym/yH)−D−(ym)/ym

D+(ym)D′
−(ym)−D′

+(ym)D−(ym)
AR . (2.42)

The denominator is −(4/9)y−1
m (y, + 1)−1/2 = −4/9ym, since ym ≪ 1. In that

limit, D− → (2/3) log(4/y)− 2 and D′
− → −2/3y, so that

C1 → −
9

4
AR

[
−2

3
log(Bym/yH)− (2/3) log(4/ym) + 2

]
, (2.43)

which happens to not depend on ym. This returns an approximate solution
at late times for the small-scale dark matter perturbations in our simplified
scenario:

δc(kkk, a) =
3

2
AR(kkk) log

(
4Be−3aeq

aH

)
D+(a) , (a≫ aeq) , (2.44)
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where aH is the scale factor at which the mode k enters the horizon, aHH(aH) =
k. For very small scales, the argument of the logarithm simplifies, since
aeq/aH →

√
2k/keq (due to the time dependence of the Hubble rate dur-

ing matter domination). Then, the transfer function (in this limit in which
we have ignored baryons and anisotropic stress) is given by

T (k) =
15

4

ΩmH
2
0

k2aeq
A log

(
4Be−3

√
2k

keq

)
, (k ≫ keq) . (2.45)

Plugging the numbers, we have

T (k) = 12
k2eq
k2

log(0.12k/keq) , (k ≫ keq) . (2.46)

This approximation is valid at k ≳ 1Mpc−1. There have been derivations with
more accurate analytic solutions, but since Boltzmann codes have become so
fast and precise, they have lost most of their practical utility by now, beyond
providing some qualitative understanding of the evolution of perturbations.

If there had been no logarithmic growth of the matter perturbations during
radiation domination, the modes that entered the horizon before equality
would have not growth until the epoch of equality, having their amplitude
suppressed with respect to large-scale modes by a factor of order (keq/k)

2

(instead having also the logarithmic factor).
We have now the tools to qualitative explain some of the features of the

matter power spectrum. In the power spectrum we find a clear turnover scale
at keq. Larger scales enter the horizon after equality, hence they have had a
constant potential over all their evolution (approximately). This makes that
the transfer function at those scales is approximately unity, and the matter
power spectrum to be ∝ k (accounting for the k2 relation between δc and Φ
and the scale dependence of the primordial power spectrum). Smaller scales,
however, enter the horizon at earlier times, during the radiation-domination
era, and have the potential suppressed. Although this still implies a loga-
rithmic growth for the matter perturbations, they are suppressed by a factor
∼ (keq/k)

2 log(0.12k/keq), and therefore the power spectrum decreases with
k.

If we keep zero curvature and h fixed, changes in Ωm change the position
and amplitude of the turnover (keq ∝ Ωmh

2 in physical units, ∝ Ωmh in
Mpc/h units): for lower abundance of matter, equality happens later and keq
is smaller, and viceversa.

2.3.0.1 Effect of baryons and massive neutrinos
After equality, the solution of Eq. (2.37) is not accurate due to the impact

of baryons. Baryons contribute after equality to the gravitational potential,
but they cluster less than dark matter due to the radiation pressure that they
feel until recombination. This solution therefore overestimates the growth of
matter perturbations. In a more realistic scenario, baryons suppress matter
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overdensities in scales below the size of the horizon at equality, given by
keq ∼ 0.01Mpc−1 in the fiducial cosmology.

There is another big impact of baryons in the matter perturbations that
we have not considered. Before decoupling, the baryon-photon fluid experi-
ences acoustic oscillations (due to the counteracting forces of the radiation
pressure and gravity). We saw similar acoustic oscillations in the potential
in the radiation-dominated era. Those oscillations reflect the oscillations in
the density of the baryon-photon fluid, which are known as baryon acoustic
oscillations. The amplitude of the oscillations is small due to the relative
abundance of baryons with respect to the total matter.

Massive neutrinos affect the expansion in the Universe (as they become
non relativistic), although this does not affect the moment of equality be-
cause the non-relativistic transition happens at z ∼ 100. However, even if
non-relativistic, they do free stream, i.e., they are not cold, as dark matter
and baryons. Therefore, they travel across perturbations diluting them in
scales below the free-streaming scale (determined by the comoving distance a
massive neutrino can travel in a Hubble time):

kfs(a) ≃ 0.063hMpc−1 mν

0.1 eV

a2H(a)

H0
. (2.47)

Therefore, the presence of massive neutrino suppresses the power spectrum
at k ≳ kfs, in a scale-dependent time-dependent suppression, since the free-
streaming scale (and the level of suppression) depends on time. The suppress-
ing factor with respect to the massless neutrinos case at small scales asymp-
totes to a constant. More massive neutrinos suppress more than lighter, but
at smaller scales (since their free streaming scale is smaller) and viceversa.
This means that at large scales, the perturbations for more massive neutrinos
may be larger than for lighter neutrinos.

After recombination, free of the radiation pressure, baryons eventually fol-
low the dark matter distribution as they fall in its potential wells, and follow
the matter equations in Eq. (2.3). Let us define the relative density pertur-
bation and the relative velocity between baryons and dark matter:

δbc = δb − δc , vbc = vb − vc , θbc = θb − θc . (2.48)

Their evolution equations can be obtained from substracting the evolution
equations of each component, yielding

δ′bc + θbc = 0 , θ′bc +Hθbc = 0 . (2.49)

There is no impact of the gravitational potential here, because the gravi-
tational potential cares only about the total matter. The solutions for the
system above involves a solution with constant relative density perturbations
and no relative velocity, and a decaying mode for the total relative velocity
θbc ∝ a−1, with δbc ∝

∫
dτ/a. The latter corresponds to giving baryons an
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initial push such as they have a different initial condition than dark mat-
ter. This is actually the realistic case, since after recombination, baryons
have a different velocity than dark matter as they fall in its potential wells.
Nonetheless, this difference in the state after recombination is washed out by
the gravitational pull of dark matter by the time we observe the large-scale
structure.

It is relevant, nonetheless, for the early time perturbations at very small
scales: after recombination, vbc is supersonic, which means that baryons can
travel over dark matter potential wells diluting them rather than actually
falling in them. This is why for early times it is necessary to study the small-
scale limit as function of a bulk relative velocity between the two species.
The variance of such bulk velocity is determined by the physics of the photon-
baryon plasma before recombination. The main impact is that, at early times,
the supersonic bulk relative velocity suppresses the growth of structures at
very small scales, with different patches of the Universe showing different
levels of suppression that are correlated at large distances following the baryon
acoustic oscillations pattern.

2.3.1 Growth factor

We can also discuss the time evolution of the matter perturbations, in terms
of a scale-independent linear growth factor. At late times, the horizon is much
larger than the scales of interest, and the only deviation that we find from
the Meszaros equation is the influence of dark energy. Furthermore, at these
times (after recombination), baryons do not feel any pressure and therefore
behave like cold dark matter (except for the acoustic term that matters at
very small scales). While dark matter and baryons start with different initial
conditions after recombination, baryons fall in the dark matter potential wells
and trace the dark matter perturbations faithfully. Therefore, we will use the
total matter perturbations (with a energy-density weighted average).

We start from the matter equations in Eq. (2.3), multiplying the first one
by a a deriving with respect to the conformal time. Neglecting the second
derivative of Φ, since it is negligible within the horizon, we have

(aδ′m)
′
= ak2Φ , (2.50)

which we can combine with the Einstein equation of Eq. (2.4). Neglecting
contributions from radiation and terms that are small when k ≫ H and using
the Friedmann equation and the density parameter, we have

(aδ′m)
′
=

3

2
ΩmH

2
0δm . (2.51)

To solve this equation it is better to use a as the time variable, which returns

d2δm
da2

+
d log(a3H)

da

dδm
da
− 3ΩmH

2
0

2a5H2
δm = 0 , (2.52)
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which has to be solved numerically. We can use the variable u = δmH
−1, that

leaves the equation

d2u

da2
+ 3

[
d logH

da
+

1

a

]
du

da
= 0 . (2.53)

The first order equation can be integrated to obtain du/da ∝ (aH)−3. If we
integrate again, and remembering that the growth factor is uH, we have

D+(a) ∝ H(a)

∫ a da′

(a′H(a′))3
. (2.54)

Now we need to find the normalization. We can find it matching the behavior
of the definition of the growth factor D+(a) = a during matter domination.
Therefore, since at those times H = H0

√
Ωma−3,

D+(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (2.55)

This is only valid for matter and a cosmological constant components.
We can find the solution for the decaying mode assuming δm = H, ex-

pressing the equation in terms of H2 and substituting H2 for the sum of the
components and their evolution. In this case, we will find the condition that
for δm = H to work as a solution, any component beyond matter must fulfill
p2s + 2ps = 0, which is the same condition for the growing mode.

Finally, a relevant quantity for large-scale structure is the logarithmic
derivative of the growth factor, known as the growth rate f, defined as

f(a) ≡ d logD+

d log a
≃ (Ωm(a))0.55 , (2.56)

where the last equality involves a fitting function which depends on the time-
dependent matter density parameter. The growth rate reduces to f = 1 in the
totally matter dominated Universe (i.e., Ωm = 1), and it is only when dark
energy becomes relevant that the growth factor over the scale factor (D/a)
(and also f) start to decay.

Before closing this chapter, let us note that there is a slightly different
convention regarding the normalization of the growth factor. It can be defined
in terms of early-time perturbations, as we have done so far. However, for
studies of large-scale structure, it is more common to find it defined in terms
of the matter power spectrum in the present day. In that case, the growth
factor would fulfill

P 2
m(k, a) = D2

LSSP
2
m(k, a0) . (2.57)

Of course, these two conventions only differ in their normalization.
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2.4 Limit of linear theory

We have limited the discussion to linear perturbations so far. Non linearities,
which significantly complicate the study of the growth of perturbations and
large-scale structure, are bound to be relevant at small scales. There are
different ways to estimate the scales at which non linearities cannot be ignored.
One of them is to compute the variance of linear perturbations in a certain
spatial scale. For instance, consider an spherical top-hat region in Fourier
space (which corresponds to a sinc window function in configuration space,
and viceversa), and the variance will be given by

σ2
w =

1

2π2

∫
dkk2W 2(k)P (k) , (2.58)

where P (k) is the linear power spectrum and W (k) is the spherically sym-
metric window function in Fourier space of the region we are considering. If
σ2 ≳ 1, the perturbations are too large for the linear regime to accurately
describe them, and non-linear growth is relevant for the study. We can there-
fore scan σ2

w as function of radius (or scale) to find the scale kNL at which
non-linear perturbations become relevant.

Another way to estimate kNL is to consider the variance of modes within
a specific narrow logarithmic wavenumber:

σ2
L =

1

ϵ

∫

| log k′−log k|<ϵ

dΩkd log kk
3

(2π)3
P (k) =

k3

2π2
P (k) , (2.59)

where for the last equality we have assumed an infinitesimal wavenumber
bin. Similarly, linear perturbations fulfill σ2

L ≪ 1, while values close tu unity
indicate non-linear perturbations. Today, this corresponds to a non-linear
scale of kNL(a = 1) ≃ 0.25hMpc−1, and progressively higher values as we go
higher in redshift (since structure did not have time to grow so much).



CHAPTER 3

LECTURE 2: CMB PRIMARY
ANISOTROPIES

In the previous chapter we studied, under some simplifying assumptions and in
specific limits, how the gravitational potential evolved and how this impacted
the dark matter perturbations. The matter distribution in the Universe is
relevant because it is the one that determines the potential wells in which
galaxies will form, and make up for the large-scale structure we observe in the
Universe today. The late-times large-scale structure is probed with galaxy
surveys, especially through galaxy clustering and weak lensing.1

However, we did not pay much attention to the photon perturbations.
Given how precise the observations of the cosmic microwave background
(CMB) anisotropies are, understanding photon perturbations and predicting
them accurately is crucial to understand our Universe and constrain cosmo-
logical models. Furthermore, most of the cosmic tensions appear between
low-redshift probes and the CMB measurements made by Planck (6). There-

1There are other approaches and techniques to probe the large-scale structure, including
CMB secondary anisotropies like CMB lensing (4), and line-intensity mapping (5). All
these approaches are complementary in their strengths and weaknesses and in the scales
and times that can probe.

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)
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fore, we will dedicate some time to understand the different features in the
CMB power spectrum.

As expected, the photon perturbations behave drastically different before
and after recombination, which takes places around z∗ ∼ 1100.2 Before re-
combination, the interactions between photons and free electrons are so fre-
quent that photons and baryons are tightly coupled and can be described
as a single fluid; after recombination, in turn, photons free stream from the
last-scattering surface. Since gravitational potentials are too weak to trap
photons, photon overdensities do not grow after recombination, contrary to
dark matter and baryons.

As discussed earlier, we can describe photons in terms of the perturbations
in their phase-space distribution. In Eq. (1.62) we defined the perturbations
in the phase-space distribution as f(xi, Pj , τ) = f0(q,m)(1 + φ(xi, q, q̂qqj , τ)),
which in the case of the photons can be further simplified taking the momentum-
averaged perturbation Fγ . In Fourier space, the momentum-averaged pertur-
bation of the phase space distribution only depends on the Fourier mode,
direction of the momentum, and conformal time, and it can be related to
the photon overdensity, velocity divergence and anisotropic stress following
Eq. (1.92).

Nonetheless, we cannot measure directly those photon properties. In turn,
we can measure the intensity of the radiation that arrives along a given line of
sight as function of frequency (and the polarization of that radiation). There-
fore, rather than dealing with the photon properties, it is more convenient
to work with the temperature T that determines its background phase-space
distribution

f0 = f0(ϵ) =
g∗
h3P

1

exp {ϵ/kBT0} ± 1
, (3.1)

where as in the derivation of the Boltzmann equations we use ϵ = aE =
a
√
p2 +m2 =

√
P 2 + a2m2 and T0 = aT as the temperature of the particles

today. At linear order, perturbations in the photon distribution maintain the
black-body spectrum, but change the associated temperature of the distribu-
tion. Hence, we can equally describe the perturbations in the phase space
distribution with perturbations in the temperature:

T = T̄ (1 + Θ) =⇒ Θ =
T − T̄
T̄

. (3.2)

Therefore, if we substitute this expression for the temperature in f0, we find
that f = f0(q/(1 + Θ)) in such a way that at linear order3

Θ = −
(
d log f0
d log q

)−1

φ =
1

4
Fγ . (3.3)

2We will denote quantities related with recombination with a subscript ‘*’.
3Remember that since photons are massless, ϵ = q, where q = ap is the comoving momenta
used in the chapter about cosmological perturbation evolution.
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We cannot observe the actual state of the photons in the last-scattering
surface, but how they reach us after traveling through the Universe. For
instance, photons have to exit the potential they were at the last-scattering
surface, which changes their energy accordingly to the sign of the potential:
they lose energy if they were in an overdensity (Ψ < 0), and viceversa, due
to the gravitational redshift. Therefore, the actual observed temperature is
Θ0 + Ψ∗. Furthermore, we can only measure their properties as function of
position on the sky, not in terms of any radial distance. This is why we will
focus on angular summary statistics to describe the angular maps obtained
from the CMB observations. In particular, we will focus on the angular power
spectrum. To do that, let us define the temperature perturbation as function
of a three-dimensional position,

Θ(xxx, q̂qq, τ) =

∫
d3keikkkxxxΘ(kkk, q̂qq, τ) =

=

∫
d3keikkkxxx

∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Θℓ(kkk, τ)Pℓ(µ) ,
(3.4)

where µ = k̂kkq̂qq is the cosine of the angle between kkk and the propagation direc-
tion of the photon. Note that the direction of the momentum of the photon
must be the same as the direction in which an observer at the origin (us) looks
at the sky to detect them (with a different sign). Therefore, let us change q̂qq
for the angle on the sky n̂nn. The anisotropy at the origin as function of position
on the sky is

Θ(n̂nn) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(n̂nn) ,

aℓm(xxx) =

∫
d3k

(2π)3
eikkkxxx

∫
dΩnY

∗
ℓm(q̂qq)Θ(kkk, q̂qq, τ) ,

(3.5)

where we have used the orthonormality of the spherical harmonics.
We cannot make any predicction about specific values of the perturbations

in a specific point (or a specific coefficient aℓm in this case); we can only
predict their ensemble variance (the average is null by definition), which is
measured in practice using the Ergodic hypothesis. The covariance of the
expansion coefficients aℓm is given by the angular power spectrum:

⟨aℓma∗ℓ′m′⟩ = Cℓδℓℓ′δmm′ . (3.6)

Excluding the monopole and dipole (i.e., for ℓ ≥ 2), the power spectrum and
correlation function are gauge-independent quantities.

Before recombination, there are two opposing forces influencing the photon-
baryon fluid. On the one hand, there is gravity, for which the potential wells in
the dark matter overdensity pull the fluid in. On the other, radiation pressure
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between photons and baryons grows with density, diluting the photon-baryon
overdensities and therefore pushing against gravity. This situation is analog
to a forced harmonic oscillator

ẍ+
K

m
x = F , (3.7)

where the driving force F is due to gravity. The total force ismF−Kx, where
x is the position of the oscillator and K is the force constant of the oscillator.
The general solution for this system has two oscillatory modes with an angular
frequency w =

√
K/m, and a particular solution is x = F/w2. Assuming that

the oscillator is initially at rest the sine mode vanishes, which leaves

x = A cos(wt) +
F

w2
. (3.8)

The driving forces displaces the unforced situation from zero, so that the two
extreme points at each side of the oscillations are not symmetric. The shift is
more dramatic for smaller frequencies. The square of the oscillator position
shows that the odd and even peaks have different heights due to this shift.
Therefore, a forced harmonic oscillator is determined by the external force F
and the reduced spring constant K/m.

In our case, for the photon-baryon fluid, the frequency grows as we de-
crease the effective mass of the fluid, i.e., as we decrease Ωb. The fewer the
baryon abundance, the higher the sound speed of the fluid (and closer the
peaks of the wave pattern). In turn, with more cold dark matter, the gravita-
tional potentials are larger, which increases the driving force (and lowers the
frequency), and therefore the difference in the amplitude between odd and
even peaks is larger. As the fluid falls in the potential, radiation pressure
increases and pushes the plasma outwards to maximum expansion, leading to
an underdensity with smaller amplitude than in the absence of gravity. Then
the radiation pressure reduces and the plasma clusters again, and the cycle
repeats from the beginning.

On a different note, remember that even if photon and baryons are tightly
coupled, their interaction rate is not infinite. This allows the photons to travel
a finite distance between two scatter events. The mean free path λMFP in this
case is the inverse of the derivative of the optical depth, λMFP = (neσTa)

−1

from the collision term for photons. Over a Hubble time, photons undergo
∼ neσTH

−1 scatter events (transforming the scattering rate to time instead
of conformal time, and multiplying for the time). For a random walk like this,
the total distance traveled is the mean free path times the square root of the
number of steps (i.e., scatter events). Therefore, a cosmological photon moves
a mean comoving distance

λD ∼ λMFP

√
neσTH−1 =

(
a
√
neσTH

)−1

(3.9)

over a Hubble time. Any perturbation on scales smaller than this distance
will be washed out due to all the photons diffusing over a patch of this scale,
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which homogenizes the photon temperature. In Fourier space, this smoothing
corresponds to a damping of high-k modes. Since λD depends on the number
of electrons, the diffusion scale depends on Ωb. Larger Ωb reduces λD which
in turn reduces the damping.

We have qualitatively described what is known as the primary CMB anisotropies.
However, photons do not travel completely unaffected after recombination. In-
stead, they are affected by evolving gravitational potential (integrated Sachs-
Wolfe effect), reionization, gravitational lensing due to metric perturbations
along the line of sight, and interactions with free electrons (Sunyaev-Zeldovic
effect).

We will provide a more accurate qualitative understanding of the photon
perturbations to understand the CMB power spectrum and how we can use
it to constrain cosmological parameters. As with the case of dark matter
perturbations, an almost exact treatment requires the use of numerical Boltz-
mann code. On what follows, we will distinguish between different regimes
and stages of evolution to simplify the computations.

We will focus primarily on the CMB temperature anisotropies. However,
as discussed in the previous chapters, Compton scattering generates linear
polarization (in turn, cosmological perturbations do not generate circular po-
larization). Nonetheless, only the quadrupole of the photon perturbations
generate non-zero polarization. We can also distinguish between a curl-free,
scalar component of the polarization (known as E mode) and a divergence-
free, pseudoscalar component (known as B mode); scalar perturbations only
generate E modes, while the B modes are generated either by primordial
tensor perturbations or through secondary anisotropies like lensing.

Since only the quadrupole generates polarization, E(k) ∝ Θ2(k) (in the
tight-coupling approximation), and actually the monopole and quadrupole
of the polarization perturbations contribute to the temperature perturbation
through this same connection. Finally, note that the polarization perturba-
tions must be significantly smaller than the temperature perturbations, since
the quadrupole is suppressed in the early Universe due to Compton scattering.

3.1 Large-scale anisotropies

The large-scale limit can be treated with the same system that was discussed
in Eq. (2.5). From the equation for the photon monopole, Θ′

0 = −Φ′, we
find that Θ0 = −Φ plus a constant. Similarly, from Eq. (1.134) we learn
that the initial post-inflation condition is Θ0 = Φ/2, so the constant must be
R = 3Φsuper hor./2 (from Eq. (2.14)). The large-scale evolution of Φ is given
by Eq, (2.13), but note that recombination takes places long after equality,
hence Φ = 3R/5 in this limit. Therefore,

Θ0(kkk, τ∗) = −Φ(kkk, τ∗) +R(kkk) =
2

5
R(kkk) = 2

3
Φ(kkk, τ∗) . (3.10)
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As discussed before, the observed anisotropy is Θ0 +Ψ (and using that Ψ ≃
−Φ), so that we have

(Θ0 +Ψ)(kkk, τ∗) = −
1

5
R(kkk) = −1

3
Φ(kkk, τ∗) . (3.11)

From the last two equations we see something that may be counter intuitive.
On the one hand, photons are hotter (Θ0 > 0) in places where gravity is more
intense (Φ > 0, Ψ < 0). However, we do not see them actually hotter, because
the energy they lose as they climb those potential wells makes them actually
cooler than those coming from places where gravity is less intense. This also
applies for matter over and underdensities: if we integrate the equation for δc
in Eq. (2.3) and apply the initial condition δc = R from the inflation chapter,
we find

δc(kkk, τ∗) = R(kkk)− 3

[
Φ(kkk, τ∗)−

2

3
R(kkk)

]
=

6

5
R(kkk) = 2Φ(kkk, τ∗) , (3.12)

so that the observed anisotropy in terms of the dark matter overdensity is

(Θ0 +Ψ)(kkk, τ∗) = −
1

6
δc(kkk, τ∗) , (3.13)

presenting a similar behavior than with respecto to the gravitational poten-
tials. Therefore, hotter observed anisotropies corresponds to underdense re-
gions.

3.2 Baryon acoustic oscillations

The mean-free path of photons before recombination is significantly smaller
than the size of the horizon, which couples them to baryons conforming a
tightly-coupled photon-baryon fluid. This condition applies when the optical
depth is ≫ 1 (i.e.,

∫
neσTa ≫ 1). As argued before, the competing forces of

radiation pressure and gravity build acoustic oscillations in the fluid.
In this limit, all moments beyond the monopole and dipole are suppressed:

the photons therefore behave like a fluid and can be described by its density
and velocity. We can show this starting from Eqs. (1.104), and taking the
limit in which λMFP = (neσTa)

−1 is very small. For the cases in which ℓ ≥ 3,
Θ′

ℓ ∼ Θℓ/τ ≪ neσTaΘℓ, and neglecting the coupling to the higher multipole,
we have

Θℓ ∼
k

neσTa

ℓ

2ℓ+ 1
Θℓ−1 = kλMFP

ℓ

2ℓ+ 1
Θℓ−1 . (3.14)

Therefore, for scales much larger than the mean-free path, Θℓ ≪ Θℓ−1 (which
justifies neglecting of the higher multipole above). If we neglect the contribu-
tion from the difference between the two linear polarization components given
by Gℓ, we can also neglect Θ2.
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Physically, we can understand this as follows. Consider a plane-wave per-
turbation: an observer at its center sees photons coming from a distance
∼ λMFP. Therefore, large-scale perturbations (i.e., kλMFP ≪ 1) do not con-
tribute to the perturbations that the observer perceives, because they produce
a constant temperature over that volume. Small scales perturbations are in
turn damped by the diffusion of the photons. Therefore, considering only the
first two moments:

Θ′
0 + kΘ1 = −Φ′ ,

Θ′
1 −

kΘ0

3
=
kΨ

3
− aneσT

(
Θ1 −

θb
3k

)
,

(3.15)

which are accompanied by the baryon equations, which we can rewrite, defin-
ing R ≡ 3ρ̄b/4ρ̄γ and ignoring the acoustic term, as

θb = 3kΘ1 −
R

neσTa

(
Hθb − k2Ψ+ θ′b

)
. (3.16)

The second term is much smaller due to the RλMFP factor (multiplied by 1/τ
and k in each case of the terms in the parenthesis). To lowest order we take
θb = 3kΘ1, and expand substituting this lowest-order expression in the second
term, leading to

θb ≃ 3kΘ1 −
R

neσTa

(
3kHΘ1 − k2Ψ+ 3kΘ′

1

)
, (3.17)

which we can use to eliminate θb in the photon perturbation equations above.
After rearranging a bit the terms:

Θ′
1 +

HR
1 +R

Θ1 −
k

3(1 +R)
Θ0 =

k

3
Ψ . (3.18)

Now we have a system of two first-order equations; as done in the previ-
ous chapter we will differentiate the equation for Θ0, substitute the equation
above, and then use the equation for Θ0 without differentiate to substitute
Θ1, to obtain

Θ′′
0 +

HR
1 +R

Θ′
0 + k2c2sΘ0 = F (k, τ) , (3.19)

where we have defined the force function

F (k, τ) ≡ −k
2

3
Ψ− HR

1 +R
Φ′ − Φ′′ , (3.20)

and the sound speed of the fluid as

cs(τ) ≡
√

1

3(1 +R(τ))
. (3.21)
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Note that the sound speed depends on Ωb. If the abundance of baryons is
negligible, the sound speed tends to 1/

√
3, as for any relativistic fluid. Baryons

makes the fluid heavier, which acts as the inverse mass in the reduced spring
constant of the forced harmonic oscillator. Actually, the equation above for
Θ0 is a forced, damped harmonic oscillator. Most of the terms multiplying Φ
coincide with those of Θ0 therefore we can rewrite the equation above as

{
d2

dτ2
+
HR
1 +R

d

dτ
+ k2c2s

}
[Θ0 +Φ] (kkk, τ) =

k2

3

[
1

1 +R
Φ−Ψ

]
(kkk, τ) .

(3.22)
We will use again the Green’s method to solve the full solution, which proposes
to find the particular solution starting from the two homogeneous general
solutions. The drag term in the equation above goes as R(Θ0 + Φ)/τ2 and
the pressure (∝ k2c2s) is much larger for modes within the horizon or if R
is small, which describes how for the scales of interest the impact of the
pressure (oscillations, in this case) is much more significant than the one from
the Hubble expansion. Although there is a solution including this term (the
WKB solution, which assumes a solution of the Θ0 = AeiB), let us neglect
the drag term, for which we have the oscillatory homogeneous solutions

S1 = sin(krs(τ)) ; S2 = cos(krs(τ)) , (3.23)

where the sound horizon is the comoving distance that the acoustic wave has
had time to travel in time τ :

rs =

∫ τ

0

dτ̃ cs(τ̃) . (3.24)

The total solution (including the particular solution for the driving force)
can be obtained from these two solutions similarly than for Eq. (2.26) (and
neglecting all instances of R outside the oscillatory homogeneous solutions):

Θ0 +Φ =C1S1 + C2S2+

+
k2

3

∫ τ

0

dτ̃(Φ(τ̃)−Ψ(τ̃))
S1(τ̃)S2(τ)− S1(τ)S2(τ̃)

S1(τ̃)S′
2(τ̃)− S′

1(τ̃)S2(τ̃)
, .

(3.25)

We can fix the integration constants to the initial condition for which both Θ0

and Φ are constants. Therefore, the coefficient C1 multiplying the sine must be
zero, and C2(kkk) = Θ0(kkk, 0) +Φ(kkk, 0). In our limit, R is effectively very small,
hence the denominator in the integral, which is −kcs can be approximated as
−k
√
3. and the numerator can be reexpressed as the sine of the difference of

the arguments, so that

Θ0 +Φ = (Θ0(0) + Φ(0)) cos(krs)+

+
k√
3

∫ τ

0

dτ̃(Φ(τ̃)−Ψ(τ̃)) sin [k(rs(τ)− rs(τ̃)] .
(3.26)
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Since outside the horizon Θ0 +Φ is constant, only the cosine mode is excited
and a clear oscillatory pattern can be appreciated in the solution. This expres-
sion can predict with accuracy the position of the acoustic peaks from a nu-
merical solution. To get the solution we should numerically integrate the last
term above, but we can simplify a bit a further. If the first term dominates,
the position of the peaks is given by the extrema of cos(krs): kpk = nπ/rs,
where n is a natural number, which is within 10% of the numerical solution.

Finally we can use Eq. (3.15) to relate this solution to the dipole of the
photon distribution:

Θ1(kkk, τ) =
1√
3
(Θ0(0) + Φ(0)) sin(krs)−

−k
3

∫ τ

0

dτ̃(Φ(τ̃)−Ψ(τ̃)) cos [k(rs(τ)− rs(τ̃)] ,
(3.27)

which is completely out of phase with respect to the monopole, even after
accounting for the integral term.

3.3 Diffusion damping

Diffusion is characterized by a small but non-negligible quadrupole moment.
Therefore, we need to recover Eq. (1.104) to account for it to obtain the
equivalent of Eq. (3.15). However, we can simplify on other end: diffusion
matters at very small scales, where gravitational potentials are smaller than
radiation perturbations by a factor H/k2. Otherwise, all the considerations
made in the previous section still apply, so that we can neglect all moments
above the quadrupole and we have (after neglecting the effects of polarization)

Θ′
0 + kΘ1 = 0 ,

Θ′
1 +

k

3
(2Θ2 −Θ0) = neσTa

(
θb
3k
−Θ1

)
,

Θ′
2 −

2k

5
Θ1 = −neσTa

9

10
Θ2 ,

(3.28)

along with

3kΘ1 − θb =
R

neσTa
(Hθb + θ′b) , (3.29)

which is a small rephrase of Eq. (3.16) after dropping the potentials. We know
that the time dependence of the variables involved is gonna follow sinusoidal
functions, hence let us assume that already, but using the exponential form,
such as θ ∝ ei

∫
dτ̃ω, where we know that ω ≃ kcs in the tight-coupled limit.

This implies that the derivative with respect to conformal time is

|θ′b| = |iωθb| ≫ H|θb| , (3.30)
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where we have used the approximate value of ω and that k ≫ H at small
scales. Thus, we can drop the Hθb term in the baryon equation above. Sub-
stituting the relation between θb and θ

′
b in the equation above and expanding

the denominator up to second order, we have

θb = 3kΘ1

[
1− iωR

neσTa
−
(

iωR

neσTa

)2
]
. (3.31)

We can do the same procedure for the quadrupole. First, since we are in a
regime where the mean-free path is very small, hence we can drop the Θ′

2

term, which leaves

Θ2 =
4k

9neσTa
Θ1 , (3.32)

which shows that our hierarchy closing scheme is sound: higher moments are
suppressed by a kλMFP factor. Finally, the equation for the monopole is given
by

iωΘ0 = −kΘ1 . (3.33)

We can now insert all these expressions in the equation for the dipole, which
returns the dispersion relation for ω (after collecting all the terms):

ω2(1 +R)− k2

3
− iω

neσTa

[
ω2R2 +

8k2

27

]
= 0 . (3.34)

Note that the last term is suppressed by a mean-free path factor. If we were
to neglect that term, we would recover the result of the previous section: that
the frequency is kcs.

4 Since the last term is a correction, we can write the
frequency of the oscillator as the previous result plus a minor correction

δω =
ik2

2(1 +R)neσTa

[
c2sR

2 +
8

27

]
. (3.35)

Therefore, the time dependence for the perturbations is given by

∼ exp

{
ik

∫
dτ̃ cs(τ̃)

}
exp

{
− k

2

k2D

}
, (3.36)

where we have defined the damping scale and its corresponding wavenumber
as

k−2
D ≡

∫ τ

0

dτ̃

6(1 +R)neσTa(τ̃)

[
R2

1 +R
+

8

9

]
. (3.37)

For an order-of-magnitude qualitative understanding, the above expression
implies

λD ∼ k−1
D ∼

√
τλMFP , (3.38)

4Note that in this case we do not have any forcing term in the harmonic oscillator because
we have neglected the contribution from the gravitational potential.
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which matches our previous expectations (remember that τ ≃ H−1). The

diffusion scale grows with ∼ a1/2 and Ω
−1/2
b , and damps the power spectrum

at multipoles ℓ ≳ kDτ0 ∼ 103. This effect is known as the Silk damping.

3.4 Projection to anisotropies on the sky

Until now we have derived the three-dimensional perturbations in the photon-
baryon fluid at recombination, but actually we are only sensitive to the pro-
jected anisotropies on the sky, once photons arrived to us. Remember that
the moments were defined in terms of the angle between the direction of the
propagation of the photon and kkk, and that the direction of propagation is set
by the fact that they arrive to us through a given line of sight. Therefore, we
need a solution for the photon moments today in terms of the monopole and
dipole at recombination.

We can use Eqs. (1.77) and (1.101), and rearrange a bit the terms to get

Θ′ + (ikµ− τ′)Θ = Ŝ , (3.39)

where we have defined the scattering optical depth integrated backwards from
today5

τ ≡
∫ τ

τ0

dτ̃neσTa(τ̃) , τ′ = −neσTa , (3.40)

and the source function

Ŝ ≡ −Φ′ − ikµΨ− τ′
[
Θ0 −

iθb
k
P1(µ)−

1

2
ΠP2(µ)

]
, (3.41)

in turn using

Π ≡ 1

4
(Fγ2 + Gγ0 + Gγ2) . (3.42)

As a side note, it is now convention to set the moment of recombination τ∗
as the conformal time for which τ = 1, although there are also alternative
conventions. We can turn the differential equation above into an integral
equation. Rewrite the left-hand side of Eq. (3.39) as a factor multiplying a
time derivative so that

Θ′ + (ikµ− τ′)Θ = Θ′ +AΘ = e−A d

dτ

[
ΘeA

]
. (3.43)

5Here we face a slight conflict regarding the notation. The optical depth is usually denoted
by a regular τ . Here we decide to used the variant τ to avoid confusion with the conformal
time. Other sources, especially those that do not use the synchronous gauge, solve this
conflict denoting the conformal time with η. On the other hand, there are references using
κ to denote the optical depth; we prefer not to use that convention to avoid confusion with
the curvature.
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Therefore, we can write (Θeikµτ−τ)′ = eikµτ−τŜ and integrate over conformal
time to obtain

d

dτ

[
ΘeA

]
= eAŜ =⇒

Θ(τ0) = Θ(τinit)e
ikµ(τinit−τ0)e−τ(τinit) +

∫ τ0

τinit

dτ Ŝ(τ)eikµ(τ−τ0)e−τ ,
(3.44)

where we have used that τ(τ0) = 0 by definition. On the other hand, τ(τinit)
blows up for early enough times, so that the exponential vanishes and we can
drop the first term. Conceptually, this corresponds to the fact that Compton
scattering erases effectively any initial anisotropy. For the same reason, we can
move τinit to 0 without any impact. Therefore, the solution for anisotropies
is given by

Θ(k, µ, τ0) =

∫ τ0

0

dτ Ŝ(k, µ, τ)eikµ(τ−τ0)e−τ . (3.45)

We need to deal now with the dependence in µ, which is inside the source
function and in the exponential. In the case of the exponential is easy, because
we can multiply each side of the equation by a Legendre polynomial and
remember that

(−i)−ℓAℓ ≡
1

2

∫ 1

−1

dµPℓ(µ)A ,

(−i)−ℓjℓ(x) ≡
1

2

∫ 1

−1

dµPℓ(µ)e
ixµ ,

(3.46)

so that it seems we could express the multipoles of Θ as function of Bessel
function integrals. Also, not that jℓ(x) = (−1)ℓjℓ(−x).

Dealing with the µ dependence in the source function seems more compli-
cated. However, since it multiplies the exponential, we can repeat the trick
from the previous subsection and substitute each appearance it has by a time
derivative on the rest of the term:

µ→ 1

ik

d

dτ
, (within Ŝ) . (3.47)

We can do this for the all terms in which µ appears and use integration by
parts to get the desired equality. For instance, for the −ikµΨ term:

−ik
∫ τ0

0

dτµΨeikµ(τ−τ0)e−τ = −
∫ τ0

0

dτΨe−τ d

dτ

[
eikµ(τ−τ0)

]
=

=

∫ τ0

0

dτeikµ(τ−τ0)
d

dτ

[
Ψe−τ

]
,

(3.48)

where the last line is the result of the integration by parts after the surface
term vanishes: the e−τ(0) nulls all the term τ = 0, and the τ = τ0 term does
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not depend on µ, hence only affects the monopole of the CMB and we cannot
detect it with the anisotropies.

This procedure can be applied similarly to the other term depending on µ
as well as the one depending on the Legendre quadrupole (which involves a
second derivative (P2(µ) = (3µ2− 1)/2). Accounting for all this, the solution
is

Θℓ(k, τ0) =

∫ τ0

0

dτS(k, τ)jℓ [k(τ0 − τ)] (3.49)

with a new source function defined as

S(k, τ) ≡ e−τ

[
−Φ′ − τ′

(
Θ0 +

1

4
Π

)]
+

+
d

dτ

[
e−τ

(
Ψ− θbτ

′

k2

)]
− 3

4k2
d2

dτ2
[
e−ττ′Π

]
.

(3.50)

We can see that there are many factors in the source function that depend on
τ′e−τ. Thus, let us define the visibility function as a probability density that
a photon scattered for the last time at a conformal time τ , given by

g(τ) ≡ −τ′(τ)e−τ(τ) , (3.51)

and as it is easy to understand, g decays quickly after recombination since
the Universe becomes neutral (numerically, it is due to the prefactor τ′, the
scattering rate, which gets reduced significantly as ne decreases dramatically).
Before recombination, photons scatter many times, so the visibility function is
also very small. Therefore, the visibility function is a very sharp function and
determines the width of recombination. An alternative convention to define
τ∗ is the time at which g peaks. For the level of precision attempted in this
analytic understanding, both moments are roughly the same.

Neglecting the contribution from polarization (which is very small), the
source function becomes

S(k, τ) ≃ g(τ) [Θ0(k, τ) + Ψ)(k, τ)] +
1

k2
d

dτ
[g(τ)θb(k, τ)] +

+ e−τ [Ψ′(k, τ)− Φ′(k, τ)] .
(3.52)

Now in order to get an approximate analytical result, we can integrate Θℓ

over time, integrating the θb term by parts (where as above the surface term
vanishes since g(τ) = 0 in both ends):

Θℓ(k, τ0) ≃
∫ τ0

0

dτg(τ) [Θ0(k, τ) + Ψ)(k, τ)] jℓ [k(τ0 − τ)]−

− 1

k2

∫ τ0

0

dτg(τ)θb(k, τ)j
′
ℓ [k(τ0 − τ)] +

+

∫ τ0

0

dτe−τ [Ψ′(k, τ)− Φ′(k, τ)] jℓ [k(τ0 − τ)] .

(3.53)
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The first two integrals are weighted by the visibility functions and are the
dominant terms; the latter integral is weighted by e−τ and only contributes
for τ ≲ 1, which is true after recombination. Furthermore, the gravitational
potentials are constant during matter domination, as we saw in the previous
chapter, hence the last line will only contribute just after recombination, where
radiation still has a small influence in the evolution of the potentials, and after
dark energy becomes relevant. The last line is known as the integrated Sachs-
Wolf effect, and the two contributions depending on the time are known as
the early ISW and the late ISW, respectively.

The fact that the visibility function is so peaked simplifies significantly the
first two integrals, the rest of the integrand of which varies at much lower rate.
Therefore, we can evaluate them at τ∗ and remove them from the integral,
which is left to be only the integral of g which is 1 by definition. For instance∫
dτgA = A∗

∫
dτg = A∗. Using the recursion relation to express j′ℓ as

function of jℓ−1 and jℓ and that at τ∗ we have θb = −3Θ1 (from the discussion
in previous sections), we obtain

Θℓ(k, τ0) ≃ [Θ0(k, τ∗) + Ψ)(k, τ∗)] jℓ [k(τ0 − τ∗)] +

+ 3Θ1(k, τ∗)

(
jℓ−1 [k(τ0 − τ∗)]− (ℓ+ 1)

jℓ [k(τ0 − τ∗)]
k(τ0 − τ∗)

)
+

+

∫ τ0

0

dτe−τ [Ψ′(k, τ)− Φ′(k, τ)] jℓ [k(τ0 − τ)] .

(3.54)

Each term is usually referred to as the monopole term, the dipole or Doppler
term, and the ISW, respectively.

The expression above describes the scales where diffusion is not relevant.
At smaller scales, since the diffusion scale changes very quickly around re-
combination, diffusion cannot be included just multiplying the Θ0 +Ψ above
by the damping. In turn, including the damping in the integral of the vis-
ibility function turns out to be a much better approximation. This adds a
multiplicative factor in the first line of the expression above of

∫
dτg(τ)e−k2/k2

D(τ) . (3.55)

These expressions agree with numerical solutions within 10% precision. We
can see that these result matches the preliminary expectations at the be-
ginning of the chapter. The monopole depends on Θ0 + Ψ, and the Bessel
functions determine how much anisotropy on a given angular scale ∼ ℓ−1 is
contributed by a plane wave with wave number k. On very small angular
scales where we can assume plane-parallel flat sky,

jℓ(x)→x/ℓ→0 1

ℓ

(x
ℓ

)ℓ−1/2

, (3.56)

i.e., jℓ is extremely small for large ℓ if x < ℓ, or, in our case, Θℓ is very close to
zero if ℓ > kτ0. In essence, perturbations on scales k contribute predominantly
to angular scales of order ℓ ∼ kτ0.
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3.5 CMB angular power spectrum

Θ is the perturbation of the CMB characteristic temperature, but we can
only observe it today and here (note that the small variation in the position
due to the location of the satellites and the time period over all observations
have been made are completely negligible). Time-ordered observations are
collected in a map as function of position on the sky (an angle), rather than
the three-dimensional direction of the incoming photon. This is just a mere
change of variables and we can use either frame indistinguishably for denoting
the position on the sky.

Therefore, we can expand the temperature perturbation in spherical har-
monics as discussed at the beginning of the chapter, where the harmonic
indices ℓ and m are the conjugate to the angular position. Also, note that
in the flat sky approximation (valid for small angular scales), the harmonic
transform can be understood as a 2D Fourier transform (by turning ℓ and m
into a 2D vector ℓℓℓ). Thus, the maximum multipole that can be measured is
related with the angular resolution of a given experiment. The total number
of independent bits of information is given by the number Npix of pixels in the
map, which is also equivalent to the number of independent aℓm coefficients.
Therefore, since each multipole ℓ involves 2ℓ+1 m values, we can estimate the
maximummultipole accessible by equating

∑ℓmax(2ℓ+1) = (ℓmax+1)2 = Npix.
Note that for the CMB there is another limitation to obtain information from
very high ℓ besides the angular resolution of the experiment: at some point,
the diffusion damping kills any correlation at very small scales and any mea-
sured correlation is due to foregrounds and secondary anisotropies.

By definition, the mean of a given coefficient aℓm vanishes, and therefore
we work with their covariance, their power spectrum. Recovering Eq. (3.6):

⟨aℓma∗ℓ′m′⟩ = Cℓδℓℓ′δmm′ . (3.57)

All the measured coefficients are in practice samples for the same underlying
distribution. Moreover, for each ℓ value there are 2ℓ+1m components, so that
higher ℓ values have more statistical precision regarding the determination
of their underlying distribution. The uncertainty related with the fact that
we can only measure one sky and cannot access more information than the
2ℓ+ 1 components is called the cosmic variance, which for the angular power
spectrum scales as

(
σ(Cℓ)

Cℓ

)

cosmic variance

=

√
2

2ℓ+ 1
, (3.58)

although partial scale coverage adds a factor of f
−1/2
sky to this estimation.

Furthermore, the contamination from foregrounds (which is more difficult to
control at larger scales) makes very complicated to reach the cosmic variance
limit at the largest scales.
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From the relation between aℓm and Θℓ from Eq. (3.5) we can compute
the power spectrum. To compute the variance of the spherical harmonic
coefficients we need to compute first the variance of Θ(kkk, τ0), where we will
drop the τ0 dependence for simplicity. There are two different sources of
correlation here: the primordial perturbations (random variable) and their
evolution (deterministic process). This allows us (at linear level) to separate
them using the transfer function as we did in the previous chapter. In this
case we define the transfer

T (kkk, q̂qq) ≡ Θ(kkk, q̂qq)

R(kkk) , (3.59)

which by definition is deterministic and can be removed from the ensemble
average. Therefore,

〈
Θ(kkk, q̂qq)Θ∗(kkk′, q̂qq′)

〉
= ⟨R(kkk)R∗(kkk′)⟩ T (kkk, q̂qq)T ∗((kkk′, q̂qq′) =

= (2π)3δ
(3)
D (kkk − kkk′)PR(k)T (kkk, q̂qq)T ∗((kkk′, q̂qq′) .

(3.60)

We have seen that for scalar perturbations what matters, rather than (kkk, q̂qq) is
(k, µ), so that we find that the power spectrum is (after integrating over kkk′)

Cℓ =

∫
d3k

(2π)3
PR(k)

∫
dΩqY

∗
ℓm(q̂qq)T (k, µ)

∫
dΩ′

qYℓm(q̂qq′)T ∗(k, µ′) . (3.61)

We can expand the transfer function as function of the Legendre polynomials
as in Eq. (1.91) so that Tℓ = Θℓ/R, which leaves

Cℓ =
2

π

∫
dkk2PR(k)|Tℓ|2 , (3.62)

where we have used the orthogonality of the Legendre polynomial and the nor-
mality of the spherical harmonics. For a given multipole, the power spectrum
is an integral over all Fourier modes of the variance of Θ, and quantifies the
variance of the distribution from which the aℓm coefficients are drawn from.
Let us walk over the different scale ranges in the CMB power spectrum.

Ultra-large-scale anisotropies trace perturbations that have entered our
horizon only recently, providing a window to the initial conditions. In this
regime we can neglect the dipole term in Θℓ, which leaves Θ0 + Ψ and the
ISW. The former is known as the Sachs-Wolfe effect, and using Eq. (3.11) we
have

CSW
ℓ ≃ 2

25π

∫
dkk2PR(k)|jℓ [k(τ0 − τ∗)] |2 . (3.63)

Substituting the expression of the primordial curvature power spectrum, ne-
glecting τ∗ in favor of τ0 in the Bessel function, and changing the variable to
kτ0, there is an analytic solution to the integral in terms of Gamma functions.
If we further assume ns = 1, they simplify and we find that

ℓ(ℓ+ 1)CSW
ℓ ≃ 8

25
As (3.64)
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is a constant, inherited from k3PR being a constant if ns = 1.6 Deviations
from this constant are due to the dipole term becoming relevant at higher ℓ
and the late ISW effect –relevant at ℓ ≲ 30, since dark energy becomes relevant
at z ≲ 1 – (and, to a smaller degree, the red-tilt in the primordial curvature
power spectrum). Nonetheless, the amplitude of the power spectrum at these
scales can roughly give an idea of the value of As.

As ℓ grows the power spectrum probes scales that are within the horizon
at recombination, where the acoustic oscillations form and all the terms of
Θℓ matter. However, note that since a given value of ℓ has support from
a given k range (selected by the Bessel function), we have now a series of
peaks and troughs rather than peaks and zeros in the oscillatory pattern of
the power spectrum. This also produces that the peak position is slightly
shifted towards lower ℓ values, roughly ℓpk ≃ 0.75πτ0/rs. The dipole term
(which, as discussed before, is smaller than the monopole and out of phase
with respect to it) contributes to raise all the power spectrum amplitude, but
especially the one of the troughs. Notably, the monopole and dipole terms
are uncorrelated (mathematically, this is due to the properties of the Bessel
functions). Finally, there is a contribution from the early ISW: if we consider
that the potentials evolve at time τc, all sub-horizon scales kτc > 1 will be
affected, which through the Bessel function translate to scales ℓ > (τ0−τc)/τc.
Importantly, the early ISW is coherent with the monopole of the source term
(i.e., they are proportional to the same Bessel function), which magnifies its
impact in the power spectrum through their cross correlation.

So far we have assumed that photons completely free stream to us from the
last-scattering surface. However, after reionization, electrons are free again
and photons can scatter with them. Consider an optical depth τreio ≡ τ(τlate)
to a time after recombination. As photons travel through those free electrons,
only a fraction e−τreio escape and reach us, while a fraction 1−e−τreio scatters
into the beam from all directions (thus any anisotropy that they had cancels
out). This involves that for photons coming with a temperature T (1+Θ), we
will measure

T (1 + Θ)e−τreio + T (1− e−τreio) = T (1 + Θe−τreio) . (3.65)

This effects only to scales within the horizon at reionization; only those with
ℓ ≳ τ0/τreio ∼ 100 are affected. Reionization has a significantly larger impact
in the polarization power spectrum.

6In the same way that k3P (k) is the dimensionless power spectrum per logarithmic k
bin, ℓ(ℓ + 1)Cℓ is the angular power spectrum per logarithmic interval in ℓ, and it is the
common way to visually represent the angular power spectrum; in particular, we usually
plot ℓ(2ℓ+ 1)Cℓ/2π.





CHAPTER 4

APPLIED SESSION 1
COSMOLOGICAL PARAMETERS FROM
THE EARLY UNIVERSE

In this Applied Session we will discuss how cosmological parameters affect the
observed CMB angular power spectrum and how they can be estimated from
the position and amplitude of its peaks. We will focus on H0 and its relation
with the sound horizon, discussing how the degeneracy between them has to
be taken into account when looking for solutions to the Hubble tension.

For more detail you can refer to:

Modern Cosmology. 2nd edition. Chapter 9 S. Dodelson and F. Schmidt
(2020). Elsevier Press, Cambridge. DOI: 10.1016/B978-0-12-815948-
4.00020-6

Hubble constant hunter’s guide L. Knox and M. Millea (2020). Phys.
Rev. D 101, no.4, 043533. DOI: 10.1103/PhysRevD.101.043533

Cosmic Microwave Background Anisotropies W. Hu and S. Dodelson
(2002). Ann. Rev. Astron. Astrophys.
DOI: 10.1146/annurev.astro.40.060401.093926
Check also Wayne Hu website:
http://background.uchicago.edu/ whu/araa/araa.html

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)
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4.1 Summary on the physics of the CMB peaks

During the previous lectures, you discussed how acoustic oscillations in the
baryon-photon fluid at recombination determine the CMB temperature fluctu-
ations on different scales. You showed how these can be projected to angular
scales and give rise to peaks at different multipoles in the observed CMB
angular power spectrum. But what do we observe when we look at the sky?

The CMB is observed in the microwave part of the EM spectrum ∼ O(10−
1000)GHz. Its first measurements, back in the ’60s, detected the sky-averaged
signal power per unit solid angle and unit of area, which can be converted
into a temperature of ∼ 2.725K by using the black body equation Bν(T ) ∝
ν3 exp(hν/kT ). After that moment, many observations provided maps of the
CMB in different frequency ranges and with different fields of view; here, we
only discuss results that relates with the three satellites that realized (almost)
full-sky maps of the CMB, probing its O(10−5 K) temperature fluctuations
in the different directions of the sky: COBE-FIRAS (7◦, 1989-1993), WMAP
(15 arcmin, 2001-2010) and Planck (5 arcmin, 2009-2013). As figure 4.1 shows,
their main difference is the angular resolution, which allow us to resolve fluc-
tuations on smaller and smaller sky-patches.

Figure 4.1 Source: NASA/JPL-Caltech/ESA

Recalling what you discussed, this means that, while COBE could neither
observe the first peak, Planck gives us access to ℓ > 2000. As figure 4.2
summarizes, each ℓ represents a certain angular scales and its power in the
spectrum indicates how much the temperature fluctuates with respect to the
average in patches associated with that particular angular size.
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Figure 4.2 Source: Wayne Hu website.

As you saw during the lectures, this can be thought in terms of a forced
harmonic oscillator; its solution gives us the first-order position of the peaks
in the CMB power spectrum

kpk =
nπ∫ τ

0
dτ̃ cs(τ̃)

=
nπ

rs
, (4.1)

where the speed of sound with which the wave propagates is defined as

cs(τ) ≡
√

1

3(1 +R(τ))
=

√
1

3(1 + 3ρ̄b/4ρ̄γ)
. (4.2)

and the comoving sound horizon (i.e., the distance travelled) through

rs(z) =

∫ τ

0

dτ̃ cs(τ̃) =

∫ ∞

z

dz′
dτ̃

dz′
cs(z

′) =

∫ ∞

z

dz′
cs(z

′)

H(z′)
. (4.3)

Think about the properties of the harmonic oscillator and how quantities
that enter the standard expression affect the oscillatory behaviour. In the
case of CMB, the oscillator is the photon-baryon fluid at recombination,
and its fluctuations are due to the presence of sound waves driven at
first by self-gravity and pressure. The photon density is directly related
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with the CMB intensity. How does the baryon density relative to the
photons affect the oscillations and, therefore, the power spectral shape?

Discussion

We describe the fluctuations in the monopole of the photon temperature
through the simplified equation

Θ′′
0 + k2c2sΘ0 = F ↔ ẍ+

K

m
x = F (4.4)

The role played in the harmonic oscillator by the combination of mass
and restoring force, in the CMB is due to the properties of the photon-
baryon fluid. Intuitively, the more baryons in the fluid, the more it can
be considered as “massive”. This has 3 effects, summarized in figure 4.3:

The speed of sound is smaller for larger baryon density ρ̄b; this
implies that the time required for one oscillation is longer and the
peak frequency smaller. Thus, increasing the baryon density
pushes the peaks to higher ℓ.

The baryon self-gravity drives the compression of the fluid, while
it retains it to bounce back. Increasing ρ̄b shifts the zero point of
the oscillations towards the direction of the force i.e., the fluid com-
presses more. Since the power spectrum is related with the square
of the oscillation amplitude, the overall effect is that the odd peaks,
associated with contractions (which are the maxima before getting
the square) gets higher than the even. Therefore, increasing the
baryon density determines a larger asymmetry between odd
and even peaks.

The photon-baryon fluid is tightly coupled due to the scatterings
between photons and free electrons, and electrons and baryons. Be-
tween two consecutive scatterings, a photon travels a mean free path
of size equal to the inverse of the derivative of the optical depth
λMFP = (neσTa)

−1, where ne is the electron number density, σT the
cross section and a the scale factor. In a certain time, the number
of scatterings is N ∝ neσT (more electrons imply more and closer
scatterings) and overall a photon travels λD = Nλmfp; this quantity
is the diffusion length. Fluctuations on scales smaller than the dif-
fusion length get erased by free streaming, that restores the average
temperature. The size of λD depends on ne, which in turn depends
on ρ̄b: increasing the baryon density decreases the diffusion
length and so decreases the damping of the high ℓ.
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Figure 4.3 Baryon effect. Source: Wayne Hu website.

4.2 Effect of the cosmological parameters

The previous discussion already tells us that the CMB retains information on
the Universe content and properties. From the theoretical point of view, its
spectral shape is computed by assuming a certain set of fiducial values for the
6 parameters that describe the ΛCDM cosmological model

{Ωbh
2,Ωch

2, 100θ∗, τ, ln(10
10As), ns} (4.5)

where h = H0/100 km/s/Mpc, Ωb,ch
2 = ρ̄b,ch

2/ρcrit are the physical baryon
and cold dark matter densities, θ∗ is the angular scale of the sound horizon at
recombination, τ is the optical depth to Thompson scattering to reionization,
As the amplitude of the primordial power spectrum, ns its spectral index.
As figure 4.4 summarizes, we will see that the parameters affect differently
different parts of the power spectrum.

Figure 4.4 Source: cmb.wintherscoming.no/theory_observables_content.php

cmb.wintherscoming.no/theory_observables_content.php
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While we proceed by checking what happens to the spectrum when one or
more parameters varies, remember that from an observational point of view
we observe one CMB spectrum realization and we look for the best-fit values
of the parameters to recover it. Table 4.5 collects the estimates of the primary
and the main derived parameters obtained by Planck 2018.

Figure 4.5 Main parameter estimation from Planck 2018.

Baryons: Ωbh
2

We already discussed the effects baryons have on CMB power spectrum. Since
they show up in different ways, their abundance can be estimated from dif-
ferent properties (both from the acoustic peaks an the damping tail), thus
providing many consistency checks and breaking internal degeneracies since
the values of Ωbh

2 measured in different parts of the spectrum, should match.
Note that the quantity the CMB measures is Ωbh

2: the presence of the h is due
to the fact that the relevant parameter in determining the CMB shape is the
physical density. Moreover, h collects the uncertainties on the measurement
of the sound horizon, as we will see later.

Dark matter: Ωch
2

On one side, DM creates the backbone of over- and under- densities on which
the photon-baryon fluid is found: for this reason, its gravitational field can be
seen as part of the external driving force F that drives the harmonic oscillator,
i.e., it has similar effects to what we already discussed for baryons.

However, there is another important effect: if we keep the baryon density
fixed, increasing the amount of DM increases the total matter amount of the
Universe. By doing so, the epoch of matter-radiation equality gets anticipated
and the capability of radiation in driving the oscillations decreases. Therefore,
increasing the overall matter content decreases the amplitude of the peaks.

Primordial power spectrum: As, ns
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Figure 4.6 DM+baryons effect. Source: Wayne Hu website.

How do changes in the amplitude of the primordial power spectrum As

and in its power spectral index ns affect the CMB power spectrum?

Discussion

We write the primordial power spectrum as

P (k) =
2π2

k3
As

(
k

kp

)ns−1

(4.6)

where kp = 0.05Mpc−1 is the pivot scale, set by convention. Changing
the amplitude of the primordial power spectrum re-scales the amplitude
of all the multipoles by the same factor. If we change ns to ns + α
with α > 0, the power spectrum amplitude goes as Pmod(k) ∝ P (k)kα,
therefore it increases for large k and decreases for k < 1Mpc−1. Then,
also the CMB power spectrum gets changes by (ℓ/ℓp)

α, where ℓp is the
multipole over which kp is projected. This increases the power on the
small scales, while on the large scales it is compensated by the effect of
the Bessel function used in the projection.

Reionization optical depth: τ

After recombination, the Universe is filled with neutral hydrogen until the
first stars form. The radiation these emit reionizes the gas and increases the
number of free electrons, on which CMB photons can eventually scatter. If the
number of electrons is large, the number of scatterings is high and fluctuations
are washed out. This only affects modes that already entered the horizon at
reionization i.e., ℓ > τ0/τreion ∼ 100, while large scales are unaffected. The
effect of τ, then, is degenerate with the combination of As and ns.

The suppression can be estimated thinking that the number of scatterings
is related to the optical depth as τ′ = −(neσTa) and that only a fraction
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exp(−τ) of the photons that travel through the medium can escape and be
observed. The same factor then rescales the peak amplitudes on small scales.

Curvature and dark energy: ΩK, ΩΛ

While the parameters we discussed previously affect the oscillations at recom-
bination, the DE density ΩΛ and the curvature ΩK = 1 −∑i Ωi modify the
way we observe the CMB power spectrum.

What is the main quantity that change when we move from a flat to a
close Universe? How does this affect the peaks?

Discussion

The curvature affects the angular diameter distance:

DA =
1

1 + z

∫ z

0

dz′

H(z′)
=

τ

1 + z
. (4.7)

Since the same physical scale subtends a larger angle in a closed Universe
than in a flat Universe, the inferred distance is smaller, including its value
at recombination D∗

A. This mainly shows up in the position of the first
peak, since in a flat Universe τ ∝ (1 + z)−1/2 and

θpk=1 ∼
r∗s
D∗

A

∼ τ∗
√
3

τ0/(1 + z0)
∼ τ∗
τ0
∼ 1√

1100
∼ 2◦

→ ℓpk=1 ∼
2π

θpk=1
∼ 200 .

(4.8)

where we assumed cs ∼ 1/
√
3. In a closed Universe, instead,

τ closed ∝ sin[τH0

√
|ΩK |

H0

√
|ΩK |

> τ (4.9)

which implies that the CMB first peak should be observed at

θclosedpk=1 ∼
τ closed∗
τ closed0

∼ τ∗

τ0 sin(τ0
√
|ΩK |)

> θpk=1 (4.10)

(where we did not include the sin in the recombination term since it is at
higher cosmic times). Finally we get ℓclosedpk=1 < 200 (this can be extended
also to the other peaks): in a closed Universe, the peaks shift at
lower ℓ and viceversa for the open Universe, as figure 4.7 shows. Since
ℓpk=1 ∼ 200 is well measured, the Universe has to be nearly spatially flat.
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In a flat Euclidean Universe, how does DE affect the CMB peaks?

Discussion

Similarly to the previous case, DE affects the angular diameter distance

D∗
A ∼

1

H0

∫ z∗

0

dz′√
Ωm(1 + z)3 +ΩΛ(1 + z)4

(4.11)

Increasing ΩΛ, D
∗
A decreases (which also implies that the age of the Uni-

verse is smaller): with more DE, peaks shift at smaller ℓ. Spatial
curvature and DE both change the angular diameter distance to recom-
bination and hence shift the peak angular locations, as figure 4.7 shows.

DE also modifies the large scales by modifying the way the evolution of the
gravitational potential, i.e., it changes the integrated Sachs Wolfe effect.

Figure 4.7 Curvature and DE effect. Source: Wayne Hu website.

H0 and the sound horizon

The parameter set described up to now implicitly accounts for the Hubble
parameter, since on one side it constrains Ωb,ch

2, and on the other ΩK =
1− (Ωb +Ωm +ΩΛ) ∼ 1. Up to now we did not discuss the role of the sound
horizon: we will now show that it is degenerate with the choice of H0.

Let us go back to the comoving sound horizon

rs(z) =

∫ τ

0

dτ̃ cs(τ̃) =

∫ ∞

z

dz′
dτ̃

dz′
cs(z

′) =

∫ ∞

z

dz′
cs(z

′)

H(z′)
. (4.12)

Depending on the value of z we choose, we can define this quantity at different
“important moments”. Here we are interested in the sound horizon

at recombination/CMB last scattering surface, r∗s = rs(z∗ ∼ 1100), which
is defined (looking from now backwards) as the moment in which the
optical depth to Thomson scattering reaches 1;
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at radiation drag, rdrags (zdrag < z∗), which is defined (looking from now
backwards) as the moment in which the baryon drag epoch ends, slightly
later in cosmic time than recombination.

The first is relevant when discussing CMB power spectra, the second comes
into play when studying the Baryon Acoustic Oscillations (BAO) i.e., the way
the oscillations in the photon-baryon fluid get imprinted in the baryon power
spectrum. The two quantities differ because, since the number of photons
is larger, baryons take more time to fully decouple. The conversion between
r∗s and rdrags is straightforward (rdrags ∼ r∗s(1 − 2%) in ΛCDM) and almost
model-independent; for this reason we can safely pass from one to the other.

The sound horizon size at recombination can be estimated knowing that

c2s =
1

1 + 3ρ̄b/4ρ̄γ
(4.13)

H(z)2 =
8πG

3
[ρ̄γ + ρ̄ν + ρ̄m + ρ̄Λ] (4.14)

From the second equation, we can neglect ρ̄Λ (not effective at the time of
recombination), while ρ̄ν can be estimated based on ρ̄γ . Thus, we are left
with the dependence on ρ̄γ , ρ̄m, ρ̄b, which we know we can estimate from the
CMB. Therefore, simply using CMB data we can compute r∗s . But so far we
know that we have to deal with angular distances and peak positions.

How can we measure the r∗s angular size from the CMB power spectrum?

Discussion

Consider two near-by peaks ℓp, ℓp+1 in the CMB power spectrum. We
can convert them to k scales as ℓp,p+1 ≃ kp,p+1D

∗
A, where D

∗
A = DA(z∗)

is the angular diameter distance between us and recombination. From
the harmonic oscillator solution, we have that kp = pπ/r⋆s and kp+1 =
(p+ 1)π/r∗s , so we can consider

∆ℓ = ℓp+1 − ℓp = kp+1D
∗
A − kpD∗

A = (p+ 1− p)πD
∗
A

r∗s
=

π

θ∗s
. (4.15)

Therefore, from the peak spacing in the CMB we can estimate the angular
size of the sound horizon at recombination, θ∗s = π/∆ℓ.

Thus, we have a measurement of r∗s and θ∗s and we can combine them to
estimate the distance between us and recombination, D∗

A = r∗s/θ
∗
s . But we

also have an analytical way to express this quantity

D∗
A =

1

1 + z∗

∫ z∗

0

dz′

H(z′)
(4.16)
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So, by inverting this relation we can get H(z) and use it to estimate H(z =
0) = H0. This is the Hubble parameter that describes the Universe expansion
rate; its estimate from the CMB is indirect: for this reason, its value is model
dependent and it can be degenerate with other parameters.

Provided what we said up to this point, which are the main degeneracies
betweem H0 and other parameters? Starting from them, can we modify
the value of H0 without affecting too much the CMB spectral shape?

We want to modify H0, so we “attack” the different quantities that enter

D∗
A =

1

1 + z∗

∫ z∗

0

dz′

H0

√
ΩΛ +Ωm(1 + z)3 +Ωγ(1 + z)4

, (4.17)

D∗
A = ∆ℓ · r∗s/π . (4.18)

Since from these equations H(z) and rs(z) are strongly related, we can look at
the rs−H0 plane, as in figure 4.8. Instead of using r∗s , we can also refer to rdrags ,
so we are able to compare the CMB measurements with late time probes. We
will discuss in detail in the next lecture that there is an inconsistency between
the H0 measurements done with CMB and with late Universe probes, the
former providing a lower value of H0 than the latter. But since H(z) is
degenerate with rs, the inconsistency can be thought on the rs − H0 plane;
to solve it, we would like to find a way to move Planck estimates (that are
model dependent) in the intersection between SNe and BAO measurements
i.e., lower r∗s (∼ 7%) and higher H0; we now present solutions in this direction,
but we keep a more detailed discussion for the final lecture of the course.

Figure 4.8 Source: Knox, Millea.
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Ωm: if we increase its value, since r⋆s ∝ Ω
−1/2
m → δr⋆ /r⋆s ∝ −1/2 δΩm/Ωm

decreases; including the effect of radiation, this soften the 1/2 factor to
1/4. However, we need to keep ∆ℓ fix because we observe it, so we
need to decrease D∗

A of the same quantity to counterbalance. But in D∗
A

there is no radiation soften, so decreasing Ωm lowers D∗
A too much. We

then need to decrease ΩΛ in the H(z) computation, which however has
a different z dependence than matter. The two things combined imply
that H(z) increases when Ωm dominates, but it decreases when ΩΛ takes
place. Consequently, H0 decreases and variations on Ωm in the rs −H0

plane lead us to move orthogonally to the SNe constraints.

D∗
A: changing the post-recombination cosmic evolution we can change the

shape / value of the angular diameter distance, so to reduce r∗s estimate.

cs: we can change its value by changing the pre-recombination physics:
this would affect r⋆s but not H0. The speed of sound is related to
∂P/∂ρ ∝

√
1 + 3ρ̄b/4ρ̄γ in the baryon-photon fluid. To lower cs, we

have to increase the inertia of the fluid without changing ρ̄b too much,
since its value is well measured on CMB. We could introduce some new
non-relativistic species, tightly coupled to the photons or the baryons so
that ρ̄b → (ρ̄b+ ρ̄

′): if we keep ρ̄γ fixed, however, this new species should
also affect the odd-even peak height ratio. So, if they existed they would
be indistinguishable from baryons at the level of CMB and they would be
already taken into account in our previous discussion. A partial coupling
between baryons and DM could have similar effect; to not affect CMB
temperature, polariation and lensing its amount has to be so small that
its effect on cs is negligible.

z∗: the sound horizon computation requires to know the conformal time
to the end of the baryon drag epoch, since r∗s = cs

∫∞
z∗
dz/H(z). r∗s

decreases if z∗ moves back in time, to higher photon temperatures: for
this to happen, we should increase the recombination temperature e.g.
with a stronger EM interaction due to a time dependency in the value
of the finite structure constant α. However, variations in α or other
recombination physics (e.g. faster cooling of the photons that would keep
the recombination temperature at the same temperature but anticipate it
back in time) affect the shape of the damping tail; therefore, we can only
introduce variations δα/α ∼ 0.7 ·10−3 between recombination and today,
which is too tiny to lead to significant variations in the recombination
temperature (atomic energies are linearly proportional to α).

H(z): finally, we can assume that the Universe expands differently from
ΛCDM, for example by increasing H(z) prior to recombination adding
some extra component. IncreasingH(z) in this way decreases τ∗ (we need
less time to reach the same temperature) and increases ne at the same
scale factor (electrons can be found more close by), therefore recombi-
nation takes place at higher temperature. To visualize what happens in
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this case, we can plot how fractional changes in the Hubble parameter
reflects to the fractional change in the sound horizon r∗s and in the photon
diffusion scale λD, as we do in figure 4.9. The sound horizon slowly in-
creases until recombination, i.e. it is most sensitive to the expansion rate
at higher z. The damping scale instead is extremely sensitive at the time
of recombination itself. Therefore, each new component that we want to
include, to be effective must act prior and near recombination but has to
be such that the combination of the model parameters mimics the effect
of photon diffusion damping, so to compensate the changes in the CMB.
Possible solutions in this sense are additional thermal relativistic species
(= extra neutrinos) and early dark energy.

Figure 4.9 Source: Knox, Millea.

The first ones are described by the parameter Neff , i.e. the number of
effective degrees of freedom, related with the energy density of relativistic
particles. IfNeff increases, in the computation ofH(z) we have to account
for changes in the relation between ρ̄ν and ρ̄γ . But then we want θ⋆s (and
∆ℓ) not to change, so we also have to change D∗

A so that the overall shape
and amplitude on the BAO (DA/rs, H(z)rs) are untouched even if H0 is
larger (this is why the Neff line in the plot is horizontal). However, this
change in Neff alters the ratio between r∗s and the damping scale (which
is well constrained) and shifts the CMB peaks, so it is difficult to obtain.

As for early dark energy, it is usually modelled as a scalar field that close
by recombination acts as a cosmological constant. It affects not only the
amplitude of H(z) but also its shape in z: fine tuning its parameters it is
then possible to change H0 preserving the other CMB-related quantities.





CHAPTER 5

LECTURE 3: MEASURING THE HUBBLE
CONSTANT AND THE BACKGROUND
EXPANSION

In the last chapter we discussed the CMB power spectrum and how it depends
on the cosmological parameter and the actual cosmological model considered.
This led us to understand how the value of H0 can be inferred from the
CMB anisotropies and why it is a model-dependent value. The current value
reported by Planck assuming ΛCDM is H0 = 67.27± 0.60 km/s/Mpc.

Measurements independent from cosmology can be obtained from the re-
cession velocity of sources in the very local Universe. That requires the cali-
bration of a distance ladder which instead depends on astrophysics. The most
precise of these measurements corresponds to the distance ladder studies using
cepheids and supernovae type Ia by the SH0ES collaboration, which measured
H0 = 73.04± 1.04 km/s/Mpc (7).

As it can be easy to appreciate, this measurement and the inferred value
from Planck assuming ΛCDM are in ∼ 5σ tension.1 Comprehensive studies
to control potential systematic errors have returned no significant variation of

1This is a naive estimation of the distance in terms of the marginalized 68% confidence
level uncertainties assuming Gaussian posteriors. Multidimensional parameter space and

Cosmic tensions.
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these values, which arises the question of whether this discrepancy may imply
the failure of ΛCDM and the need of extending the model to reconcile the
measurements.

Finally, values from H0 can be inferred from low-redshift measurements
of the expansion rate of the Universe, which depend on cosmology but can
anchor the study of CMB anisotropies by providing the expansion history of
the Universe at low redshift. A compilation of measurements and inferred
values of H0 assuming ΛCDM can be found in Fig. 5.1.

This chapter discusses low-redshift measurements and inferences of H0,
for which we need to introduce first the different definitions of distances in
cosmology. Measuring distances in the Universe is far from trivial, since the
actual Universe is expanding. This means that the scale factor of the Universe
when light leaves a given source at redshift z grows as light travels to us.
Furthermore, the expansion rate also changes with time. In order to capture
this, we can define the comoving distance, defined by the distance dx = dt/a =
dτ that light travels over a small time interval. This corresponds to a total
comoving distance between us and a redshift z of

χ = −
∫ t

t0

dt′

a(t′)
=

∫ 1

a(t)

da′

a′2H(a′)
=

∫ z

0

dz′

H(z′)
, (5.1)

which for very small redshifts can be approximated by χ ≈ z/H0. However,
comoving distances are hard to measure and are more related to theory. In
practice, distances are measured from the physical angle that an object or
given scale subtends on the sky (standard ruler) or through the measured flux
of a source of known luminosity (standard candle, and the recent analog of
standard sirens since the discovery of the gravitational waves).

For small angles, a physical scale l transverse to the line of sight that
subtends and angle θ on the sky will be at a distance DA = l/θ known as the
angular diameter distance. Note that the comoving size of the object is l/a′,
where a′ is the scale factor at the time where the object is (e.g., when the
light is emitted). In a flat Universe, we can relate this to θ and the comoving
distance as θ = (l/a)/χ, such as the angular diameter distance is

DA(a) = aχ(a) =
χ

1 + z
. (5.2)

During the last years, and especially in the context of measurements of the
baryon acoustic oscillations (BAO) from galaxy surveys that we will discuss
below, it is common to express this distance in terms of the comoving angular
diameter distance DM = (1+z)DA. Known scales, such as the sound horizon
rd at radiation drag of the photon-baryon plasma and the signatures of which

non-Gaussian posteriors complicate the interpretation of this value and motivate the devel-
opment of robust diagnosis of tension. For a discussion, see e.g., section 3 of Ref. (8).
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Figure 5.1 68% CL constraints of the Hubble constant H0 through direct and
indirect measurements by different probes performed over the years (until 2021). The
cyan vertical band corresponds to the direct measurement of H0 from SH0ES (9) and
the light pink vertical band corresponds to the inferred value from Planck (6) assuming
ΛCDM. Figure from Ref. (10).

can be found in the current distribution of galaxies, are referred to as standard
rulers.

Sources with known luminosity are called standard candles and allow us
to measure luminosity distances. The measured flux of a source at z goes as
F ∝ L′χ2(a), where L′ is the luminosity through a spherical shell of radius
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χ(a). At that distance, both the energy of the photons and a fixed time
interval have redshifted, so that L′ = La2. Therefore, in a flat Universe, the
luminosity distance (defined from the arguments above) is given by

DL =
χ(a)

a
= (1 + z)χ(z) . (5.3)

For non-flat universes, the relation DL = (1 + z)2DA still holds.
Of course, the precision of current distance measurements to nearby galax-

ies has improved dramatically, what has shifted the focus on the control of
systematic errors. We will not have time to discuss in detail any of the probes
of H0, but we will summarize the main measurements and comment on ben-
efits, weaknesses and potential of each probe.

5.1 The local distance ladder

The distance ladder provides the only strictly empirical (i.e., independent of
the cosmological model once the cosmological principle and general relativity
have been assumed) to measure H0 is the distance ladder. This term refers to
the combination of different distance calibrators used in different steps of the
ladder to measure the distance-redshift relation. Then, from the redshift it is
possible to obtain the recession velocity of the emitter with respect to us and
from there extract the H0 value. The most used approach is to use geometric
distances from parallax measurements to calibrate the luminosity to a specific
source that can be treated as standard candle and can be detected at larger
distances.

To obtain a precise measurement of H0, however, it is necessary to extend
the distance ladder far enough so that the measured redshift comes predom-
inantly from cosmological redshift, largely unaffected by peculiar velocities.
The higher the redshift, the highest its contribution to the total redshift.
Nonetheless, if the distances are too large, there is impact from the cosmo-
logical parameters controlling the evolution of the expansion rate, e.g., Ωm.
Therefore, there is a trade-off between reducing the impact of peculiar veloc-
ities and of cosmological parameters other than H0 itself.

The most powerful standard candle we know to date are supernovae type Ia
(SNeIa), since their luminosity can be standardized in terms of the color and
width of their light curve, and environmental parameters that are sometimes
used (depending on the specific analysis). For each SNeIa, the light-curve
fit returns the light-curve amplitude x0 for which mB ≡ −2.5 log10 x0; the
stretch parameter x1 controlling the light-curve width; and the light-curve
color c including intrinsic color and dust; among others. The SNeIa light
curves can be standardized in terms of the distance moduli µ, defined as (see
e.g. (11) and references therein)

µ ≡ mB + αx1 − βc−MB − δbias − δhost , (5.4)
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where α and β are global nuisance parameters relating stretch and color,
respectively, to luminosity, MB is the fiducial absolute magnitude of SNeIa,
and δbias and δhost are correction terms to account for selection biases and
residual correlations between standardized brightness of a SNeIa and the host-
galaxy properties, respectively. Although we do know that SNeIa have the
same absolute magnitude after standardization, we do not know its actual
value. Thus, SNeIa are relative distance indicators, since they depend on
external calibrators.

However, although extremely bright, supernovae are rare events, and there
are not enough detections in the local Universe to be calibrated directly with
parallaxes. Therefore, an intermediate rung in the distance is required. The
two most precise to date are variable cepheid stars and the tip of the red giant
branch (TRGB). These sources can be calibrated with parallax measurements
and other geometric distance calibrations. Unfortunately, they are too faint
to be detected at great distances, and measurements without another rung
are limited by the uncertainties introduced from peculiar velocities (see e.g.,
Ref. (12)). Therefore, in practice, the intermediate rung is used to reach
large enough volumes to find enough SNeIa in the same hosts and calibrate
their luminosity. Figure 5.2 shows an example of the complete distance ladder
from the SH0ES collaboration, which uses geometric measurements to nearby
cepheid stars to calibrate them, distant cepheids to calibrate nearby SNeIa,
and distant SNeIa to measure the distance-redshift relation and measure H0.

Notably, as can be seen in Fig. 5.1, the H0 measurements using either
cepheids and the tip of the red giant branch, although compatible between
them, lead to very different conclusions regarding the H0 tension. While the
tension between the results from Planck and SH0ES is ∼ 5σ, H0 measure-
ments from CCHP using the tip of the red giant branch are roughly consistent
with Planck. This is unexpected, since conceptually both SH0ES and CCHP
programs are very similar (they basically differ only in the SNeIa luminosity
calibrator) and the samples are comparable.

Cepheids can be used as standard candle thanks to a known relation be-
tween the luminosity of these stars and their period of luminosity variation
and color, although there is also a dependence on the metallicity. Cepheids
are yellow supergiants that are generally found in high-surface-brightness area
in star-forming regions, then susceptible to photometric errors due to crowd-
ing and blending, as well as dust extinction. However, comprehensive studies
have returned a detailed systematic error budget concluding that none of these
source of errors can explain the H0 tension with Planck.

In turn, distance measurements using the tip of the red giant branch are
based on the core helium-flash luminosity at the end phase of red giant branch
evolution of low-mass stars, which empirically show a sharp discontinuity at
a well-defined luminosity in a color-magnitude diagram. Old, blue metal-
poor giant branch stars located at the tip of the red giant branch are actual
standard candles that do not require standardization, although the evolution
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Figure 5.2 Complete distance ladder, showing the simultaneous agreement of
distance pairs –geometric and cepheid-based (lower left), cepheid and SNeIa based
(middle), and SNeIa and redshift based (top tight)– that provides the measurement
of H0. For each step, measurements in the x-axis serve to calibrate a relative distance
indicator on the y-axis. Figure from Ref. (7).

of stars is also affected by its metallicity. In turn, since the method is best
applied in the outer halos of galaxies, the effect of crowding and blending are
minimal. The uncertainties in the H0 measurements using the tip of the red
giant branch is due to a more limited sample of calibrators for its luminosity.
Nonetheless, nearby distance measurements using either cepheids or the tip
of the red giant branch are consistent, which suggests that the zero-point
calibration of the methods is not the primary reason for the different H0

measurements.
There are ongoing efforts to improve these measurements that involve in-

creasing the sample of high-quality calibrations of SNeIa (improving the con-
nection between the second and third rung), increasing the number of indepen-
dent geometric calibrations of cepheids and/or the tip of the red giant branch
(improving the connection between the first and second rung), homogenizing
the sample using the same instruments as much as possible to minimize cali-
bration errors, and taking measurements in different wavelengths (especially
the infrared) to reduce the systematics related to dust and reddening. There
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have been claims for the H0 tension to be explained by non-homogeneous
nearby and distant SNeIa, as well as whether potential particularities of the
local volume, such as being located in an underdense region, but it has been
shown that the expected impact from these sources of error is negligible.

These are the two main measurements ofH0 in the local Universe, but there
are many other, if currently not competitive, alternatives. The distance ladder
can be built using variable red giant stars (MIRAS) (13) to calibrate SNeIa;
substituting the SNeIA by the surface brightness fluctuations method (14) or
the Tully-Fisher relationship (the correlation between the rotation velocity of
a galaxy and its absolute luminsoity) (15), etc. H0 can also be measured with-
out the need of a distance ladder directly measuring geometric distances to
megamasers in the Hubble flow (16), and using standard sirens from neutron-
star mergers with electromagnetic counterpart (17).

Generally, all the local measurements (with the exception of some of the
measurements using the tip of the red giant branch and SNeIa) cluster around
high values of H0, those measured by the SH0ES collaboration, although most
of them with larger error bars. This seems to indicate that all of them would
have affected by similar systematics, although the wide range of uncertainty
levels limit the application of this argument. Further references and discus-
sions can be found in Ref. (10).

5.2 Measuring the late-time expansion history

As mentioned above, CMB constraints on low-redshift parameters, such as
H0, are necessarily model dependent. While the CMB anisotropies are very
powerful to constrain physics before recombination through its effect in the
perturbations in the photon-baryon fluid (see previous chapter), assuming a
cosmological model is necessary to extrapolate the evolution of the Universe
from the last-scattering surface to today. Once freedom beyond Ωm and H0

is given to that evolution, constraints from the CMB weaken significantly.
This is why low-redshift probes of the expansion history of the Universe are
so important. Constraining the low-redshift evolution of the Universe breaks
many degeneracies in the posterior from CMB analyses.

In this section we will discuss the main probes that are employed to con-
strain the low-redshift expansion history of the Universe. These measurements
can also be employed to infer the values of H0. However, they extend up to
z ∼ 3, and therefore the resulting H0 constrain depends on the cosmologi-
cal model assumed. Nonetheless, agnostic parametrizations of H(z) can be
used to minimize the impact of the dependence on the cosmological model,
marginalizing over the parametric form of H(z) (or, in some cases, w(z) or
ρ(z)) to obtain a data-driven, robust constraint on H0, if slightly weaker. One
of the first attempts can be consulted in Ref. (18).
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5.2.1 Cosmological supernovae type Ia

Measurements of SNeIa extend up to z ∼ 2, redshifts significantly higher than
the ones that have been traditionally used to constrain H0 in the distance lad-
der (which usually are limited to z ≲ 0.15). Therefore, using Eq. (5.4) we can
obtain the distance moduli up to very high redshift. This sample is usu-
ally known as cosmological supernovae, and have been traditionally analyzed
separately than the local supernovae (until very recently (11)). Nonetheless,
given the significantly larger volume, the sample of cosmological SNeIa is
significantly larger.

Without any calibrator, MB becomes a (free) nuisance parameter to be
marginalized over. Given the large sample of SNeIa, the sampling in redshift
is very complete. Therefore, SNeIa are very powerful to constrain the shape
of H0, if not its amplitude (which is completely degenerate with MB). Since
the physical parameter of importance to SNeIa is the absolute magnitudeMB

rather than H0, it has been advocated to use the local determination of MB

from e.g., SH0ES as a prior to calibrate the absolute magnitude of SNeIa and
provide a normalization to the constraints on H(z) (19).

5.2.2 Baryon acoustic oscillations

As we discussed, baryon acoustic oscillations (BAO) appear due to the primor-
dial sound waves propagating in the tightly coupled photon-baryon plasma in
the early Universe until recombination. The acoustic waves freeze after recom-
bination, but the density contrast that produce get imprinted in the baryon
(and therefore total matter) distribution. Therefore, the oscillations that can
be measured in the CMB power spectra are also imprinted in the matter (and
subsequently the galaxy) distribution at low redshift, although with lower
significance due to the small abundance of baryons and the fact that since
recombination, baryons have fallen into dark matter potential wells. First
detected in the galaxy power spectrum around fifteen years ago, BAO have
been robustly measured in galaxy, quasar, and Lyman-α forest density distri-
butions reaching percent-level precision. The BAO features are characterized
by a physical scale: the sound horizon at radiation drag, rd, which is known
as a standard ruler, and can therefore be used as distance calibrator.2

Observations measure the positions of different tracers of matter in terms of
redshifts and angular positions on the sky, which must then be transformed to
obtain three-dimensional clustering summary statistics (e.g., the correlation
function or power spectrum) as a function of spatial distances or the corre-
sponding Fourier mode wave numbers. Given an angular separation θ and a

2Radiation drag takes place slightly after recombination, but the difference in redshift is
very small and, for the precision that we will consider in these discussions, we can take as
the same sound horizon. Of course, Boltzmann codes and parameter inference studies do
not make this approximation.
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small redshift separation δz, the spatial comoving distance in the transverse
direction and along the line of sight are

r⊥ = DM (z)θ, r∥ =
δz

H(z)
, (5.5)

respectively. There are three main effects that alter these components of the
observed distances: redshift-space distortions,3 the Alcock-Paczynski effect,
and the isotropic dilation. Redshift-space distortions are a physical modifica-
tion to r∥, due to the peculiar velocities of galaxies changing the redshift of
observed sources along the line of sight (hence changing their position in red-
shift space with respect to the real space). From the cosmological principle,
the clustering of biased tracers is isotropic, but these introduce anisotropies
in the observed clustering.

Assuming a background expansion history (obtained from a fiducial cos-
mology) that differs from that of the true expansion rate of the Universe causes
an artificial distance distortion. The fiducial cosmology is used to compute
DM and H in Eq. (5.5); therefore, the recovered r⊥ and r∥ differ from the
true distances. This distortion affects r⊥ and r∥ in different ways, so it is
possible to decompose it into an isotropic and an anistropic component: the
isotropic dilation and the Alcock-Paczynski effect.

The Alcock-Paczynski effect and the isotropic dilation can be modeled by
rescaling factors, obtained when comparing the observed distances, which as-
sume the fiducial cosmology, and true distances: rtrue⊥,∥ = robs⊥,∥q⊥,∥ (or ktrue⊥,∥ =

kobs⊥,∥/q⊥,∥ in Fourier space). Using Eq. (5.5), the rescaling parameters are

q⊥ =
DM (z)

(DM (z))
fid
, q∥ =

(H(z))
fid

H(z)
. (5.6)

Using q⊥ and q∥, the isotropic dilation corresponds to
(
q2⊥q∥

)1/3
, and the

Alcock-Paczinski effect is given by the ratio of q⊥ and q∥.
The Alcock-Paczysnki effect and the isotropic dilation are always present

in the measurement of the clustering statistics as function of distance or
wavenumber: it is inherent to any measurement that depends on distance
scales. Nonetheless, the BAO feature is clearly distinguishable against the
broadband of the summary statistic; it manifests as oscillations in Fourier
space or a peak in configuration space, and large-scale clustering measure-
ments have well-determined its location.4

To extract the BAO scale from the observed target summary statistic, stan-
dard BAO analyses employ a pre-computed template of the target summary

3We will not discuss in detail redshift space distortions in these lectures, but refer the
interested reader to the excellent review of Ref. (20)
4The turn over of the power spectrum is the other clear feature in the matter power spec-
trum, but it is located at too large scales, beyond the reach of current galaxy surveys.
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statistic generated assuming a given cosmology. Using the template allows for
the extraction of rd, which is the only characteristic scale of matter clustering
at low reshifts accessible by current experiments. The BAO scale of the tem-
plate might not match the true BAO scale; therefore, a correction on rd must
be included when rescaling distances in order to fit the observed BAO feature
with the template. The correction is isotropic, and the rescaling of distances
becomes rth⊥,∥ = robs⊥,∥α⊥,∥ (or kth⊥,∥ = kobs⊥,∥/α⊥,∥), where

α⊥ = q⊥
(rd)

fid

rd
, α∥ = q∥

(rd)
fid

rd
(5.7)

provide a mapping between the observed distances (or wave numbers) and
those which enter our theoretical modeling, denoted by ‘th’.5 It is impor-
tant to notice that the rescaling of rd in Eq. (5.7) is not related to the
Alcock-Paczynski effect or the isotropic dilation. Hence, the rescaling between
observed distances and those entering our theoretical model introduced in
Eq. (5.7) is the combination of two non-physical effects: the redshift-distance
transformation and the ratio between the fiducial (for the fixed template) and
true rd values. The total rescaling parameters become

α⊥ =
DM (z)/rd

(DM (z)/rd)
fid
, α∥ =

(H(z)rd)
fid

H(z)rd
, (5.8)

where ‘fid’ corresponds to the fiducial cosmology that has been used to both
translate redshifts into distances and compute the fixed template.

In order to avoid biasing the information obtained from the BAO feature,
the shape and amplitude of the broadband are marginalized over with the
introduction of nuisance parameters. After marginalization, the only remain-
ing cosmological information in the clustering statistics is related to the BAO
location and anisotropy, which is mostly encoded in the rescaling parameters.
This is an entirely geometric fit to the observations; hence, it has the poten-
tial to be performed without being limited to any cosmological model without
loss of generality. Specifically, the rescaling parameters are the fit parameters,
and the resulting constraints are traditionally used in global analyses to infer
cosmological parameters of any cosmological model.

As an example of how the BAO scale (i.e., rd) is measured from galaxy sur-
veys, we will comment the methodology employed consider a template-based
analysis of the power spectrum. The power spectrum P (kkk) and the correla-
tion function ξ(sss) are equivalent estimators for two-point clustering statistics
in Fourier and configuration space, respectively, where sss is the redshift space
distance and kkk is the associated wave number. The Legendre multipoles of

5There are alternative parametrizations of these rescalings (or those in Eq. (5.6)), obtained
through combinations of α⊥ and α∥. Some examples focus on the isotropic and anisotropic

distortions (α, ϵ) or on the monopole and the µ2 moment of the two-point statistics (α0, α2).
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the power spectrum are given by

Pℓ(k) =
2ℓ+ 1

2

∫ 1

−1

dµP (k, µ)Lℓ(µ), (5.9)

where k ≡ |kkk| is the module of the wave number vector and µ is the cosine of
the angle between the wave number vector and the line of sight. The Legendre
multipoles of the correlation function, ξℓ, are defined in an analogous way, and
related with Pℓ by the Fourier transform via

ξℓ(s) = iℓ
∫
k3d log k

2π2
Pℓ(k)jℓ(ks), (5.10)

where s ≡ |sss| is the module of the redshift space distance and jℓ is the ℓ-th
order spherical Bessel function. Note that Eq. (5.10) equally holds for real
space distances and wave numbers. In this section, we do not explicitly include
the dependence on redshift, present in practically all quantities, for the sake
of brevity and readability; we do, however, show the dependence on k and µ,
for clarity.

The standard BAO analysis is based on fitting a template (pre-computed
under a fiducial cosmology) to the observations. This template is built in such
a way that the BAO feature is identifiable and isolated. In order to isolate
the BAO feature, the linear matter power spectrum Pm is decomposed into
a smooth component Pm,sm (i.e., the broadband, with no contribution from
the BAO) and an oscillatory contribution Olin. In this way, the total matter
power spectrum is given by Pm(k) = Pm,sm(k)Olin(k).

The galaxy bias bg (that relates linear matter and galaxy perturbations)
and a factor encoding the effect of redshift-space distortions FRSD can be
applied to Pm,sm in order to obtain the anisotropic, smoothed galaxy power
spectrum in redshift space

Psm(k, µ) = BF 2
RSD(k, µ)Pm,sm(k), (5.11)

where B is a constant absorbing bg and potential variations on the amplitude
of Pm,sm, and

FRSD(k, µ) =
(
1 + βµ2R

) 1

1 + 0.5 (kµσFoG)
2 , (5.12)

where β = f/bg, and the fingers of God small-scale suppression is driven by
the parameter σFoG, whose value is related to the halo velocity dispersion.6

The actual amplitude of the BAO feature is reduced with respect to the
linear prediction due to non-linear collapse. In addition, non-linear clustering
also introduces a sub-percent shift in the BAO scale. However, these effects

6The damping due to the fingers of God can also be modeled with a Gaussian function,
providing similar results without losing flexibility in the fit to the observations.
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can be partially reverted using density field reconstruction. The factor R in
Eq. (5.12) models the partial removal of redshift-space distortions produced
by the density field reconstruction and takes the following values: R = 1

before reconstruction and R = 1−exp
[
− (kΣrecon)

2
/2
]
after reconstruction.7

On the other hand, the non-linear damping of the BAO is modeled with an
exponential suppression applied to Olin. The damping affects the transverse
and line-of-sight directions differently; hence, we introduce two separate scales
Σ⊥ and Σ∥, respectively.

The final anisotropic galaxy power spectrum, accounting for the effect of
non-linearities on the BAO features and eventual density field reconstruction,
can be expressed as

P (k, µ) = Psm(k, µ)×

×
[
1 + (Olin(k)− 1) e−

k2

2 {µ2Σ2
∥+(1−µ2)Σ2

⊥}
]
+

+Pshot ,

(5.13)

where Pshot = n−1
g (where ng is the mean comoving number density of galax-

ies) is a scale-independent contribution arising from the fact that we use dis-
crete tracers of the matter density field, such as galaxies. The template for
the BAO analysis is generated with Eq. (5.13).

As shown in Eq. (5.13), it is clearer to express the anisotropic power spec-
trum as function of k and µ, instead of k⊥ and k∥. The rescaling of distances
appearing in Eq. (5.8) can be transformed to k and µ as

ktrue =
kobs

α⊥

[
1 +

(
µobs

)2 (
F−2
AP − 1

)]1/2
,

µtrue =
µobs

FAP

[
1 +

(
µobs

)2 (
F−2
AP − 1

)]−1/2

,

(5.14)

where FAP≡α∥/α⊥.
Given the large scales probed, the line of sight changes with each point-

ing and cannot be considered parallel to any Cartesian axis. Hence, it is not
possible to obtain a well-defined µ for the observations, which makes a di-
rect measurement P (k, µ) impossible. However, one can directly measure the
Legendre multipoles of the anisotropic power spectrum.8 Then, the observed
power spectrum multipoles are modeled as

Pℓ(k
obs) =

2ℓ+ 1

2α2
⊥α∥
×

×
∫ 1

−1

dµobsP (ktrue, µtrue)Lℓ(µ
obs) +Aℓ(k),

(5.15)

7The specific functional form of R after reconstruction depends on the reconstruction for-
malism used.
8There are other compression options, such as the so-called angular wedges.
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where Lℓ is the Legendre polynomial of degree ℓ, P (ktrue, µtrue) is computed

using Eqs. (5.13) and (5.14), and a
(
rfidd /rd

)3
term has been absorbed into the

constant factor B of Psm in Eq. (5.11). Different polynomials Aℓ(k) are added
to each one of the power spectrum multipoles. These polynomials are added
not only to marginalize over uncertainties related with non-linear clustering,
but in particular to account for the possibility that the broadband of the
template Pm,sm does not match the actual one. These polynomials have the
form

Aℓ(k) = aℓ,1k
−3 + aℓ,2k

−2 + aℓ,3k
−1 + aℓ,4 + aℓ,5k

n, (5.16)

where n = 1 and n = 2 before and after density field reconstruction, respec-
tively.

In summary, BAO-only analyses include the following parameters:

{
α⊥, α∥, B, β,aaaℓ, σFoG,Σ⊥,Σ∥

}
, (5.17)

where aaaℓ are the coefficients of Aℓ in Eq. (5.16). All but the two first param-
eters α⊥ and α∥ are nuisance parameters.

This procedure has been proven to be extremely robust and flexible for
models predicting different expansion rates at late times, and it successfully
models changes in rd due to early-time modifications of the cosmological
model, as well as other contributions to the BAO feature that are not cap-
tured by these rescaling and nuisance parameters, such as phase shifts (which
can be scale-dependent) or a different scale dependence of the amplitude of
the oscillations.

As evident from Eq. (5.6), the only cosmological information the Alcock-
Paczynski effect and the isotropic dilation are sensitive to is the late-time
expansion rate. By utilizing a fixed template in the analysis, BAO measure-
ments are also sensitive to pre-recombination physics through rd (Eq. (5.8)) in
an agnostic and independent way, incorporating information about both the
expansion rate and the growth of matter perturbations. While the isotropic
dilation is completely degenerate with rd, the Alcock-Paczynski effect (mod-
eled by the ratio of α⊥ and α∥ when a fixed template is used) is independent

of the BAO scale. Since α⊥/α∥ = DMH/ (DMH)
fid

does not depend on H0,
the Alcock-Paczynski effect constraints the unnormalized expansion history
of the Universe, independently of the BAO scale.

Contrarily to SNeIa, BAO measurements are very sparse in redshift. This
causes that BAO are not very powerful to constrain the shape of H(z). How-
ever, BAO provide an absolute calibration of the distance-redshift relation,
in terms of the product of rdh (21). This results in very strong constraints
on rdh, which is common to all BAO measurements. The complementarity
between SNeIa and BAO makes that the combination of only these two cos-
mological probes, the shape of H(z) is constrained to be that of ΛCDM as
inferred by Planck with more than 5% precision up to z ∼ 2, as shown in
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Figure 5.3 Best-fit evolution of the expansion history E(z) ≡ H(z)/H0 normalized
by Planck ’s ΛCDM fit and 68% confidence level uncertainties (shaded regions, thin
lines). In purple, the reconstruction from BAO+SNeIa assuming a generic expansion
using flexknot splines. Figure from Ref. (22).

Fig. 5.3, with 1% constraints on rdh, even marginalizing over the curvature
of the Universe.

5.2.2.1 The importance of the sound horizon at radiation drag
Summarizing, the combination of BAO and SNeIa alone is powerful enough

to constrain the shape of H(z) and the amplitude as function of rdh. Then
there are two potential possibilities to build the cosmic distance ladder from
these measurements, depending on the calibrator, or anchor for each measure-
ment. One possibility is to use local measurements of H0 (orMB) to calibrate
the cosmological SNeIa and therefore normalize the H(z) measurements from
BAO+SNeIa. By doing that, we automatically obtain a determination of rd.
This is what is known as the direct distance ladder.

On the other hand, we can build the cosmic distance ladder in the opposite
direction. We can impose a prior on rd (from either CMB anisotropies or using
a prior on Ωb from standard Big Bang Nucleosynthesis and measurements of
pristine gas clouds to determine rd

9. In both cases, this prior on rd depends
on the cosmological model assumed to model pre-recombination physics. This
prior can be used to calibrate the BAO measurements that provide in turn a
normalization to the cosmological SNeIa. This way it is possible to obtain an
inference of H0, using what is called the inverse distance ladder.

9This approach is independent on CMB anisotropies measurements. The only dependence
that it has in CMB measurements comes from the determination of the redshift of reion-
ization from FIRAS.
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Of course, in a consensus cosmological model, if all experiments are con-
sistent between them, the inverse and the direct distance ladder must return
consistent results. However, this is not the case. Therefore, the H0 tension
can be reframed as a mismatch between the two anchors (rd and H0) of the
cosmic distance ladder (23). With current measurements, rdh ∼ 100 Mpc/h
and rd ∼ 147 Mpc as inferred from the Planck assuming ΛCDM (or BBN).
Thus, H0 from the inverse distance ladder would return H0 ∼ 68 km/s/Mpc,
while the direct distance ladder returns rd ∼ 137 Mpc.

The combination of BAO+SNeIa gives us a couple of hints about potential
solutions to the H0 tension. On the one hand, SNeIa fix H(z)/H0 to be very
similar to ΛCDM, which severely constraints modifications to the expansion
history of the Universe at late times. On the other, BAO constraints on the
product of rdh forces to reduce the predicted value of rd to reconcile all the
measurements. This indicates that any solution to the H0 tension must at
least include modifications before recombination to reduce the sound horizon.

5.2.3 Strong-lensing time delays

Strong gravitational lenses can be used for cosmography using the time delay
in the reception of a given signal through different paths (when there are
multiple lensed signals). Here we will not discuss this method in detail, but a
review can be found in Ref. (24). From Fermat’s principle of least time, the
light travel time through a gravitational lens is

t(θθθ) = D∆tΦL(θθθ;βββ) , ΦL =
(θθθ − βββ)2

2
− ϕL(θθθ) , (5.18)

where θθθ and βββ are the apparent (lensed) and true sky position of the source, ΦL

is the Fermat potential and ϕL is the scaled, projected gravitational potential
along the lens sight-line, which receives contributions from the main lens and
any matter overdensity along the line of sight. For multiple images, the time
delay for each path is given by

∆t = D∆t∆ΦL, (5.19)

where the difference in the Fermat potential for each image can be predicted
along with the deflection angle for any given mass model for the lens. There-
fore, the time delay only depends on the time-delay distance D∆t, defined
in terms of the (physical) angular diameter distance to the deflector, to the
source, and between the deflector and the source (denoted with subscripts ‘d’,
‘s’, and ‘ds’, respectively) as

D∆t ≡ (1 + zd)
DA,dDA,s

DA,ds
. (5.20)

Measuring the time delays requires dedicated monitoring of very special sys-
tems: a bright high-redshift quasar must be located behind a strong lens in
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a position such that multiple images are created. Practical implementation
requires dedicated measurements with high cadence to detect the often small
variations in the quasar brightness, used as features to determine the time
delay between the images.

Note that, for a perfect mass model, strong-lensing time delays return ab-
solute measurements of the time-delay distance, which is proportional to H−1

0

(and also moderately sensitive to other cosmological parameters controlling
the expansion history of the Universe such as Ωm or w). However, modeling
the mass distribution of the main deflector, its neighbors, and accounting for
potential small contributions along the line of sight is far from trivial. Ex-
ternal features are used, such as Einstein ring, kinematics of the stars with
spectroscopic observations, the properties of the neighbor galaxies to deter-
mine their position along the line of sight, etc. Even with this wealth of
observations, uncertainties due, among other, to the mass-sheet degeneracy
(i.e., the lensing system is unchanged in presence of a uniform convergence
field, or a mass sheet), limits the power of this method and requires further
observations to break this degeneracy.



CHAPTER 6

LECTURE 4: MEASURING THE
AMPLITUDE OF CLUSTERING

The second main tension between cosmological measurements under the as-
sumption of ΛCDM involves the amplitude of clustering on small scales. In
particular, it refers to the matter clustering in the late Universe, parameter-
ized with the combination of S8 ≡ σ8(Ωm/0.3)

1/2, where σ8 is the root mean
square of the matter perturbations smoothed over 8 Mpc/h.1 Simply stated,
the distribution of matter in hte late Universe as measured by low-redshift
probes is smoother than expected from the evolution of the fluctuations ob-
served in the CMB assuming ΛCDM. The largest tension (∼ 3σ) involves
galaxy weak lensing, but similar trends can be found in measurements of the
CMB lensing tomography, galaxy weak lensing, abundance of galaxy clusters,
and cross-correlations of the above.

Although they are arguably more complicated, measurements based on
lensing directly probe the matter distribution, rather than the distribution
of a biased tracer. In general, dropping the complications related with the

1As we will see, this is the parameter combination best constrained by weak lensing mea-
surements from galaxy surveys.

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)

101



102 LECTURE 4: MEASURING THE AMPLITUDE OF CLUSTERING

bias makes significantly easier to obtain accurate predictions. In this chap-
ter we will discuss the basics of matter clustering measurements based on
gravitational lensing. In particular, we will cover CMB lensing, CMB lensing
tomography in cross-correlations with tracers of the large-scale structure, and
galaxy weak lensing.

Gravitational potentials distort the paths of light. Therefore, we can in-
vestigate the matter distribution through its impact in the light that reaches
us, which makes lensing a very powerful probe of the large-scale structure.
Gravitational lensing is also a very powerful probe of the mass distribution of
specific collapsed objects (thus a probe of dark matter) and can also be used
for cosmography, as discussed in the previous chapter. These phenomena can
be classified as microlensing and/or strong lensing. In turn, the most impor-
tant aspect of gravitational lensing to probe the large-scale structure is weak
lensing, which slightly distorts the shape of distant galaxies. Thanks to the
study of the statistical distortion of distant galaxies as function of position on
the sky it is possible to make mass maps, and study the clustering of matter.

6.1 Basics of weak gravitational lensing

We can describe the effect of gravitational lensing on the observed photons
using the Boltzmann equation (see Sections 1.2 and 1.3.4). At low redshift,
we can safely neglect any collision term for the photons, since we can ignore
absorption and scatter, so that df/dt = 0. Gravitational lensing affects both
the intensity and polarization of photons (e.g., the famous conversion from
E modes to B modes for the CMB polarization due to lensing along the line
of sight), but we will limit our study to their intensity. Any telescope, at
the end of the day, measures the integral of the specific intensity Iν , which is
the energy incident on a detector per solid angle, per unit area and time and
frequency:

dE = IνdΩdA⊥dtdν , (6.1)

where dA⊥ is the detector area normal to the photon flux. Within a time
interval dt, the detector collects photons from a volume d3x = dA⊥dt. On
the other hand, in natural units, the photon energy and its frequency can
be related through the photon momentum as E = p = 2πν, such as d3ppp =
(2π)3ν2dνdΩ. Then, since the differential photon energy that arrives to the
detector is the number of photons dN = 2fd3xxxd3ppp/(2π)3 weighted by an
energy factor 2πν, we have

Iν(xxx,ppp, t) = 4πν3f(xxx, p = 2πν, p̂pp, t) . (6.2)

Weak lensing conserves the phase-space distribution function but changes the
photon paths. Thus, the specific intensity is conserved (once the frequency
variation due to redshift is taken into account, ν = νemission/(1 + z)), and
the only change between the emitted specific intensity Itrueν and its observed
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value Iobsν is related with the line of sight, namely

Iobsν (θθθ) = Itrueν (θθθS) , (6.3)

i.e., the observed specific intensity at position θθθ on the sky is the as same as
would have been observed from the direction of the true source position θθθS in
the absence of lensing.

We want to derive the relation between θθθS and θθθ as function of the lens.
Since we are in the regime of weak lensing, the deflection angle is going to be
small and therefore we can limit our derivation to linear order. In this limit,
a source at a distance χ and position θθθS on the sky has a position xxxtrue in a
3D coordinate system; in turn, the lensed image (which has shifted position
θθθ on the sky) is located at xxxobs. These two positions are given by

xxxtrue = (xtrue⊥ , xtrue∥ ) = χ(θθθS , 1) , xxxobs = (xobs⊥ , xobs∥ ) = χ(θθθ, 1) , (6.4)

where the radial distance between the observer and the unlensed and lensed
images is the same at linear order. xi⊥ (the position in the 3D coordinate
frame perpendicular along the axis i to the photon path) is the integral of

dxi⊥
dχ

= −dxi⊥
dτ

= −adx
i
⊥

dt
= −p̂i⊥ (6.5)

over the comoving distance, where we have used dχ = −dτ = −dt/a, i.e., that
the conformal time is the same as the comoving distance but with opposite
sign (going outward in distance is backwards in time). The last equality uses
Eq. (1.19). Integrating the equation above we can obtain θiS :

θiS =
xi⊥
χ

= − 1

χ

∫ χ

0

dχ̃ p̂i⊥(χ̃) . (6.6)

Similarly, we can obtain the derivatives of the direction of the momentum
with respect to time for a inhomogenous Universe from the geodesic equation.
Using the results in Eq. (1.73) and acknowledging that dp̂/dt = (1/p)dpi/dt−
(pi/p2)dp/dt, we find

dp̂

dt
=

1

a

[
δij − p̂ip̂j

]
kj(Φ−Ψ) , (6.7)

where the factor in square brackets is the projection on directions transverse
to the momentum (the z axis in our small deflection approximation). Thus,

dp̂i⊥
dχ

= −dp̂i⊥
dτ

= −adp̂
i
⊥

dt
= −∂i(Φ−Ψ) = −2∂i(Φ) , (6.8)

assuming that there is no anisotropic stress for the last equality. Integrating
the previous equation we find

p̂i⊥(χ̃) = −2
∫ χ̃

0

dχ̃′∂iΦ(xxx(θθθ, χ̃
′), τ0 − χ̃′) + Ci , (6.9)
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where xxx is the unperturbed photon path at which the potential is evaluated.
We can plug this equation in Eq. (6.6), and consider the limit of no deflection
to obtain that Ci = −θi. Therefore, we have

θiS = θi +
2

χ

∫ χ

0

dχ̃

∫ χ̃

0

dχ̃′∂iΦ(xxx(θθθ, χ̃
′), τ0 − χ̃′) . (6.10)

Therefore, if an overdensity Φ > 0 is found along the direction, xxx⊥ = 0, from
the previous equation we get ∂iΦ < 0 for x > 0, and the bending angle for
light passing through an overdensity on the positive around x > 0 is negative,
i.e., inwards towards the overdensity, as expected.

Changing the order of the integrals (the now second integral ranging from
χ̃′ to χ) leaves one of them yielding (1 − χ̃′/χ). Let us rename the variables
so that

θiS = θi +∆θi = θi + 2

∫ χ

0

dχ̃∂iΦ(xxx(θθθ, χ̃), τ0 − χ̃)
(
1− χ̃

χ

)
. (6.11)

Using ∂i = ∂θi/χ̃, we can write the deflection angle as the derivative of a
lensing potential ϕL in the transverse plane on the sky:

θiS = ∂θiϕL = ∂θi

[
2

∫ χ

0

dχ̃

χ̃
Φ(xxx(θθθ, χ̃))

(
1− χ̃

χ

)]
. (6.12)

Summarizing, the lensing potential is a weighted integral over 2Φ along the
photon path, which at linear order can be taken to be the unperturbed path.
The contribution of the lenses close to the source are suppressed by the (1−
χ̃/χ) factor.

The lensing potential is the key quantity for CMB lensing. In galaxy sur-
veys instead, the effect of weak lensing extracted from the observations is
related to image distortions: since the intrinsic position of the galaxy is un-
known, the overall shift of the image does not contain information; instead,
since different points of the same (resolved) galaxy are subject to different de-
flection angles, we can statistically exploit the image distortions due to lensing.
Therefore, we need to use also the first derivative of the deflection angle, or
the second-derivative matrix –distortion tensor– of the lensing potential:

ψij ≡ ∂θi∂θjϕL(θθθ) . (6.13)

6.2 CMB lensing

Gravitational lensing applies both to discrete sources and diffuse fields. The
latter includes, among other, the CMB and line-intensity mapping observa-
tions. Since the effects of lensing in line-intensity mapping is very small and
it will be very challenging to detect, we focus on CMB lensing here. A good
review for CMB lensing can be found in Ref. (4).



CMB LENSING 105

Due to historical conventions, we will use here the CMB temperature rather
than specific intensity. In this case, up to second order in the deflection angle,

Tobs(θθθ) = T (θθθ +∆θθθ) ≃ T (θθθ) + ∆θi∂θiT (θθθ) +
1

2
∆θi∆θj∂2θiθjT (θθθ) , (6.14)

where by definition χ = χ∗ is the distance to the last scattering surface
and we have dropped the subscript ‘true’. Since weak lensing only deflects
the angle and does not change the surface brightness, it does not affect the
CMB mean temperature. Therefore, the equation above also applies for the
temperature perturbation Θ. We can also work in Fourier space (taking the
flat sky approximation of the harmonic space), such that derivatives with
respect to the angle become multiplications by iℓℓℓ. Taking the 2D Fourier
transform of the expression above we have

Θobs(ℓℓℓ) = Θ(ℓℓℓ)−
∫

d2ℓℓℓ′

(2π)2
ℓℓℓ′ (ℓℓℓ− ℓℓℓ′)ϕL(ℓℓℓ− ℓℓℓ′)Θ(ℓℓℓ′)−

− 1

2

∫
d2ℓℓℓ′

(2π)2

∫
d2ℓℓℓ′′

(2π)2
ℓℓℓ′(ℓℓℓ′ + ℓℓℓ′′ − ℓℓℓ)Θ(ℓℓℓ′)ℓℓℓ′ℓℓℓ′′ϕL(ℓℓℓ

′′)ϕ∗L(ℓℓℓ
′ + ℓℓℓ′′ − ℓℓℓ) ,

(6.15)

where we already have integrated over the Dirac deltas coming from the expo-
nential factors of the Fourier transform. We can use the expression above to
compute the observed temperature power spectrum of the CMB anisotropies.
To lowest order in the power spectrum of the lensing potential, defined as

⟨ϕL(ℓℓℓ)ϕ∗L(ℓℓℓ′)⟩ = (2π)2δ
(2)
D (ℓℓℓ− ℓℓℓ′)CϕLϕL

ℓ , (6.16)

we find (using ϕL(ℓℓℓ) = ϕ∗L(−ℓℓℓ))

Cobs
ℓ = Cℓ+

∫
d2ℓℓℓ′

(2π)2
[ℓℓℓ′(ℓℓℓ− ℓℓℓ′)]2 CϕLϕL

|ℓℓℓ−ℓℓℓ′|Cℓ′−Cℓ

∫
d2ℓℓℓ

(2π)2
(ℓℓℓℓℓℓ′)2CϕLϕL

ℓ′ . (6.17)

The last term is a small damping term on the characteristic scales of the de-
flection squared, that encodes the smoothing of the temperature anisotropies
due to the random lensing deflections. In turn, the second term (which con-

volutes the lensing potential power spectrum CϕLϕL

|ℓℓℓ−ℓℓℓ′| and the intrinsic temper-

ature power spectrum Cℓ′), effectively smooths the peaks of the temperature
power spectrum and adds power at scales smaller than the diffusion scale (by
transferring power from large to small scales).

Although the expression above must be taken into account to accurately
predict the observed CMB temperature power spectrum, it is far from ex-
hausting the information we can obtain about the matter distribution from
the effect of gravitational lensing on the CMB. More than this, gravitational
lensing also introduces off-diagonal contributions in the covariance of the CMB
(since lensing breaks isotropy, as can be seen through the ℓℓℓ dependence in
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Eq. (6.15), which collects the dependence on the two ⊥, ∥ directions as for θθθ).
Therefore, they can be used, along with quadratic estimators, to reconstruct
the lensing potential. Taking the off-diagonal covariance up to linear order in
ϕL,

〈
Θobs(ℓℓℓ)Θobs,∗(ℓℓℓ−LLL)

〉
=LLL̸=0

∫
d2ℓℓℓ′

(2π)2
[ℓℓℓ′(ℓℓℓ− ℓℓℓ′)ϕL(ℓℓℓ− ℓℓℓ′)⟨Θ(ℓℓℓ′)Θ∗(ℓℓℓ−LLL)⟩ +

+ ℓℓℓ′(ℓℓℓ−LLL− ℓℓℓ′)ϕ∗L(ℓℓℓ−LLL− ℓℓℓ′)⟨Θ(ℓℓℓ)Θ∗(ℓℓℓ′)⟩] =
=
[
(LLL− ℓℓℓ)LLLC|ℓℓℓ−LLL| + ℓℓℓLLLCℓ

]
ϕL(LLL) ,

(6.18)

where for the last equality we have used the definition of the power spectrum
(assuming it diagonal, since it is the intrinsic one). The L = 0 mode of the
lensing potential is not observable (zero gradient). Starting from the expres-
sion above we can derive an estimator for the lensing potential performing
a weighted integral of the off-diagonal covariance. We define the quadratic
estimator

ϕ̂L(LLL) ≡ N (LLL)

∫
d2ℓℓℓ

(2π)2
Θobs(ℓℓℓ)Θobs,∗(ℓℓℓ−LLL)g(ℓℓℓ,LLL) , (6.19)

where N is a normalization to ensure that estimator is unbiased and g is a
weighting function to ensure minimum variance. Enforcing the condition of
unbiased estimator ⟨ϕ̂L⟩ = ϕL we find a normalization

N−1(LLL) =

∫
d2ℓℓℓ(2π)2

[
(LLL− ℓℓℓ)LLLC|ℓℓℓ−LLL| + ℓℓℓLLLCℓ

]
g(ℓℓℓ,LLL) . (6.20)

In turn, enforcing minimum variance (at tree level and neglecting non-Gaussian
contributions from the connected four-point function), we have

⟨ϕ̂∗L(LLL)ϕ̂L(LLL′)⟩ = (2π)2δ
(2)
D (LLL−LLL′)2N 2(LLL)

∫
d2ℓℓℓ

(2π)2
Ctot

ℓ Ctot
|ℓℓℓ−LLL|g

2(ℓℓℓ,LLL) ,

(6.21)
where the total power spectrum includes signal, noise and all foreground con-
tributions; after minimization we find

g(ℓℓℓ,LLL) =
(LLL− ℓℓℓ)LLLC|ℓℓℓ−LLL| + ℓℓℓLLLCℓ

2Ctot
ℓ Ctot

|ℓℓℓ−LLL|
. (6.22)

Summarizing, gravitational lensing smooths the CMB power spectrum peaks
and boosts the small scale power spectrum by transferring power from large
to small scales. More interestingly, from the off-diagonal covariance of the
power spectrum we can derive an estimator of the lensing potential to the
last-scattering surface. The main effect is the modulation of the anisotropy
of the CMB power spectrum due to long-modes of the lensing potential. This
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has been exploited by CMB experiments to create convergence maps, and to
measure the lensing power spectrum, which helps to constrain cosmology.

In this section we have used the flat-sky approximation to ease the deriva-
tion (and notation), but the generalization to full sky using spherical harmon-
ics is straightforward. Finally, the angle deflection also changes rotates the
linear polarization of the photons, leaking some of the power on the E-modes
to the B-modes (which is a foreground to primordial B-mode searches). The
quadratic estimator can be extended to also the polarization to improve its
performance.

6.2.1 CMB lensing tomography

The lensing converge is given by one half the gradient of the deflecting angle,
which results in the Laplacian of the lensing potential. Applying the Poisson
equation (note that we need to transform the angular to spatial derivative)
we can then express the convergence κ in a position on the sky as

κ(θθθ) =
3ΩmH

2
0

2

∫ χ

0

dχ̃
χ̃

a(χ̃)
δm(θθθχ̃, τ0 − χ̃)

(
1− χ̃

χ

)
, (6.23)

which explicitates the relation between lensing and the matter overdensities.
From this expression we can appreciate that lensing directly depends on the
large-scale structure. However, the effect on the CMB (and the reconstructed
convergence field) is an integrated effect.

We can isolate contributions from specific redshift intervals by cross corre-
lating the CMB convergence field with low-redshift tracers of the large-scale
structure. For simplicity, let us consider galaxies as the tracers. Considering
only linear bias, a galaxy catalog with redshift distribution dn/dz provides a
biased projected overdensity field

δg(θθθ) =

∫ ∞

0

dzb(z)
dn

dz
δm(χ(z)θθθ, z) . (6.24)

Since both the convergence field and the galaxy catalog trace the same large-
scale structure, they are correlated. The angular power spectrum is given
by

Cκg
ℓ =

2

π

∫
dkk2Pm(k, z = 0)Wκ

ℓ (k)W
g
ℓ (k) , (6.25)

where Pm is the matter power spectrum (for which we can include nonlinear
clustering) and (in our approximation of no anisotropic stress) we have as-
sumed Pm(z) = D(z)2Pm(z = 0). The kernels for galaxies and convergence
are

W g
ℓ =

∫
dzb(z)

dn

dz
D(z)jℓ(kχ(z)) ,

Wκ
ℓ =

3ΩmH
2
0

2

∫
dz
χ∗ − χ(z)
χ(z)χ∗

D(z)jℓ(kχ(z)) .

(6.26)
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Physically, it is clear that the only contribution from the convergence field
that is correlated with the galaxy distribution is that one that receives con-
tributions from the redshift range that is also covered by the galaxy catalog.
Mathematically, that comes from the properties of the Bessel functions, which
to zero-th order can be understood as orthogonal on their arguments.

Therefore, as anticipated, cross-correlating the CMB-lensing convergence
field with low-redshift tracers of the large-scale structure allows to probe spe-
cific redshift ranges in the lensing potential of the CMB. Combining the cross-
power spectrum with the auto power spectrum of galaxies provides a better
control of the galaxy bias, as well as increasing the overall signal-to-noise ratio
of the measurement.

6.3 Galaxy weak lensing

We switch now to how weak gravitational lensing affects galaxies. As with
any other object, lensing shifts the position of the image, but we cannot
exploit this effect because we do not know the true position of the galaxy. We
can however exploit the relative displacement of different parts of the galaxy
image, i.e., how it is distorted due to the lensing. This is because galaxies
are not points on the sky, but small, extended objects. Therefore, each of
its points is perturbed by a slightly different deflection angle . The simplest
case is the distortion of a circle into an ellipse. However as we will see below,
this is an extremely ideal case and many complications play a role in the
measurement of galaxy weak lensing.

We first need a quantitative description of the shape of the galaxy; the
simplest measure are the moments of its image. For an image centered at the
origin, the second moments are

qij ≡ ⟨θiθj⟩Iobs
≡ 1

F

∫
d2θθθIobs(θθθ)θiθj , (6.27)

where the brackets denote the intensity-weighted average over the image and
the second moments are normalized by the flux F =

∫
d2θθθIobs(θθθ), which is

the total angular integral of the intensity. With this choice of coordinates, the
first moments of the image are null by definition. In turn, qij is 2× 2 matrix
that we can write as

qij =
1

2
q

(
1 + ϵ1 ϵ2

ϵ2 1− ϵ1

)
, (6.28)

which is determined by three independent components: the trace q and the
ellipcities in the two orthogonal directions ϵ1 and ϵ2. For circular images,
ellipcities are ϵi = 0 and

√
q provides a measure of the angular size of the

image. This formulation is very similar to the polarization tensor, for the
intensity I and the linear polarization Stokes parameters Q and U . Therefore,
we can define E and B modes in a similar way.



GALAXY WEAK LENSING 109

We therefore need to describe how lensing affects the shape tensor qij .
Since we know that the effect is a deflection angle that varies across the
galaxy image, we need to derive the observed position of all the galaxy points
with respect to their observed angles. This corresponds to the derivative
of the gradient of the lensing potential and the antisymmetric part of this
transformation, which corresponds to the rotation of the image, vanishes at
linear order. We will therefore consider a symmetric transformation matrix.
Furthermore, the transformation that affects q (changing the size of the image)
corresponds to the convergence κ defined in the previous section. Finally,
the transformation affecting the diagonal and off-diagonal contribution to the
ellipcity of the image is the shear γ1 and γ2. Therefore, we can express the
transformation matrix Aij in terms of the distortion tensor from Eq. (6.13):

Aij = δij + ψij , ψij =

(
−κ− γ1 −γ2
−γ2 −κ+ γ1

)
. (6.29)

Now we need to derive how Aij applies to qij . Since the observed intensity
in the observed position is equal to the true intensity in the true position, we
can apply Eq. (6.3) in the definition of qij and expand the deflection angle so
that

θiS(θθθ) = θi +∆θi + ∂θj∆iθj + · · · = Aijθ
j +∆θi + . . . , (6.30)

where ∆θi and its derivative are to be evaluated at the galaxy centroid posi-
tion. Since both the deflection angle and the distortion matrix are evaluated
at a fixed point, we can get them outside of the integral to compute the sec-
ond moment. Since we care for the shape of the galaxy, we can also drop the
overall shift ∆θi. Therefore, we can invert the matrix to express the observed
angle as function of the source angle, changing the variable of integration.
This leads to

qij =
1

F

∫
d2θθθS

∣∣∣∣
∂θk
∂θS,l

∣∣∣∣ Itrue(θθθS)(A−1θS)i(A
−1θS)j ,

F =

∫
d2θθθS

∣∣∣∣
∂θk
∂θS,l

∣∣∣∣ Itrue(θθθS) .
(6.31)

By definition, the Jacobian is the determinant of the inverse of A, and using
the properties of the determinant |A−1| = |A|−1, hence we can pull it outside
of the integral, and

F = |A|−1Ftrue = µFtrue =
Ftrue

(1− κ)2γ21 − γ22
, (6.32)

where we have defined the magnification µ of the image. Remember that
lensing conserves the surface brightness, so any change in the observed flux
with respect to the intrinsic one is due to a magnification of the size of the
galaxy.



110 LECTURE 4: MEASURING THE AMPLITUDE OF CLUSTERING

For the shape tensor, the Jacobian cancels with the normalization of the
flux, and it becomes

qij = (A−1)ki (A
−1)ljq

true
kl , (6.33)

where qtruekl is the intrinsic, unlensed second-moment tensor. If we linearize
the expression above we find

qij = qtrueij − ψk
i q

true
kj − ψl

jq
true
il , (6.34)

which leads to the transformation of each of the independent components of
the second-moment tensor:

q = qtrue
[
1 + 2κ+ 2(ϵtrue1 γ1 + ϵtrue2 γ2)

]
,

ϵ1 =
[
1− 2(ϵtrue1 γ1 + ϵtrue2 γ2)

]
ϵtrue1 + 2γ1 ,

ϵ2 =
[
1− 2(ϵtrue1 γ1 + ϵtrue2 γ2)

]
ϵtrue2 + 2γ2 .

(6.35)

This derivation shows how, from the measurement of galaxy shapes we can
infer the matter distribution through the impact of shear, after accounting for
the intrinsic shape of the galaxies themselves. Since we are in the limit of weak
lensing, we can approximate the distribution of observed shapes as a proxy for
the distribution of the intrinsic shapes, which is a fairly narrow distribution
with a root-mean square width of ∼ ⟨(ϵtrueq )2 + (ϵtrue2 )2⟩1/2/

√
2 ≃ 0.3. The

intrinsic ellipcity is random, so it is expected to cancel out after averaging
the shape of many galaxies in a pixel, since the shear field is common to all
of them. This is the basic concept of how we measure shear.

6.3.1 Galaxy weak-lensing statistics

The lensing potential is proportional to the gravitational potential, so it aver-
ages to zero, as the distortion tensor does. Therefore, as it is the case with all
the quantities of study so far, we need to take its variance. We will consider
flat sky, since most of the signal from shear comes from small scales. Taking
the 2D Fourier transform of the distortion tensor, we have

−ψij(ℓℓℓ) = ℓiℓjϕL(ℓℓℓ) . (6.36)

Similar to the CMB polarization, the E mode corresponds to the scalar com-
ponent of the distortion tensor (after removing the trace), and the B mode
vanishes (since it is only generated by a curl-type deflection angle, while the
deflection angle is a gradient type by definition).2 Therefore, we have

E(ℓℓℓ) =

(
ℓiℓj

ℓ2
− δij

2

)
(−ψij(ℓℓℓ)) =

1

2
ℓ2ϕL(ℓℓℓ) = κ(ℓℓℓ) , (6.37)

2Actually, confirming null B-mode measurements can be used to test the presence system-
atics in the observations.
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where we have used the relation between the distortion tensor and ϕL above
in the first equality. Therefore, the power spectrum of the E modes is pro-
portional to the convergence and lensing potential power spectrum that we
studied before, which are scalar quantities. We can compute the angular
power spectrum of the E modes (or convergence field) in the similar way than
we did for the angular cross-power spectrum of CMB lensing and galaxies in
Eq. (6.25). In this case we have

Cκκ
ℓ =

2

π

∫
dkk2Pm(k, z = 0)Wκ

ℓ (k)W
κ
ℓ (k) , (6.38)

but there are a couple of particularities with respect to the CMB case. First,
there is no clear source distance as before. Second, since weak lensing is a small
effect, high statistics are required, thus we need to observe a large number
of galaxies, possibly in a wide field. These can be obtained through photo-
metric surveys, which however do not provide precise distances to galaxies,
hence we are forced to work with statistical distance distributions, rather than
precise measurements. We denote the galaxy number density distribution as
a function of distance as dn/dχ, which we normalize to unity. The lensing
potential defined in Eq. (6.12) that affects the observed flux and shapes of
this distribution of sources is

ϕL(θθθ) =

∫ ∞

0

dχ
dn

dχ
ϕ
(χ)
L , (6.39)

where ϕ
(χ)
L is the lensing potential up to a distance χ. Changing the order of

integration as before we find

ϕL(θθθ) = 2

∫ ∞

0

dχ′

χ′ Φ(xxx(θθθ, χ
′), τ0 − χ′)

∫ ∞

χ′
dχ

dn

dχ

(
1− χ′

χ

)
. (6.40)

By analogy with the CMB lensing case, we have now the kernel

Wκ
ℓ (k) =

3ΩmH
2
0

2

∫ ∞

0

dχ′

χ′a(χ′)
jℓ(kχ

′)D(z(χ′))

∫ ∞

χ′
dχ

dn

dχ

(
1− χ′

χ

)
.

(6.41)
The shear power spectrum depends both on the amplitude of the non-linear
power spectrum Pm(k, z = 0), but also on the abundance of matter through
the presence of Ωm in Wκ

ℓ that relates it with the gravitational potential–
and through its impact on the expansion history of the Universe (which de-
termines the geometry in the lens system). This is why weak lensing is very
sensitive to the parameter combination involving σ8 and Ωm. Note that we
use the non linear power spectrum in the equation above, while we kept the
derivation of the effects from lensing to linear order. This is a good approx-
imation because the non-linearities in the shear are much smaller than those
in the three dimensional matter clustering. Therefore, nonlinear clustering
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and uncertainties related with the impact of the baryonic effects are usually
the main limitation for theory predictions of the shear power spectrum.

There are also challenges in the observational side. The effect of lensing
is very small, which requires a huge number of galaxies to recover its effect
statistically. This in turn implies than (due to the shape of the luminosity
function) most of the galaxies included in the analysis are very faint, which
hinders the ellipticity measurements. Moreover, uncertainties in the redshift
distribution of the sources and the intrinsic ellipticity of the galaxies them-
selves also introduce systematic uncertainties that, if larger than the statistical
errors, may limit the analysis. Finally, the galaxy shapes may be intrinsically
correlated, which is known as intrinsic alignments. At large scales, the main
effect correlating galaxy shapes is the tidal field. This effect must be included
in the analysis to avoid biased results, and can be understood as the analog
for shapes of the linear bias relation for the galaxy number counts.

Since galaxy weak lensing also traces the large-scale structure, it can be
cross-correlated with any other probe of the underlying matter clustering. In
particular, the most common cross correlation involves galaxy clustering. The
formalism to compute the cross-power spectra is similar to the one discussed
in the previous section for the CMB lensing tomography. The main benefits
of performing this type of cross correlations (which have been named as ‘3×2’
analysis, also extended to N × 2 if more than two probes are cross correlated,
e.g., SZ effect, CMB lensing, etc) is to increase the signal-to-noise ratio, avoid
potential sources of systematics, and break degeneracies with the nuisance
parameters for each probe.

Of course, there are other probes of amplitude of clustering, although they
do not show such large tension with respect to the predictions from Planck
and we leave them out due to a limitation of time. Some examples include
the abundance of clusters (detected using the thermal SZ effect or X-ray
observations), galaxy clustering (the degeneracy with the galaxy bias can be
broken including nonlinear scales), 1D Lyman-α forest power spectrum, etc.



CHAPTER 7

APPLIED SESSION 2
CLUSTERING IN THE LATE UNIVERSE

In this second Applied Session we will discuss probes of the matter distribution
and clustering across cosmic time. We will initially deal with the effect of
lensing, both on CMB and with respect to galaxy surveys. In this context, we
will discuss how measurements from thermal Sunayev-Zeldovich clusters and
weak lensing provide estimates of the S8 parameter and we will highlight the
uncertainties that arise from them. Finally, we will discuss S8 measurements,
showing how the tension seems to be related with low redshift probes.

For more detail you can refer to:

Modern Cosmology. 2nd edition. Chapter 13
S. Dodelson and F. Schmidt (2020). Elsevier Press, Cambridge.
DOI: 10.1016/B978-0-12-815948-4.00020-6

The Sigma-8 Tension is a Drag
V. Poulin, J. L. Bernal, E. Kovetz and M. Kamionkowski (2022).
arXiv:2209.06217 [astro-ph.CO].

Constraints from thermal Sunyaev-Zeldovich cluster counts and
power spectrum combined with CMB

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)
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L. Salvati, M. Douspis, N. Aghanim (2018). Astron. Astrophys. 614, A13.
DOI:10.1051/0004-6361/201731990.

Intrinsic and Extrinsic Galaxy Alignment
P. Catelan, M. Kamionkowski and R. D. Blandford (2001).
Mon. Not. Roy. Astron. Soc. 320, L7-L13.
DOI: 10.1046/j.1365-8711.2001.04105.x

Dark Energy Survey Year 3 results. Cosmological constraints from
galaxy clustering and weak lensing
T. M. C. Abbott et al. [DES] (2022).
Phys. Rev. D 105, no.2, 023520. DOI: 10.1103/PhysRevD.105.023520

DES Y3 cosmic shear down to small scales
G. Aricò, R. E. Angulo, M. Zennaro, et al. (2023).
arXiv:2303.05537 [astro-ph.CO].

7.0.1 The S8 parameter

To measure the amplitude of the matter clustering in the late Universe, we
can use the parameter

S8 = σ8

√
Ωm

0.3
, (7.1)

where Ωm is the matter density parameter today and σ8 the rms of the ampli-
tude of the matter perturbations smoothed over a scale R = 8h−1Mpc. While
Ωm controls the background amount of matter in the Universe, σ8 describes
its clustering properties: low values of σ8 mean that the Universe is smooth.
The two parameters, as figure 7.1 shows, are degenerate in determining S8.

The more matter there is and the more it forms clustered structures, the
more effectively it deviates the paths photons follow before reaching the ob-
server. Therefore, the parameter S8 directly relates with two effects: lensing
and thermal SZ. By measuring these effects, we can constrain S8 once we
account for uncertainties and degeneracies with other parameters; these mea-
surements can then be compared with ΛCDM predictions on the growth of
structures. We will see that, while CMB lensing seems to be coherent with
ΛCDM results from the CMB, weak lensing on galaxy surveys and cluster
counts related with thermal SZ predict a lower value of S8. Since these effect
are due to structures at low z, as figure 7.1 shows, this range seems to be
the one in which the tension is larger: this implies that the observed level of
clustering is not growing as rapidly as ΛCDM predictions.

Which are, in your opinion, possible ways to explain the low value S8 has
at low z?
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Discussion

The σ8 tension is even more unclear and uncertain than the H0 ten-
sion. On one side, the value extrapolated from CMB is related with
larger scales than the ones probed e.g., by galaxy lensing: the former
arrives at ∼ 0.1hMpc−1 ∼ size of the Local Group, the latter reaches
k ∼ 1hMpc−1 ∼ size of medium-size dark matter halos. Therefore, small
scales effects (non linearities, exotic forms dark matter or dark energy...)
possibly do not affect CMB scales. On the other hand, if not properly
modelled, they act as nuisance parameters in the other probes, leading
to biased parameter estimations. Indeed, one of the main issues in deal-
ing with the S8 tension is the presence of very large uncertain in low-z
measurements; we will see where do they come from.

Figure 7.1 Sources: arXiv: 2111.09898.

7.0.2 CMB lensing

As you discussed in detail during the lectures, CMB lensing distorts the hot
and cold spots of the temperature field around foreground masses. You com-
puted how the lensing affects the observed CMB power spectrum

Cobs
ℓ = Cℓ +

∫
d2ℓℓℓ′

(2π)2
[ℓℓℓ′(ℓℓℓ− ℓℓℓ′)]2 CϕLϕL

|ℓℓℓ−ℓℓℓ′|Cℓ′ −Cℓ

∫
d2ℓℓℓ

(2π)2
(ℓℓℓℓℓℓ′)2CϕLϕL

ℓ′ , (7.2)

ultimately through the effect of its potential, which is related to the deflection
angle by

θiS = ∂θiϕL = ∂θi

[
2

∫ χ

0

dχ̃

χ̃
Φ(xxx(θθθ, χ̃))

(
1− χ̃

χ

)]
. (7.3)

The foreground lenses deviates the photon paths, blurring the acoustic peaks
and distorting the associated angular scales, as figure 7.2 shows. It is custom-
ary to describe the amplitude of CMB lensing effect through the parameter
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AL, which is defined by the relation Cϕϕ
ℓ,obs = ALC

ϕϕ
ℓ : AL = 0 describes

the unlensed CMB, while the theoretical expectation of the lensed CMB is
AL = 1. From the observed CMB power spectrum, it is possible to recon-
struct the lensing power spectrum: its shape is consistent with AL = 1, but
if only the higher multipoles are considered, a smaller preference for AL > 1
seems to arise. This however can be due simply to degeneracies with other
parameters or foreground cleaning.

Figure 7.2 Sources: Wayne Hu website (top), https://cosmologist.info/

notes/LensedCMB-Cargese17.pdf (bottom).

Planck 2018 results on lensing provide S8 = 0.832± 0.013. It is important
to note that, even if the support kernel that describes the integration of the
lensing potential in the CϕLϕL

ℓ equation, spans in z between recombination
and today, its peak occurs at z ∼ 2, being therefore less sensitive to low z.

7.0.3 Thermal SZ cluster

After recombination, photons free stream in the Universe. However, the
status of the Universe change as long as time passes and late time effect
can affect the CMB photon path. How?

https://cosmologist.info/notes/LensedCMB-Cargese17.pdf
https://cosmologist.info/notes/LensedCMB-Cargese17.pdf
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Discussion

Once stars and galaxies form, high energy radiation is produced, which
in turn ionizes the gas the Universe is filled with. This happens during
the reionization era around z ∼ 30, as well as in regions of the local Uni-
verse where star formation is active, namely in the intergalactic medium
inside clusters. Here, the ionizing radiation implies the presence of hot
electrons, which have a non negligible Compton cross section with CMB
photons. The electron are more energetic than the CMB photons, there-
fore the scattering these undergo result in an increased temperature for
the photons themselves.

The change in the CMB photon temperature can be expressed as

∆T

T
(ν, n̂nn) =

[
hP ν

kBT
coth

hP ν

2kBT
− 4

]
σ

mec2

∫
nekBTedxphys , (7.4)

where T, Te respectively are the CMB and electron temperatures, ν is the
photon frequency, hP the Planck constant, σ the cross section, ne the physical
electron number density and xphys the physical distance along the line of sight
in the n̂nn direction. The quantity inside the integral is the electron pressure.
This effect is called thermal Sunyaev Zeldovich (tSZ).

By looking at the expression for ∆T/T , infer how the CMB photon flux
change when looking in the direction of a cluster filled with hot electrons.
How does the CMB map in this direction change because of the tSZ effect
and how does the cluster appear on the map?

Discussion

The CMB is measured in different frequency channels, which collect pho-
tons with different energies. In the angular positions associated with
cluster line of sights, tSZ determines a lack of low-energy photons and an
increased number of high-energy ones. Therefore, high frequency chan-
nels gain more and more photons and the observed intensity increases:
in the map, this is equivalent to having hotter temperatures. Similarly,
low frequency channels receive less photons and observe a lower intensity
i.e., they appear colder than the average. This is evident in figure 7.3,
which shows the effect of the ABELL 2319 cluster on the CMB (∼ 2 deg2

patch). The tSZ effect has a null point at frequency ν ∼ 217GHz, where
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CMB appears without tSZ effect: this point corresponds to

hP ν

kBT
coth

hP ν

2kBT
− 4 = 0

exp(hP ν/2kBT ) + exp(−hP ν/2kBT )
exp(hP ν/2kBT )− exp(−hP ν/2kBT )

= 4
kBT

hP ν

ν ∼ 1.9
2kBT

hP
∼ 1.9

2 · 1.4 · 10−23 J/K · 2.7K
6.6 · 10−34 J/Hz

∼ 217GHz

(7.5)

Figure 7.3 Source: ESA/Planck Collaboration

CMB maps can then be used to locate clusters across the sky: by doing
so, we can count the clusters and, in analogy to what we do with any other
observable in cosmology, compute the tSZ angular power spectrum.

Which ingredients do we need to model the tSZ power spectrum?

Discussion

Eq. (7.4) indicates that, to estimate the tSZ effect on CMB anisotropies,
we need to know the electron number density along the line of sight. Since
they are found in clusters, this information can be obtained by knowing
how electrons “populate” DM halos of different masses and which is the
halo mass function dn/dM , namely the number density of the halos dis-
tributed in the mass bins and integrated over the mass spectrum and the
observed volume. Moreover, we need to plug an information related with
the internal structure of the halos themselves.

The tSZ angular power spectrum can then be written as

CtSZ
ℓ = CtSZ,1h

ℓ + CtSZ,2h
ℓ (7.6)



119

where CtSZ,1h
ℓ represents the one halo term (due to contributions within

the single halo), while CtSZ,2h
ℓ is the two halo term (due to correlation

between different halos). These are obtained as

CtSZ,1h
ℓ =

∫
dz

d2V

dzdΩ

∫
dM

dn

dM
(z,M) exp(σ2

lnY /2)·

·
[

σ

mec2
4πrp
ℓ2p

∫
dxr x

2
r

sin(ℓxr/ℓp)

ℓxr
ℓpne(z,M, x)kBTe(z,M, x)

]2

(7.7)

CtSZ,2h
ℓ =

∫
dz

d2V

dzdΩ
P (k, z)

[∫
dM

dn

dM
(z,M)bh(z,M)·

· σ

mec2
4πrp
ℓ2p

∫
dxr x

2
r

sin(ℓxr/ℓp)

ℓxr
ℓpne(z,M, xr)kBTe(z,M, xr)

]2

(7.8)
where rp is the characteristic radius of the pressure profile, xr = r/rp
the dimensionless radial scale and ℓp = DA(z)/rp. In the one halo term,
exp(σ2

lnY /2) describes some dispersion in the distribution, while in the
two halo term bh is the halo bias and P (k, z) the matter power spectrum.

The halo mass function in the previous equations depends on the power
spectrum, thus CtSZ

ℓ contains information on the cosmological parameters,
including σ8. Moreover, the halo bias itself depends on this parameter since
it is usually computed as b(M, z) = 1+δc/D

2(z)σ2(M), where δc is the critical
density required for the collapse, D(z) the growth factor and σ(M) the rms
of the fluctuations on the mass scale of the halo considered.

Therefore, from tSZ we can estimate σ8 but at the price of degeneracies
with respect to the halo mass function, bias and mass calibration. The value
obatined is σ8(Ωm/0.33)

0.25 = 0.765± 0.035.

7.0.4 Galaxy weak lensing

Weak lensing has two effects on galaxies, which we call convergence and shear.
They enter in the lensing transformation matrix as

Aij = δij + ψij , ψij =

(
−κ− γ1 −γ2
−γ2 −κ+ γ1

)
. (7.9)

The form of the lensing distortion matrix is analogous to the polarization
matrix for a radiation field

(
−κ− γ1 −γ2
−γ2 −κ+ γ1

)
↔
(
I +Q U

U I −Q

)
= Iij (7.10)
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where I is the intensity (which in our case in analogous to the conver-
gence), while U and Q describe the polarization components in the plane
orthogonal to the line of sight (the shear in our case). I, U, V are three
of the Stokes parameters; the fourth is absent since we ignore circular
polarization.

Use this analogy and imagine a galaxy as a circular distribution of
matter. How do convergence and shear change its appearance? Then,
think about a group of galaxies circularly distributed: how do they get
displaced? Which uncertainty is already evident from this example?

Discussion

In general, the polarization matrix can be expressed as Iij = Iδij + ITij .
The first term is the trace of the matrix; in our case it due to the con-
vergence, which magnifies the source. However, since the total flux is
conserved, its effect is to change the apparent size of the source isotrop-
ically. The shear instead enters the traceless tensor Iij and it introduces
anisotropic stretching in the image. These effects are visualized in the
top left panel of figure 7.4. The shear pattern is tangential to the mass
concentration in the convergence, as the bottom panel of the figure shows.

Analogously to CMB polarization, Iij can be rewritten in terms of
two components that describe the behaviour under rotations. The first
(E mode) is a scalar, while the second is a transverse-traceless tensor (B
mode). Their effect is illustrated in the top right panel of figure 7.4.

One of the main issue with weak lensing is that we know a priori neither
the intrinsic ellipticity of the galaxy nor its orientation with respect to
the line of sight. These two, then, are degenerate with the distortions in
the shape that the weak lensing introduces.

One interesting observable is the correlation between the observed elliptic-
ities of galaxies, which can be used as an indicator of the shear field induced
by mass inhomogeneities along the line of sight when intrinsic ellipticities are
randomly distributed. In this case, B modes vanish since the shear is de-
rived from the gradient of the lensing potential, which can not produce curl
deflection angles (in directions not parallel or orthogonal to the line of sight).

In the lectures, you derived the angular power spectrum for the E-modes

Cκκ
ℓ =

2

π

∫
dkk2Pm(k, z = 0)Wκ

ℓ (k)W
κ
ℓ (k) , (7.11)

where the kernel is

Wκ
ℓ (k) =

3ΩmH
2
0

2

∫ ∞

0

dχ′

χ′a(χ′)
jℓ(kχ

′)D(z(χ′))

∫ ∞

χ′
dχ
dn

dχ

(
1− χ′

χ

)
.

(7.12)
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Figure 7.4 Sources: www.researchgate.net/publication/334098793_Cosmic_

Magnification_in_COSMOS (left), arXiv:1109.1121 (right), Wayne Hu website
(bottom).

We apply the flat sky Limber approximation to remove the Bessel functions:

2

π

∫
dkk2jℓ(kχ)jℓ(kχ

′) =
δD(χ− χ′)

χ2

2

π

∫
dkk2jℓ(kχ

′)jℓ(kχ
′)P (k) =

∫
dχ′

χ′2 P

(
k =

ℓ+ 1/2

χ′

) (7.13)

(kχ ∼
√
ℓ(ℓ+ 1) ∼ ℓ+ 1/2 is where the Bessel functions peak).

We rewrite the previous expressions as

Cij
κκ(ℓ) =

∫
dχ′W

i
κ(χ

′)W j
κ(χ

′)

χ′2 Pκκ

(
k =

ℓ+ 1/2

χ′ , z(χ′)

)
(7.14)

W i
κ(χ

′) =
3ΩmH

2
0

2

∫ χ′
H

0

dχnis(χ)
χ′

a(χ′)

(
1− χ′

χ

)
(7.15)

We are here considering sources in two different redshift bins i, j; this is done
in order to account for both auto- and cross- power spectra between redshift
bins, so it is possible to perform shear tomography.

On the other hand, observations are made in real, angular space; therefore,
it is easier to estimate the γ1 and γ2 correlation functions. Since we can
arbitrary define the coordinate system and project γ1,2 on it, it is customary

www.researchgate.net/publication/334098793_Cosmic_Magnification_in_COSMOS
www.researchgate.net/publication/334098793_Cosmic_Magnification_in_COSMOS
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to study the shear in terms of tangential component and cross-component,
namely γt parallel to the line that connects two galaxies and γ× oriented
±45◦ with respect to it. Under this configuration, it can be shown that
⟨γt(0)γt(θ)⟩ ± ⟨γ×(0)γ×(θ)⟩ = ξij± can be re-projected in terms of the angular
power spectrum (and the Bessel functions) as

ξij+ (θ) =

∫
ℓdℓ

2π
J0(ℓθ)Cκκ(ℓ) , ξij− (θ) =

∫
ℓdℓ

2π
J4(ℓθ)Cκκ(ℓ) (7.16)

where θ is the angular distance between two galaxies.

The value of ξ± indicates how much the shear (i.e., the ellipticity of the
galaxies) correlates on the different scales θ. Qualitatively, how does the
ξ±(θ) plots should look like? How can we extract information on S8 from
these measurements?

Discussion

The shear correlation function is larger at smaller scales: this can be
computed from the shape of J0,4(ℓθ), but also understood by thinking
that we see correlated distortions in the shape of galaxies whose line of
sights “pass” through the same matter inhomogeneity. This implies that,
to be affected by the same matter “clump”, galaxies (projected on the
sky) can not be too far apart one from another. Therefore, ξ±(θ) have
to decrease going from small to large θ, with larger amplitude in the +
case, as you can see in figure 7.5.

The shear correlation function directly depends on the variance of
the fluctuations of the matter field, whose amplitude is given by the
power spectrum. To compute the variance on a certain scale (e.g., R =
8h−1Mpc), we need to filter the field through a window function W(x)
(e.g., a tophat with width R): this is done through a convolution, which
in Fourier space simply becomes

σ2
W =

1

2π

∫
d ln k k3Pm(k)|W(k)|2 (7.17)

Therefore, when performing data analysis we can look for the value of
σ8 that allows to get Pm(k) and from that obtain the Cκκ

ℓ that best
fits the observations. However, from the Poisson equation we see that
the amplitude of Pm(k) also depends on Ωm: for this reason, the two
parameters are degenerate and it is useful to define S8 instead.

7.0.5 Intrinsic alignment problem

Noise in the shear measurement arise if intrinsic ellipticities are already cor-
related, due to the formation process of galaxies in the same halo. Two are
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Figure 7.5 Source: Abbott et al., DES Y3.

physical quantities that can lead to intrinsic alignments: the shape of the host
halo, which induces a tidal field and therefore a preferential elongation direc-
tion, or the angular momentum of the halo itself, which gets imprinted on the
galaxy orientation. It can be shown that the first case is relevant for elliptical,
isolated galaxies, while the second dominates the case of disk galaxies.

Let us start with the dependence on the halo shape.

Consider a galaxy that forms in the presence of a tidal gravitational
potential ϕ. The galaxy is observed along the x̂ direction and the points
of its image in the sky are described by the angular position θθθ = (θy, θz).
Consider the ellipticities ϵ+ and ϵ×, the former describing the stretching
in the θ̂y − θ̂z direction and the latter in the direction rotated by 45◦.
How does ϕ affect ϵ+, ϵ×? How does the galaxy shape change?

Discussion

We can consider the galaxy as a sphere of test masses that move inside
the potential ϕ(xxx), which slowly varies in space. By Taylor expanding
the potential around the origin, we get

ϕ(xxx) = ϕ(xxx = 0) +∇ϕ|xxx=0 +∇∇ϕ|xxx=0 . (7.18)

The zeroth order is just a ground level for the potential, so it has no
physical effect on the test particles motion. The linear order, which
involves g = ∇ϕ, describes a uniform translation in the sphere that does
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not affect its shape. Finally, the Hessian introduces different accelerations
in the different points. By looking again at the directions θ̂y − θ̂z and
rotated by 45◦, we can obtain

ϵ+ ∝ (∂2y − ∂2z )ϕ (7.19)

ϵ× ∝ 2∂y∂zϕ (7.20)

Look at figure 7.6: if the gravitational collapse through which the galaxy
forms takes place in a region with constant tidal gravitational field, then
the acceleration on different sides of the galaxy differs. Thus, the col-
lapse, instead of being spherical, is anisotropic and the galaxy acquires
an intrinsic ellipticity.

Figure 7.6 Source: Catelan et al..

In analogy to lensing shear, we can consider the contributions these ellip-
ticities induce to the shear by integrating them along the line of sight

ϵ+ ∝
∫
dχ
dn

dχ
(∂2y − ∂2z )ϕ , ϵ× ∝

∫
dχ
dn

dχ
(2∂y∂

2
z )ϕ (7.21)

and by applying the Fourier transform (so derivatives disappear) and taking
the Limber approximation, we get

CII(ℓ) ∝
(
3

2
ΩmH

2
0

)∫
dχ

(
dn

dχ

)2
1

χ2
P (ℓ/χ) . (7.22)

where dn/dχ is the line of sight distribution of sources in the halo (e.g., a
top hat distribution). Note that in this case the kernel that the intrinsic
alignment provides to the power spectrum is similar to the one that is used
for galaxy clustering. The constant of proportionality between the ellipticities
and the tidal field can be estimated through the expected rms of the ellipticity
of individual galaxies. Generally, it is found that the intrinsic alignments are
subdominant with respect to weak lensing distortions.
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We can now account for the angular momentum-induced shape. The tidal
gravitational field induce a torque in the halo, producing an angular momen-
tum Lα ∝ ϵαβγIβσ∂γ∂σϕ (ϵ in this case is the Levi-Civita tensor and I the
galaxy moment of inertia). If a galaxy forms in the halo, ellpiticities will be
induced by Lx,y,z; even if the moment of inertia varies for different galaxies,
on average they will be aligned with the major axis of the tidal gravitational
field. It can be showed that in this case

ϵ+ ∝ (∂2yϕ)
2 − (∂2zϕ)

2 , ϵ× = (∂y∂zϕ)(∂
2
yϕ+ ∂2zϕ) (7.23)

From this equations we can see that ellipticities show a quadratic depen-
dence on the tidal field, which leads to curl components in the induced shear:
in the case of intrinsic alignments, B modes are non vanishing.

How can we disentagle between weak lensing and intrinsic alignment?

Discussion

Weak lensing is larger for more distance sources, since it can account
for more matter along the line of sight, while intrinsic alignment is
not. Moreover, the ellipticities of two galaxies nearby in the sky
correlate even if they are far apart in redshift if they are due to weak
lensing, while if they are intrisic they correlate only when galaxies
are in the same halo, i.e. at the same redshift.

If the same population of sources of ∼ known ellipticity is used,
correlation between them has to be due to the intrinsic alignment
and not to weak lensing.

Shear can be cross correlated with the convergence to isolate the
lensing contribution, which can be related with the density of the
sources in the field (which is affected by magnification).

7.0.6 How results can be affected by uncertainties

The angular correlation of galaxy ellipticities probes the shear field and thus
can be used to estimate S8. As we saw, its effect is larger at small scales;
here, however, we have less control on the modelling: non linearities emerge
in the power spectrum computation; intrinsic alignment can be modelled in
different ways; baryon effect can lead to relaxation processes that smooth
the power spectrum. Accounting for all these effects is not easy and it leads
to strong dependencies of the final results in the modelling. For instance,
figure 7.7 shows how the same data from DES1 lead to very different estimates

1The Dark Energy Survey results from one and three years of data have been released in
2017 and 2021. Observations were made between 2013 and 2019 using the 4m telescope
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of S8 according to the modelling adopted. Official DES results (DES TATT)
account for intrinsic alignment and cut the smaller scales to avoid the effect
of baryons. Including the small scales, accounting for baryons with different
model prescriptions (BCM fiducial, BCM-extreme) or changing the models
for intrinsic alignment (TATT to NLA) or non linearities (DES, HALOFIT,
BACCOemu) lead to large variations in the final estimate: while DES official
results provides S8 = 0.759+0.025

−0.023 (2.3σ tension with Planck), the revised

model in Aricò et al. leads to S8 = 0.799+0.023
−0.015 (0.9σ tension with Planck).

Figure 7.7 Source: Aricò et al..

at Cerro Tololo Inter-American Observatory (CTIO) in the Chilean Andes. The wide-
area survey observes 5000 square degrees in the southern sky, out of the Galactic plane
to avoid star and dust emission from the Milky Way. Imaging observations are made in 5
photometric bands in NUV, optical and NIR up to z ∼ 1.5 (max nominal z = 3, but with
very low number density in the last bin).



CHAPTER 8

LECTURE 5: COSMIC TENSIONS AND
HOW TO RESOLVE THEM

During these lectures we have discuss how, from the basics of cosmological
perturbation theory (which we have limited to linear order in our discussions)
we can predict how the gravitational potential and the matter overdensities
grow. This allows us to predict the matter power spectrum and also, together
with the study of photon perturbations, to predict the angular power spec-
trum of CMB anisotropies. These two are the main sources of information
to probe the Universe, together with standard candles, rules and sirens which
allow to probe the expansion history of the Universe. Despite the success of
the consensus model of cosmology, ΛCDM, which can reproduce most of the
observations with astonishing precision, there are persisting tensions between
experiments.

The largest tension involves the current expansion rate of the Universe,
quantified by H0. The inferred value by Planck assuming ΛCDM is ∼ 5σ
smaller than the direct measurements from the distance ladder calibrated
with cepheid stars and SNeIa from the SH0ES collaboration. Other local
and low-redshift probes of H0 also favor for high values of H0 although with

Cosmic tensions.
By José Luis Bernal & Sarah Libanore Copyright © 2023 IFCA (UC-CSIC)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

S8 = σ8

√
Ωm/0.3

CMB Planck TT,TE,EE+lowE Aghanim et al. (2020d)

CMB Planck TT,TE,EE+lowE+κκ Aghanim et al. (2020d)

CMB ACT+WMAP Aiola et al. (2020)

γγ KiDS-1000 COSEBIs van den Busch et al. (2022)

γγ DES Y3 ξ± Amon et al. & Secco et al. (2022)

γγ HSC Y1 C` Hikage et al. (2018)

γγ + δgδg + γδg DES Y3 DES Collaboration et al. (2022)

γγ + δgδg + γδg KiDS-1000+BOSS+2dFLenS Heymans et al. (2021)

κδg + δgδg unWISE+Planck Krolewski et al. (2021)

κδg + δgδg DESI+Planck White et al. (2022)

γγ + δgδg + γδg + κδg KiDS+DES+eBOSS+DELS+Planck Garcia-Garcia et al. (2021)

γγ + δgδg + γδg + κδg + κγ DES+SPT+Planck DES Collaboration et al. (2019)

P` BOSS sim. based Kobayashi et al. (2021)

P` +B BOSS Philcox & Ivanov (2022)

ξ` BOSS Zhang et al. (2022)

P` eBOSS Ivanov (2021)

ξ` + P` BOSS This work

ξ` + P` + κδg BOSS+Planck This work

Figure 8.1 A summary of recent S8 constraints. Different colors indicate different
combinations of data that have been used for the constraints. We consider CMB
measurements, marked with blue, cosmic shear (γ), projected galaxy clustering (δg),
CMB lensing κ, redshift space clustering, marked by brown. Figure taken from
Ref. (25).

higher uncertainties, which entails a smaller tension with the inferred value
by Planck. Although non conclusive, the fact that no systematic error that
could explain the tension has been found and that there is a consistent trend
in low-redshift and local measurements may hint that the tension is due to
actual new physics that has not been taken into account in our models. A
summary of the measurements from different probes and data combinations
can be found in Fig. 5.1.

Besides the H0 tension, there is another (smaller) tension involving the
clustering at small scales. In this case, probes of small-scale, low redshift clus-
tering (in particular galaxy weak-lensing studies) measure a ∼ 2 − 3σ lower
clustering than the prediction according to ΛCDM constrained by Planck.
Since the largest tension involves CMB and galaxy weak lensing, it is usually
quantified in the parameter combination S8 ≡ σ8(Ωm/0.3)

1/2 best constrained
by cosmic shear.1 Interestingly, in this case there seems to be a consistent
trend between many, independent measurements and cosmological probes ob-
serving lower clustering than the prediction from Planck assuming ΛCDM,

1Remember that σ8 =
(∫

dkk2W8(k)2Pm(k)
)1/2

is the root-mean square of the matter
density perturbations today smoothed over a top-hat spherical filter of 8 Mpc/h radius, the
Fourier transform of which is given by W8.



THE H0 TENSION 129

0.70 0.75 0.80 0.85
S8 ≡ σ8(Ωm/0.3)0.5

Planck TTTEEE+lowE (Planck 2018)
Self-calibration: free m

No galaxy lensing: 〈δgδg〉+ 〈δgκCMB〉+ 〈κCMBκCMB〉
Lensing-only: 〈γγ〉+ 〈γtκCMB〉+ 〈κCMBκCMB〉

All cross-correlation: 〈δgγt〉+ 〈δgκCMB〉+ 〈γtκCMB〉
Other 3×2pt: 〈δgκCMB〉+ 〈γtκCMB〉+ 〈κCMBκCMB〉

6×2pt
5×2pt
3×2pt

〈δgκCMB〉+ 〈γtκCMB〉

0.25 0.30 0.35
Ωm

Figure 8.2 Comparison of the cosmological constraints resulting from different
combination of two point function involving DES measurements of galaxy positions
and shear, and SPT+Planck measurements of CMB lensing and primary fluctuations.
3 × 2 refers to galaxy clustering and shear, 5 × 2 adds CMB lensing only in cross
correlation with galaxy clustering and shear, and 6× 2 also adds the autocorrelation
of CMB lensing. Figure taken from Ref. (26).

which together to the H0 tension may indicate a high-z/low-z break down
of ΛCDM. However, as we will see, it is very difficult to fix both tensions
invoking a single piece of new physics. A summary of the S8 measurements
from different probes and collaborations can be found in Figs. 8.1 and 8.2.

We will dedicate this chapter to build over the concepts discussed in the
previous lectures and list the conditions that, given current observations, any
modification of the standard cosmological model must include to address these
cosmic tensions. We will also comment some of the main proposals in the
literature. A priori, we will consider the H0 and the S8 tensions separately
(i.e., we will not attempt to solve both at the same time), but will comment
potential overlaps of problems.

8.1 The H0 tension

We have already discussed during these lectures the measurements involved in
the Hubble constant tension. Furthermore, we have commented on some of the
main features driving the constraining power on the cosmological observations.
On one hand, we have the position of the CMB peaks, that directly depends
on the sound horizon and the distance to the last scattering surface. On the
other, SNeIa + BAO tightly constrain the expansion history at low redshift
and the parameter combination rdh.

Here we comment on the main general features that a model must include
to be on the run to solve the H0 tension, and later mention and discuss some
of them.
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8.1.1 Features to solve the H0 tension

Some of the proposals that have been ruled out during the last 5-10 years of
study of the H0 tension relied on the following deviations from ΛCDM:

A modification of the low-redshift H(z) through dark energy modifica-
tions, to keep fixed the angular diameter distance to recombination. This
would allow for a higher value of H0 with a standard rd keeping θ∗ un-
touched. However, this family of proposals is ruled because of the tight
constraints on low-z H(z) and because this potential solution does not
address the mismatch between rd and h regarding the BAO measure-
ments.

Sharp increases in H(z) for z → 0. This family of models was motivated
by the fact that SNeIa datasets like Pantheon do not include measure-
ments of the distance moduli at z ≲ 10−2. Besides the extreme fine
tuning required for this possibility to apply, this proposal only works if
we consider that cosmic SNeIa are normalized by H0. However, effec-
tively, they are normalized by the absolute magnitude as calibrated by
local-distance measurements (e.g., SH0ES, CCHP, etc.). While for most
cases this is equivalent, drastically changing H(z → 0) and not MB in-
troduces a tension between cosmological measurements and the cosmic
distance ladder constrained by SNeIa.

Violation of the distance duality relation: DM = DL/(1 + z). This
relationship is usually a core assumption of most cosmological analyses.
This scenario does not directly address the H0 tension, but challenges
one of the pillars it is based on. However, any consistency test has been
passed without any problem, and the consistency between SNeIa and
BAO does not indicate any potential problem. Furthermore, a viable
particle physics model that matches all observations while affecting the
distance duality relation is very challenging.

New particle interactions (e.g., neutrino-dark matter interactions) that
introduced an aparent phase-shift in the CMB oscillatory pattern. In this
scenario, the location of the peaks is given by an additional phase-shift
(with respect to the standard free-streaming ΛCDM neutrinos). Effec-
tively, these models change the interpretation of θs in terms of rs, which
forces to modify the angular diameter distance to the last scattering sur-
face by changing H0. However, it was proved that BAO measurements
are robust against early-time modifications of ΛCDM and, according to
these models, H0 would change but rd not, which enters in tension with
the strong constraints on rdh from BAO measurements.

From this discussion and that from previous days, it seems clear a valid
solution of H0 must at least include modifications to ΛCDM before recombi-
nation to modify the sound horizon at radiation drag and allow for a change
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in H0 keeping rdh, and the CMB peak locations, constant. However, the
CMB power spectra include a great number of features that makes them very
sensitive to new physics, besides the acoustic peaks.

Ignoring the suppression due to reionization and the photon diffusion, the
amplitude envelope of the CMB power spectrum is controled by the matter-
to-radiation ratio. Recall that the photon-baryon plasma exhibits acoustic
oscillations in scales within the horizon. As a given Fourier mode crosses the
horizon, the resulting gravitational potential decay provides a near-resonant
driver of the oscillation. The greater the ratio of matter to radiation at horizon
crossing, the less the decay, and the lower the amplitude of the resulting
oscillation. The envelope grows with ℓ until it plateaus at angular scales
smaller than θeq (ℓ ≃ 143), the angular scale associated to keq. Therefore, the
potential envelope depends a lot on the moment of equality and the horizon
size at that moment, keq ∝ Ωmh

2 in ΛCDM.
The photon diffusion causes a smoothing of CMB anisotropies at very small

scales, due the photon mean free path and the overall comoving distance cov-
ered by a photon in a Hubble time. Therefore, it depends on the expansion
history of the Universe before recombination and in the interactions between
photons and other particles. Therefore, any significant change of the ex-
pansion history must be (roughly) limited to times between matter-radiation
equality and slightly earlier than recombination, such as the scale of equality
and diffusion are untouched (see Fig. 4.9). This requirement, together with
the effects of the phase shift and the good constraints on the peak location,
rule out vanilla additional relativistic species (introduced with higher values
of Neff) or some of the studied flavors of strong-interacting neutrinos.2

Therefore, it seems that the most promising scenarios involve the addition
of components that increase the expansion rate of the Universe between those
two moments. However, as we will see, the impact of these new components
at linear perturbation level must be included. This, along with the creation
of new degeneracies and the shift of standard ΛCDM parameters towards
different values introduce additional complications.

8.1.2 Proposals beyond ΛCDM

Here we discuss some of the most promising alternatives to ΛCDM proposed
to solve the H0 tension. Of course, these have been proposed by different
research groups at different moments in time (with different data available).
Therefore, different analysis choices may bias the comparison between their
performance. A fair comparison (and summary!) of promising models that
can solve the H0 tension can be found in Ref. (27). A more exhaustive (but
less recent) review can be found in Ref. (10).

2This is why, adding relativistic species featuring new, specific interactions to cancel their
standard effect at the perturbation level is a potential (although fine tuned) family of models
that may solve the H0 tension.
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The models that show steps in the right direction to solve the H0 constant
can be classified in three main groups: addition of new relativistic species with
new interactions to cancel their effect in the perturbations (sometimes labeled
dark radiation); adding a new component (either dark energy or modified
gravity) to boost H(z) between matter-radiation equality and recombination;
changing some of the core assumptions to reduce the sound horizon. We
briefly discuss those that perform relatively well. However, it is important to
note that none of them provides a satisfactory way to solve the H0 tension
without incurring in other tensions with other data sets (and none of them is
currently favored over ΛCDM).

Finally, there are other potential solutions to the tension that do not di-
rectly involve cosmology. For instance, there has been proposals involving new
physics on Cepheid dynamics. One example invokes a fifth force that impact
the Cepheid period-luminosity relation in an environmentally-dependent man-
ner, as in a modified gravity theory with screening mechanisms. While this
possibility has not been ruled out, it would have to be adapted independently
to all local measurements of H0, which, in the case of future higher-precision
measurements, may challenge this option.

From the models mentioned below, those involving varying electron mass,
a majoron or a flavor of early dark energy are the most promising so far to
find a solution to the H0 tension, even if they are not completely successful
or have each one their caveats.

8.1.2.1 Solutions including dark radiation
Additional number of relativistic species that mostly interact with the other

components of the Universe through gravity are, effectively, dark radiation,
which can also include exotic interactions with other particles. In case the
additional components have some mass, they usually receive the name ‘non-
cold dark matter’. Additional dark radiation enhances the radiation density
at early times, which increases the expansion rate and therefore introduces a
degeneracy with H0. If we capture the additional number of species in the
effective neutrino number Neff , the fractional density of radiation is

Ωr = 4.18× 10−5h−2

(
T0

2.7255K

)4
(

1 + 7
8

(
4
11

)4/3
Neff

1 + 7
8

(
4
11

)4/3
3.044

)
, (8.1)

where 3.044 is the standard number for 3 neutrinos. From the expression
above and the dependence of the sound horizon on Ωr through R, we can
see the effect that a higher dark radiation has on rs and the Hubble con-
stant. However, this perfect degeneracy is broken at the perturbation level,
where dark radiation introduces a shift in the peak position and amplitude
by the neutrino drag effect and modify the Silk damping. This is why models
including non-free-streaming dark radiation have been explored.

Interactions between dark radiation and baryons or photons would have too
large consequences on the CMB, the first possibility to try to cancel the effects
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of the dark radiation at the perturbation level is to include self interactions.
One option is to consider a strongly self coupled relativistic fluid. The self
interaction increases the clustering of the dark radiation, which reduces the
Silk damping and neutrino drag and allows for larger Neff .

Nonetheless note that Big Bang nucleosynthesis, together with studies of
pristine gas to infer primordial atom abundances, impose strong constraints
on standard ∆Neff (see e.g., Ref. (28) and references therein). Therefore, any
sizable ∆Neff large enough to solve the H0 tension must be generated after
Big Bang nucleosynthesis. This behavior is looked for in models involving a
∼ eV-scale majoron (a pseudo-Goldstone boson arising from the spontaneous
symmetry breaking of a global U(1) lepton number symmetry) that is pro-
duced in many neutrino models. For sufficiently large coupling between the
majoron and the neutrinos, they will thermalize at a temperature dependent
on the majoron mass. After thermalization, the neutrino free-streaming is ef-
fectively damped during a specific time interval until the majoron completely
decays into neutrinos (which increases Neff). Together with additional dark
radiation (which can come from a higher-energy-scale majoron that primor-
dialy decayed into dark radiation), this model is well poised to solve the H0

tension.
There are other models combining free-streaming and self interacting dark

radiation (looking for higher Ωr), or self-interacting dark radiation scattering
on dark matter (which enhances and suppresses small-scale perturbations of
dark radiations and dark matter, respectively, counteracting the effects of high
H0 and Neff on the high-ℓ CMB power spectrum).

8.1.2.2 Solutions involving variations of early dark energy
Broadly speaking, early dark energy refers to a wide family of models that

add a component to the Universe that drives a boost in the expansion history
of the Universe, usually between matter-radiation equality and recombination.
Usually it takes the form of a scalar field initially frozen in its potential by
Hubble friction that, after becoming dynamical, quickly dilutes with respect
to other components of the Universe.

For most early dark energy models the dynamics can be summarized as
follows. First, the field is froze in its potential, such that the background
energy density is constant. In this situation, the fractional contribution fEDE

to the total energy density, fEDE(z) ≡ ρ̄EDE(z)/ρ̄tot(z), grows with time, until
some mechanism releases the scalar, the field becomes dynamical and the
background energy density dilutes faster than matter. Thus, the contribution
of early dark energy to the Hubble expansion is localized in redshift and
effectively reduces rs. fEDE ∼ 10% at the peak of the contribution, at z ∼
103 − 104 should return a H0 value consistent with SH0ES.

There are many models or flavors of early dark energy, including early
modified gravity. In general, they can be classified in terms of the shape of the
scalar field potential, the mechanism through which they become dynamical,
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Figure 8.3 The variation of the scales that are ‘fixed’ by the CMB data with respect
to the fraction of EDE at the maximum of its contribution as function of the moment
of such maximum. All other cosmological parameters are fixed at their Planck best-fit
values. The colored bands indicate the marginalized 1σ range of the moment of the
maximum for each EDE model considered here. Figure taken from Ref. (29).

and whether or not the scalar field is minimally coupled. A recent review
on the topic, with a comprehensive discussion on the phenomenology, can be
found in Ref. (30). Most of these models perform similarly in light of current
data; according to forecasts, future CMB experiments and galaxy surveys will
provide data precise enough to discriminate between the different flavors of
early dark energy.

Nonetheless, some of them have been developed to address some of the
caveats of this family of models, especially a ‘second coincidence problem’
(why the field is relevant exactly between matter-radiation equality and re-
combination), or the fine tuning issues of some of the additional parameters
that are hard to fit in UV-complete theories.

In any case, possibly the biggest issue that early dark energy faces is sourced
from the degeneracies between the early dark energy parameters and the stan-
dard ΛCDM. In particular, early dark energy models require a higher value
of ns to fit Planck data, which results in an enhance power spectrum at small
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scales with respect to the ΛCDM prediction. This exacerbates the S8 tension
between CMB experiments and low-redshift probes. Although arguably a so-
lution for H0 does not need to address the S8 tension, probes of small-scale
clustering such as the 1D Lyman-α forest power spectrum could be used to
test this model. First studies significantly disfavor sizable contributions from
early dark energy, but further systematic checks and studies are required for
a definitive answer. This caveat can be circumvented extended early dark
energy models with small-scale clustering suppression.

8.1.2.3 Solutions involving shifted recombination
Rather than in the case of the dark radiation or the changes in the H(z)

close to recombination through some flavor of early dark energy, here we
consider the family of models in which the change in the sound horizon is
produced by changes in the recombination history.

Primordial magnetic fields could generate small-scale quasilinear inhomo-
geneities in the baryon density around recombination. In these scales, much
smaller than the photon mean free path, the effective sound speed is much
lower than that of a relativistic plasma, which facilitate the clustering of
baryons. This inhomogeneities can change the ionization history of the Uni-
verse, which does affect the CMB anisotropies at much larger scales: this
clumpier plasma recombines ealier, which reduces the sound horizon. The
corresponding shift in the CMB power spectra can be counterbalanced by an
increase in H0. While promising, our ignorance about primordial magnetic
fields and its impact in the components of the Universe hinder the exploration
and development of these models. Three-zone models have been used to ex-
plore this possibility in an agnostic way. Interestingly, the strength of the
magnetic field required to solve the tension is of the right order of magnitude
to explain the existence of large-scale magnetic fields.

A similar effect can be achieved by a varying effective electron mass (or
similarly the fine structure constant). Shifting the energy gap between suc-
cessive excitation levels the temperature at which photon-dissociation of the
hydrogen an helium becomes inefficient changes. This introduces a strong
degeneracy between the redshift of recombination and these properties (bro-
ken by secondary effects like radiative transfer at recombination, two-photon
decay rate, photo-ionization, recombination coefficients, Thomson scattering
etc). Interestingly, varying the electron mass does not affect the Silk damping
since the parameter dependence cancel. Spacetime variation in fundamental
parameters are expected in theories of modified gravity or extra dimentions,
but can be phenomenologically parameterized with specific relations, with a
huge model space to be covered. Uniform, time-independent variations of the
electron mass (in flat or curved universes) has been shown to help in increasing
the H0 value inferred from Planck measurements.

8.1.2.4 Last remarks
There is a remarkable effect in the analysis of most of the models mentioned

above. Many of them involve the addition of new species or new effects that
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are canonically parameterized with a parameter that controls the amplitude
or magnitude (e.g.,, fEDE) of the new effect, with the ΛCDM limit set when
that parameter adopts a null value. If there are more additional parameters
controlling the properties of the new species, the prior volume diverges: the
new additional parameters can take any value if the fraction parameter is
null. According to the Bayes theorem, the obtained posterior will therefore
favor that region of the parameter space, even if the likelihood does allow
higher contributions from the new physics. This effect may hinder the inter-
pretation of the results, and have motivated frequentist approaches like the
profile likelihood to complement Bayesian analyses.

Note that early-Universe modifications of ΛCDM are focused on changing
rs to keep the rdH0 product fixed for a larger value of H0. However, they
do not modify the shape of the expansion history of the Universe at low
redshift.observed It is this regime the one that dominates in the cosmic time
integral

t(z) =
977.8

H0

∫ z

0

dz′

(1 + z′)E(z′)
Gyr, (8.2)

with H(z) in km s−1Mpc−1. Following Eq. (8.2), the age of the Universe is
tU ≡ t(∞). In the scenario in which only the early Universe is modified, the
only impact in tU is through H0 (and small changes in other parameters due
to the new parameter degeneracies). Therefore, independent measurements
of the age of the Universe can add an important constraint to potential so-
lutions of the H0 tension. The oldest globular clusters can be used to infer
a cosmology-independent value for the age of the Universe (31; 32): current
results, limited by systematic uncertainties, agree with the inferred value of
tU from Planck assuming ΛCDM. If better precision can be achieved and the
current result is maintained, this could hint the need to add late-time new
physics to the early-time solutions of H0 in order to be consistent with the
estimated age of the Universe (22).

Finally, it is remarkable that not only the early dark energy models may
have a problem with the S8 tension. The other models do not increase the
S8 tension, but they also do not reduce it. There is no model explored so far
that has been able to address both tensions at the same time with a single
modification or new addition to the standard cosmological model. Nonethe-
less, although Occam’s razor would favor such possibility, there is nothing
preventing the combination of models that separately address each tension.

8.2 The S8 tension

Although with lower significance, low-redshift probes of the small-scale clus-
tering (especially the ones related with weak lensing), show a tension with
respect to the prediction from the Planck results if ΛCDM is assumed. This
tension is usually framed in the parameter combination best constrained by
weak lensing, S8, but the tension is extended to other probes which directly
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Figure 8.4 Constraints on σ8(z) from the cross correlation between the DESI
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showing the mean and the 68% confidence level uncertainty for Planck in grey. The
dotted lines show the ΛCDM prediction for Ωm = 0.3 and varying values of σ8. Figure
taken from Ref. (33).

constrain σ8. In general, the low-redshift probes manifesting (different levels
of) the S8 tension include galaxy clustering (with cosmological parameters
beyond BAO and fσ8 using full-shape analyses), galaxy clusters using the
thermal SZ effect, galaxy weak lensing, CMB lensing tomography, and the
cross correlations between them. A summary can be seen in Figs. 8.1 and 8.2.
Interestingly, the deviation of σ8 as measured from CMB lensing tomography
from the ΛCDM prediction grows as the redshift decreases (see Fig. 8.4).

8.2.1 Features to solve the small-scale clustering tension

The situation among the different cosmological probes involved in the mea-
surements (of inferred values) of small-scale clustering is significantly less clear
than for the H0 tension. On the one hand we have the extrapolation to low
redshift from the CMB temperature and polarization power spectra by Planck,
which lies above the measurements from cosmic shear by galaxy surveys. The
highest tension on S8 is with respect to KiDS (∼ 3σ), but there is also ten-
sion with DES; the uncertainties of HSC are large enough for the tension to
be small. It is important to note, however, that cosmic shear probes from
galaxy surveys depend on significantly smaller scales than CMB power spec-
tra measurements (see Fig. 8.5). This indicates that, if the tension is due to
unaccounted-for new physics, the deviations from ΛCDM must be either at
redshifts after recombination or affecting only the growth of perturbations at
small scales, beyond what can be probed with CMB anisotropies.
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Figure 8.5 Compilation of constraints on the 3D linear matter power spectrum at
z = 0 from Planck CMB power spectra on the largest scales, SDSS galaxy clustering
on intermediate scales, and DES cosmic shear and SDSS Lyman-α forest clustering on
the smallest scales. The solid black line in the theoretical prediction for the ΛCDM
best-fit parameters of Planck, while the dotted line shows, for reference, the theoretical
prediction for the non-linear effects. The bottom panel shows the residuals between
the theoretical prediction and the constraints. Figure taken from Ref. (34).

On the other hand, CMB lensing depends on the projected gravitational
potential along the line of sight (i.e., the lensing potential), as we studied in
the previous chapter. Perhaps surprisingly, the CMB lensing power spectrum
returns a constraint on S8 consistent with the inferred value from the CMB
temperature and polarization power spectra. Nonetheless, note that the kernel
for the lensing potential for the CMB, even if extending from z = 0 to z∗ peaks
at z ∼ 2 and has little support at lower redshifts. Furthermore, from Fig. 8.5,
the CMB lensing power spectrum cannot probe scales that are accessible to
cosmic shear. Therefore, although CMB lensing does not restrict small-scale
deviations from ΛCDM it does push the potential deviations affecting all scales
to redshifts z ≲ 1.

Finally, similar to the discussion for the H0 tension, we have seen that
SNeIa+BAO strongly constrain the expansion history of the Universe at low
redshift.

Therefore, from this discussion we can conclude that a potential solution
to the S8 tension must fulfill the following condition to succeed:

Leave the expansion history of the Universe (at least at low redshift)
untouched. In general, solutions must affect only the evolution of per-
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turbations without modifying the background densities or the expansion
rate. This already remove dark-energy related solutions from the table.

If an early-time deviation from ΛCDM, it must only affect the growth
of perturbations at small scales, beyond the access of the CMB power
spectrum. Otherwise, models are ruled by Planck temperature and po-
larization anisotropies.

If affecting a wide range of scales (i.e., overlapping with scales that are
accessed by Planck), the deviation from ΛCDM must arise at z ≲ 1.
Otherwise, Planck lensing power spectrum rules the model out.

There are other probes that constrain σ8 (see Fig. 8.1), but they are either
at low redshifts without probing the small scales that cosmic shear can probe,
such a galaxy clustering, or only probe those very small scales without a
large redshift coverage, like the SZ cluster abundance.3 In general, there is a
consistent trend (although with lower significance) for these measurements to
favor a lower value of σ8 and/or S8 with respect to the predictions from Planck
assuming ΛCDM. Finally, 1D power spectrum from Lyman-α forest will be
able to probe the small-scale power spectrum at high redshift, discriminating
between the two potential ways that deviations from ΛCDM may solve this
tension.

There is an alternative approach to address this tension. Rather than
assuming directly a cosmological model, it is possible to consider the growth
rate f (the logarithmic derivative of the linear growth factor), which can be
robustly and accurately approximated as

f(a) = Ωγ
m(a) , (8.3)

where γ is the growth index, which in flat ΛCDM with standard general
relativity is predicted to be ≃ 0.55. See e.g., Ref (35) for a recent study using
this approach. Thus, a measured deviation from this value would suggest
an inconsistency between the model and observations. This approach is very
similar than the agnostic parameterization of H(z) to look for deviations from
ΛCDM in the background expansion history.

The combination of measurements of fσ8 and BAO from galaxy clustering,
Planck and DES favors γ > 0.55 at ∼ 3.7σ, which corresponds to a strong
suppression of the perturbations at low (i.e., those for which Ωm < 1) with
respect to the standard flat ΛCDM with standard general relativity. As shown
in Fig. 8.6, a higher γ corresponds to a higher S8 inferred from large-scale
structure probes, and a lower value from Planck. This effect shows that, for
a free growth index, which implies a deviation from general relativity and
ΛCDM, the S8 can be solved.

3Note that the tension between Planck power spectrum and the SZ cluster abundance
depends on the prior for the cluster mass used, and the tension is only significant when a
prior from gravitational lensing is used.
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8.2.2 Beyond ΛCDM potential solutions

Given that the tension on S8 is more recent and less significant than in the
case of H0, there has been less development at the level of model building or,
at least, the exploration of the model space, for solutions of the tension. The
first steps involved the exploration of massive neutrinos and energy transfer-
ence in the dark sector. However, none of this models perform well because
the former introduces a time-dependent suppression of the power spectrum at
all times, while the latter modifies the background energy densities at low red-
shift, which changes the background expansion history. Therefore, they were
disfavored by CMB lensing (and even by cosmic shear itself) and BAO+SNeIa,
respectively. A review of explored models can be found in Ref. (8).

Deviations from ΛCDM that can fulfill the requirements listed in the pre-
vious section are usually limited to the dark sector. This is because if baryons
are affected at early times, they will most likely significantly alter the CMB
power spectrum, and if only affected at late times they have a small impact
in the overall power spectrum. The exception is probably the elastic scatter-
ing between dark matter and baryons. This scattering transfer momentum
between dark matter and baryons and suppresses the small-scale power spec-
trum, with the time evolution of the suppression controlled by the specific
relative-velocity dependence in the cross section. Preliminary studies con-
sidering a relative-velocity-independent cross section, which corresponds to
efficient interactions only at early times, shows indications of good perfor-
mance.

A similar effect can be obtained including ultra-light axions. These parti-
cles, if light enough, transition from behaving like dark energy to behave like
dark matter around or even after matter-radiation equality. In this case, they
leave strong signatures in the relative peak heights (if transition occurs before
matter radiation equality) or in the integrated Sachs-Wolfe effect, difussion
damping and sound horizon. Axions with masses ≳ 10−25 eV do not leave
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noticeable signatures on the CMB. In any case, all of them also suppress the
power spectrum at small scales, due to an effective pressure caused by quan-
tum effects (i.e., suppression takes place at scales of the order of the Compton
wavelength for the axion). Therefore, depending on the abundance of axion
and their mass, it is possible to find different kind of suppression of the power
spectrum (from strong cut offs at small scales from asymptotically constant
suppression at all scales).

Other models open parameter degeneracies with the standard parameters
in such a way that allow for larger uncertainties in parameter constraints.
Therefore, even if the mean or the best fit of the analysis does not significantly
shift, the larger uncertainties can accommodate the prior on S8 coming from
cosmic shear measurements. The list of models showing these results include
dark matter decaying into dark radiation and warm dark matter (which, phe-
nomenologically, impacts cosmological observables as massive neutrinos with
a time-dependent mass), cannibal dark matter (in which dark matter particles
undergo a 3 → 2 process), or models including friction between dark matter
and dark energy (coincidentally, the efficient rate for this reaction is such that
coincides with the matter-dark energy equality).

Nonetheless, if we want to match the requirements for deviations from
ΛCDM listed in the previous subsection with the conclusions that can be
extracted from the free-γ analysis of the growth rate, we may have more
information to inform the exploration of models. Since f is the logarithmic
derivative of the linear growth factor, its modification affects all linear scales, a
priori. Therefore, this analysis may hint a preference for models suppressing
perturbations at late times, rather than only at the small scales at early
times. Models that would directly modify γ are usually related with modified-
gravity models (in particular within a sub-class of Horndeski models) and
improvements in future observations will allow to probe them and discriminate
between them.

8.2.3 Last remarks

It is important to note that cosmic shear involves nonlinear matter clustering.
Even if circumventing all the complications related with nonlinear bias and
redshift space distortions, pushing to small scales to obtain more information
from cosmic shear observations imply a very challenging theoretical modeling
for the non linearities, in particular due to the effects that baryons have in
small-scale clustering: astrophysical feedback from e.g., supermassive black
hole accretion or SNe explosions prevents small-scale clustering pushing the
gas outside dark matter halos.

This introduces two main complications for the study of cosmic shear and
the development and tests of models attempting to solve the S8 tension. On
the first hand, it limits the amount of information we can obtain, and on the
other, it forces to model builders to develop the nonlinear predictions for their
models if they want to use the cosmic shear likelihoods beyond a prior on S8.
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Very recently, a reanalysis of DES cosmic shear measurements included
improvement in hte theoretical modeling of the data, in particular related
with the impact of baryonic physics in weak lensing, which allowed to in-
clude smaller scales than ever before in the analysis (36). Standard analyses
remove the scales affected by baryions (informed by hydrodynamical simu-
lations). Instead, this analysis accounts for the effects of galaxy formation
and gas physics using a baryonification algorithm on top of N-body simula-
tions. This is meant to explicitly include the effects of baryons in a flexible
way and marginalize over them. The model displaces particles from a grav-
ity only simulation according to analytic corrections, using 7 parameters to
describe the halo mass in which half of the cosmic gas graction is expelled
from the halo by astrophysical processes (the parameter the observations are
most sensitive to), the density profile of the gas, the galaxy-halo mass ratio,
the AGN feedback range and the gas fraction-halo mass slope. Interestingly,
this analysis returns a S8 value that, while it has only slightly smaller error
bars than in the standard DES analysis (they explicitly check that using the
same range of scales their results only improve by ∼ 10%) is closer to Planck
predictions assuming ΛCDM. Although by default DES measurements were
closer to Planck, these results may hint that the S8 tension, at the very least
regarding cosmic shear, may be related to baryonic effects (although the im-
pact of photo-z errors and intrinsic alignments at these scales must be studied
more in detail). This result, however, would not explain the (lower significant)
tensions with other cosmological probes.
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[36] G. Aricò, R. E. Angulo, M. Zennaro, S. Contreras, A. Chen, and
C. Hernández-Monteagudo, “DES Y3 cosmic shear down to small
scales: constraints on cosmology and baryons,” arXiv:2303.05537

[astro-ph.CO].

http://dx.doi.org/10.1088/1475-7516/2019/10/029
http://arxiv.org/abs/1907.11594
http://arxiv.org/abs/1907.11594
http://dx.doi.org/10.1103/PhysRevLett.122.221301
http://dx.doi.org/10.1103/PhysRevLett.122.221301
http://arxiv.org/abs/1811.04083
http://arxiv.org/abs/2302.09032
http://dx.doi.org/10.1088/1475-7516/2020/12/002
http://dx.doi.org/10.1088/1475-7516/2020/12/002
http://arxiv.org/abs/2007.06594
http://dx.doi.org/10.1088/1475-7516/2021/08/017
http://arxiv.org/abs/2102.04486
http://arxiv.org/abs/2102.04486
http://dx.doi.org/10.1088/1475-7516/2022/02/007
http://arxiv.org/abs/2111.09898
http://arxiv.org/abs/2111.09898
http://dx.doi.org/10.1093/mnras/stz2310
http://dx.doi.org/10.1093/mnras/stz2310
http://arxiv.org/abs/1905.08103
http://arxiv.org/abs/2302.01331
http://arxiv.org/abs/2303.05537
http://arxiv.org/abs/2303.05537

	Lecture 0: Basics
	The FLRW metric and the Einstein equations
	Boltzmann Equations
	Boltzmann Equation in FLRW
	Collision terms

	Perturbed Universe
	Fourier-space computations
	Perturbed stress-energy tensor
	Evolution of metric perturbations
	Perturbed Boltzmann equations

	Evolution of matter and radiation perturbations
	Dark matter
	Massless neutrinos
	Massive neutrinos
	Photons
	Baryons
	Others

	Initial conditions

	Lecture 1: Growth of structures
	Large scales
	Super-horizon solutions
	Horizon crossing

	Small scales
	Horizon crossing
	Sub-horizon evolution across the matter-radiation transition

	Transfer function
	Growth factor

	Limit of linear theory

	Lecture 2: CMB primary anisotropies
	Large-scale anisotropies
	Baryon acoustic oscillations
	Diffusion damping
	Projection to anisotropies on the sky
	CMB angular power spectrum

	Applied Session 1 Cosmological parameters from the early Universe
	Summary on the physics of the CMB peaks
	Effect of the cosmological parameters

	Lecture 3: Measuring the Hubble constant and the background expansion
	The local distance ladder
	Measuring the late-time expansion history
	Cosmological supernovae type Ia
	Baryon acoustic oscillations
	Strong-lensing time delays


	Lecture 4: Measuring the amplitude of clustering
	Basics of weak gravitational lensing
	CMB lensing
	CMB lensing tomography

	Galaxy weak lensing
	Galaxy weak-lensing statistics


	Applied Session 2 Clustering in the late Universe
	The S8 parameter
	CMB lensing
	Thermal SZ cluster
	Galaxy weak lensing
	Intrinsic alignment problem
	How results can be affected by uncertainties


	Lecture 5: Cosmic tensions and how to resolve them
	The H0 tension
	Features to solve the H0 tension
	Proposals beyond CDM

	The S8 tension
	Features to solve the small-scale clustering tension
	Beyond CDM potential solutions
	Last remarks



