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1 Neutrinos in the Standard Model and Beyond

1.1 Neutrinos in the Standard Model
In the Standard Model (SM) of Particle Physics, neutrinos are neutral massless particles that can
interact only weakly with other particles. The SM is a theory based on the gauge group SU(3)c ×
SU(2)L × U(1)Y , but as far as neutrinos are concerned, we can disregard the color group SU(3)c
and focus only on the electroweak subgroup SU(2)L × U(1)Y . Here, the subscript L stands for
the left-handed chirality or weak isospin I , and Y for the hypercharge (wherever no confusion can
arise we generally omit group subscripts). As references on the building of the SM, see [1, 2] The
two quantum numbers I and Y are related through he Nishijima–Gell-Mann relation Y = Q− I3

1

The left nature of the weak interaction implies that the SM building blocks are the left and right-
handed fields ψL and ψR, defined through the γ5 matrix2:

ψL =
1− γ5

2
ψ , ψR =

1 + γ5
2

ψ . (1.1)

For a brief review of the properties of the Dirac matrices and of the Dirac and Weyl spinors and
their relation to the Lorentz group see Appendix A and D.

Even if we know that there are three different families of fundamental particles, both for quarks
and leptons, for simplicity, we start by considering only the first family of particles. Therefore, we
will consider the two leptons e and νe, and the u and d quarks, and precisely their left and right
parts. We assume that the left-handed fermions are the basis of the fundamental 2-dimensional
irreducible representation of SU(2)L and transform with the U matrices themselves:

L =

(
νeL
eL

)
, L

SU(2)−−−→ UL .

qL =

(
uL
dL

)
, qL

SU(2)−−−→ UqL .

(1.2)

The fundamental representation is often denoted with 2. A generic U ∈ SU(2) matrix can be
expressed in terms of the SU(2) generators, Ii = σi/2, i = 1, 2, 3, the Pauli matrices, as :

SU(2) ∋ U = e−iα(x)·σ
2 = e−iα(x)·I . (1.3)

A generic element of U(1) is simply a phase, and can be written as

U(1) ∋ U = e−iα(x)Y . (1.4)

In contrast to (1.2), the right-handed part of the fermion fields, eR, uR, dR, are singlets of SU(2).
Concerning neutrinos, the νeR is excluded from the SM. We will include it in our discussion from
the beginning, in view of the extensions of the model to nonzero neutrino masses. With respect to
color, leptons are singlets, while quarks are in the fundamental three-dimensional representation
of SU(3)c, denoted by 3. We can summarize the transformation properties of the chiral fields into
three numbers indicating the color, the weak isospin and the hypercharge {c, I, Y } in Table 1.

1In many textbook, the relation is written as Y/2 = Q − I3, with a factor two of difference in the hypercharge
definition.

2Conventions for Dirac matrices are discussed in Appendix 1..
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SU(2) doublets SU(2) singlets

{1,2,−1/2} {3,2,+1/6} {1,1,−1} {3,1,+2/3} {3,1,−1/3}

(
νeL
eL

) (
uL
dL

)
eR uR dR

(
νµL
µL

) (
sL
cL

)
µR sR cR

(
ντL
τL

) (
tL
bL

)
τR tR bR

Table (1) : Color, Weak Isospin and hypercharge for the SM building blocks.

Note that the hypercharge Y is chiral, since it distinguishes between the left and the right part of
a particle field, while it is the same for fields in the same multiplet of SU(2). It is clear that νeR,
if present in the model, does not interact with other particles, and therefore is sterile, since all its
charges are zero. To derive the interaction terms in the lagrangian of the SM, one needs to replace
the ordinary derivative with the covariant derivative in the free lagrangian.3

∂µ → Dµ = ∂µ + igW · I + ig′BµY , (1.5)

where g and g′ are the two coupling constant, one for each symmetry group. Interactions be-
tween particle fields can be derived by expanding the kinetic terms where the ordinary derivative
is replaced by the covariant one:

LK = iL /DL+ iqL /DqL +
∑

R fields

iψ̄R /DψR , (1.6)

where ψR = eR, uR, dR and possibly νeR. The first two terms of the Lagrangian in (1.6) are scalars
of SU(2)L, since /DL transforms with U like L, by the very definition of covariant derivative, while
L transforms with U∗ and therefore

L /DL = L∗T /DL
U−→ (U∗L∗)TU( /DL) = L∗TU∗TU /DL = LU †U /DL = L /DL . (1.7)

The third term of (1.6) is obviously a scalar of SU(2), since all the fields ψR have zero weak
isospin. In addition to LK , the full Lagrangian of the SM also includes the free gauge fields and

3With a bar over a SU(2), multiplet we denote the transpose of the multiplet, followed by the bar in the sense of
Dirac spinors.
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the Higgs terms:

LSM = LK + Lgauge + LHiggs ,

Lgauge = −1

4
W µν ·W µν − 1

4
Bµν ·Bµν

with

{
W µν = ∂µW ν − ∂νW µ − gW µ ×W ν

Bµν = ∂µBν − ∂νBµ

LHiggs = (DµΦ)
†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 + LYukawa .

(1.8)

In the last line, LYukawa is defined as

LYukawa = −fe(LΦeR + eRΦ
†L)− fu(qLΦ̃uR + uRΦ̃

†qL)− fd(qLΦdR + dRΦ
†qL) . (1.9)

The scalar Higgs field in (1.8) and (1.9) is doublet of SU(2).
Besides being a singlet of SU(2), the Lagrangian must have Y = 0. Therefore, from the

Yukawa terms in (1.9), we see that the Higgs field must have Y = 1/2, so it transforms as
{1,2, 1/2}. Consequently, the upper field in the Higgs doublet must have charge Q = Y + I3 =
1/2 + 1/2 = 1 while the lower field must be neutral, Q = Y + I3 = 1/2− 1/2 = 0:

Φ =

(
ϕ+

ϕ0

)
. (1.10)

The doublet Φ̃ in (1.8) is defined as

Φ̃ = iσ2Φ
∗ = i

(
0 −i
i 0

)
Φ∗ =

(
0 1
−1 0

)
Φ∗ =

(
ϕ0∗

−ϕ−

)
, (1.11)

and it can be shown to transform exactly as Φ, with the fundamental representation of SU(2).
The need for Φ̃ comes from the fact that the Yukava term for the u quark contains uR with zero
hypercharge, while Yu = 2/3 and YqL = −1/6. Therefore, to have both a singlet of SU(2) and
null hypercharge, we need a doublet of SU(2) with Y = −(2/3−1/6) = −1/2, that cannot be the
Higgs field Φ,that has Y = 1/2, but must be constructed with Φ∗ and transform as {1,2,−1/2}.

The Higgs mechanism breaks the symmetry SU(2)L × U(1)Y spontaneously, because of the
vacuum expectation value (VEV) of the Higgs:

⟨Φ⟩ = 1√
2

(
0
v

)
(1.12)

that minimizes the Higgs potential for a nonzero value v. It is always possible to go to the unitary
gauge defined by

Φ =

(
0

1√
2
(v +H(x))

)
, (1.13)

where H(x) is a real (neutral) field. The expansion of the Lagrangian in the unitary gauge results
in the fermion mass terms:

Lf.m. = − v√
2
(feeLeR + fuuLuR + fddLdR + h. c.) = − v√

2
(feee+ fuuu+ fddd) . (1.14)
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A comparison of mass terms in (1.14) with the usual mass term for a Dirac spinor in the La-
grangian, i.e. −mψψ, gives the following values for the fermion masses:

me =
1√
2
fev , mu =

1√
2
fuv , md =

1√
2
fdv . (1.15)

Therefore, we find that the charged lepton and quark masses are proportional to the Higgs VEV
v and depend on the unknown Yukawa couplings fe, fu and fd, one for each particle. No mass
is generated for the neutrino, since νeR is absent from the start in the Lagrangian, and terms like
νeLνeR and νeRνeL cannot be present.

The extension to three families of quarks and lepton is straightforward, but requires a bit of
work with the notation. We add a subscript to L and call it Lm withm = e, ν, τ , to denote the three
lepton pairs:

Le =

(
νeL
eL

)
, Lµ =

(
νµL
µL

)
, Lτ =

(
ντL
τL

)
, (1.16)

and three SU(2) singlets Rm with m = e, µ, τ

R1 = eR R2 = µR R3 = τR . (1.17)

Similarly we define the three doublets qLm with m = 1, 2, 3, as

qL1 =

(
uL
dL

)
, qL2 =

(
cL
sL

)
, qL3 =

(
tL
bL

)
, (1.18)

and the up and down quark right parts uRm and dRm with m = 1, 2, 3:

uR1 = uR , uR2 = cR , uR3 = tR ,
dR1 = dR , dR2 = sR , dR3 = bR .

(1.19)

Thanks to these definitions, the kinetic part of the lagrangian can be written as (1.6) by adding
generations up (sum on repeated indices is understood):

LK = iLi /DLi + iqLi /DqLi +
∑

R fields

iψ̄R /DψR , (1.20)

where the last part includes ψR = eR, µR, τR, uR, dR, cR, sR, tR, bR and, eventually, the right-
handed components of the neutrino fields. The Yukawa part of the SM lagrangian can be gen-
eralized as

LYukawa = −f ℓ
ij(LiΦRj +RiΦ

†Lj)− fu
ij(qLiΦ̃uRj + uRiΦ̃

†qLj) +

−fd
ij(qLiΦdRj + dRiΦ

†qLj) . (1.21)

A closer look at (1.21) and a comparison with (1.9) shows that, after the symmetry breaking,
LYukawa will have the same structure as (1.14), but now with nondiagonal terms. To simplify the
notation for the Yukawa part of the lagrangian, let us define ℓL and ℓR as two vectors containing
the left and right-handed parts of the charged leptons

ℓL =

eLµL

τL

 , ℓR =

eRµR

τR

 , (1.22)
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and, analogously, four vectors containing the left and right-handed parts for the SU(2) up and
down quarks:

qUL =

uLcL
tL

 , qUR =

uRcR
tR

 , qDL =

dLsL
bL

 , qDR =

dRsR
bR

 . (1.23)

After symmetry breaking, the mass terms can then be written as

Lf.m. = − v√
2
(f ℓ

ijℓLiℓRj + fU
ij q

U
L iq

U
Rj + fD

ij q
D
L iq

D
R j + h. c.) . (1.24)

What equation (1.24) tells us is that the flavor (weak interaction) eigenstates are not mass eigen-
states, since the three complex matrices f ℓ, fU and fD need not to be diagonal and experimentally
it is found they are not. For this reason, it is often used a prime on ℓL/R and qL/R to distinguish
them from the lepton mass eigenstates that will be introduced in the following. Let us start with
quarks and with the matrices fU and fD. They can be diagonalized through a biunitary transfor-
mation (see Appendix C), i.e. through two different unitary matrices multiplied to the left and to
the right:

WU
L

†
fUWU

R = fU
diag

WD
L

†
fDWD

R = fD
diag ,

(1.25)

where all the WU/D
L/R matrices are unitary and fU

diag and fD
diag are diagonal. Let us focus, for instance

on the second term of (1.24), written in terms of vectors and matrices:

− v√
2
qUL f

UqUR = − v√
2
qUL (W

U
L W

U
L

†
)fU(WU

RW
U
R

†
)qUR =

= (qULW
U
L )(WU

L

†
fUWU

R )(WU
R

†
qUR) = qU0Lf

U
diagq

U
0R ,

(1.26)

where we have introduced the mass eigenstates

qU0L = WU
L

†
qUL , qU0R = WU

R
†
qUR ⇒ qUL = WU

L
†
qU0L , qUR = WU

R
†
qU0R . (1.27)

With an analogous definition we can also introduce the mass eigenstates qD0L and qD0R:

qD0L = WD
L

†
qDL , qD0R = WD

R
†
qDR ⇒ qDL = WD

L
†
qD0L , qDR = WD

R
†
qD0R . (1.28)

If we denote with fU
m (fD

m ) the eigenvalues of fU
diag (fD

diag), we can rewrite for the quark part of the
Yukawa Lagrangian:

Lquark
Yukawa = − v√

2
(fU

m(q
U
0Lmq

U
0Rm + qU0Rmq

U
0Lm) + fD

m (qD0Lmq
D
0Rm + qD0Rmq

D
0Lm)) =

= − v√
2
(fU

mq
U
0 mq

U
0 m + fD

mq
D
0 mq

D
0 m) ,

(1.29)

where we have introduced the quark fields qU0 = qU0L + qU0R and qD0 = qD0L + qD0R and we have used
the property that for Dirac spinors

ψψ = ψLψR + ψRψL . (1.30)
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From (1.29) we can read the quark masses:

mn =
v√
2
fU
n n = u, c, t

mn =
v√
2
fD
n n = d, s, b .

(1.31)

The SM quark weak charged current, derived from the covariant derivative (1.5) and the Higgs
mechanism, can be rewritten in term of the mass eigenstates

jµq,WC = 2(uLγ
µdL + cLγ

µsL + tLγ
µbL) = 2qULγ

µqDL =

= 2qU0LW
U
L

†
γµWD

L q
D
0L = 2qU0Lγ

µWU
L

†
WD

L q
D
0L .

(1.32)

In the last passage of (1.32), we used the fact that γµ acts on spinor indices and not on weak
isospin. We see that the weak current depends on the product WU

L
†
WD

L and not separately on
the two matrices WU

L and WD
L . Therefore, we can define a new unitary matrix, the Cabibbo–

Kobayashi–Maskawa matrix UCKM = WU
L

†
WD

L , so that the weak charged current for quarks
begins

jµq,WC = 2qU0Lγ
µUCKMq

D
0L . (1.33)

A similar path can be followed for leptons, with the difference that there are no right-handed
neutrinos, playing the role of the lower component of quark isodoublets (the down quarks d, s, b).
Therefore, in the lepton sector, only the matrix f ℓ needs to be diagonalized by means of two unitary
matrices W ℓ

L and W ℓ
R:

W ℓ
L

†
f ℓW ℓ

R = f ℓ
diag . (1.34)

As in (1.27), we define the lepton mass eigenstates

ℓ0L = W ℓ
L
†
ℓL ℓ0R = W ℓ

R
†
ℓR . (1.35)

If we denote with f ℓ
m are the diagonal elements of f ℓ

diag, we can rewrite the charged lepton part of
the Yukawa Lagrangian as

Llept
Yukawa = −f ℓ

m(ℓ0Lmℓ0Rm + ℓ0Rmℓ0Lm) = − v√
2
f ℓ
mℓ0mℓ0m , (1.36)

from which the charged lepton masses can be read

mn =
v√
2
f ℓ
n n = e, µ, τ . (1.37)

Since in the SM neutrinos are strictly massless and degenerate, we are free to redefine

νL → W ℓ
L

†
νL (= ν0L) , (1.38)

so that neutrino flavor eigenstates are mass eigenstates too. By means of this redefinition, the
leptonic charged weak current can be written as:

jµℓ,WC = 2νLγ
µℓL = 2νLγ

µW ℓ
Lℓ0L = 2ν0Lγ

µℓ0L → 2νLγ
µℓ0L . (1.39)

We have defined in equation (1.39) the flavor neutrino eigenstates so that the current couples each
neutrino with the corresponding lepton mass eigenstate.
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Neutrinos in the Standard Model

• In the SM, neutrinos of flavor m = e, µ, τ are the I3 = 1/2 upper component of a
SU(2)L doublet

Lm =

(
νmL

ℓmL

)
,

together with their homologous charged lepton ℓm;

• While every charged lepton has the right-handed part Rm, there is no νmR, so that no
mass term νmRνmL + νmLνmR can arise after symmetry breaking;

• The Yukawa sector of the lagrangian contains a term like LiΦRj + h.c., constructed in
such a way that SU(2)L × U(1)Y is respected.

• After the symmetry breaking, the Higgs field acquires a vev, ⟨Φ⟩ = 1/
√
2(0, v)T , and

one has LiΦRj →
√
2 ℓiRℓjR. If there were a neutrino right-handed component, to the

doublet Φ̃ = iσ2Φ
∗ that acquires a vev ⟨Φ̃⟩ = 1/

√
2(v, 0)T , one would pick up the mass

term for the upper I3 = 1/2 component of the doublet Li, i.e. the neutrino, exactly in
the same way as for the charged leptons.

• The fact that there are three generations implies that the structure of the mass terms is,
in general and as experimentally confirmed, not diagonal. As a consequence, mass and
flavor eigenstates do not coincide anymore for quarks, but are related by the unitary
matrix UCKM that appears explicit in the weak charged current.

• For strictly massless neutrinos, a suitable redefinition of the fields allows to express the
weak charged current as in the case of only one generation, so that each flavor neutrino
eigenstate couple to the corresponding lepton mass eigenstate.

1.2 Massive Neutrinos
While neutrino masses are absent in the SM by construction, nowadays we know for sure that neu-
trinos possess mass, because they oscillate and,therefore, it is mandatory to extend the theory so
to incorporate this fact. Essentially, there are two possibilities to include neutrino mass in the La-
grangian: the mass can be of Dirac or Majorana type. The first possibility is completely analogous
to the charged lepton case, where mass terms are of the kindmψψ = m(ψRψL+ h.c.). The second
possibility is when the mass term has the form m(ψc

Lψ
c
L + h.c.), for a Majorana neutrino. This

Majorana term violates lepton number conservation by two units, since, after quantization, corre-
sponds to the annihilation of a neutrino in the initial state and of an antineutrino (that coincides
with a neutrino in the Majorana case) in the final state.4

4An othe way to see this fact is to consider that lepton number conservation corresponds to the transformation
ψ → eiϕψ and that ψc → eiϕψ also, so that the mass term does not transorms to itself.
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1.2.1 Dirac Neutrino Masses

As we have seen, the absence of right-handed neutrinos in the SM makes possible to redefine
the neutrino fields so that their mass and flavor eigenstates coincide. However, a Dirac mass for
neutrinos can be generated through the Higgs mechanisms if we add νR states to the model. The
easiest thing to to is do consider three sterile states νmR with m = e, µ, τ , where sterile means
that they are singlet of SU(3)c × SU(2)L and have hypercharge Y = 0. In other words, the three
right-handed sterile neutrinos have absolutely no charge whatsoever and, thus, do not interact at
all with the other SM particles. 5 In this model, sometimes called the Minimal Extended Standard
Model, the Higgs mechanism generates three neutrino masses in exactly the same way as in (1.21)
and in (1.24), that now will read as

LYukawa =− f ℓ
ij(LiΦRj +RiΦ

†Lj)− f ν
ij(LiΦ̃νRj + νRiΦ̃

†Lj)+

− fu
ij(qLiΦ̃uRi + uRiΦ̃

†qLi)− fd
ij(qLiΦdRi + dRiΦ

†qLi) .
(1.40)

and

Lf.m. = − v√
2
(f ℓ

ijℓLiℓRj + f ν
ijνLiνRj + fU

ij q
U
L iq

U
Rj + fD

ij q
D
L iq

D
R j + h. c.) . (1.41)

The diagonalization of the Yukawa coupling in the lepton sector practically proceeds as for quarks
and in the end it is possible to introduce a unitary matrix UPNMS

6 describing the mixing between
flavor and mass neutrino eigenstates. In particular, besides the two matrices W ℓ

L and W ℓ
R, we need

to introduce two matrices also for neutrinos, V ν
L and V ν

R so that

ν0L =

ν01Lν02L
ν03L

 = V ν
L
†

νeLνµL
ντL

 ,

ν0R =

ν01Rν02R
ν03R

 = V ν
R
†

νeRνµR
ντR

 , (1.42)

where the chiral mass eigenstates vectors ν0L and ν0R have been introduced. With these definitions
one can write for the lepton part of the Yukawa Lagrangian

Llepton
Yukawa = − v√

2

[
ℓL(W

ℓ
LW

ℓ
L

†
)fL(W ℓ

RW
ℓ
R

†
)ℓR + νL(V

ν
LV

ν
L
†)f ν(V ν

RV
ν
R
†)νR + h.c.

]
=

= − v√
2

[
(ℓLW

ℓ
L)(W

ℓ
L

†
fLW ℓ

R)(W
ℓ
R

†
ℓR) + (νLV

ν
L )(V

ν
L
†f νV ν

R )(V
ν
R
†νR) + h.c.

]
=

= − v√
2

[
(ℓ0Lf

L
diagℓ0R + ν0Lf

ν
diagν

0
R) + h.c.

]
,

(1.43)

from which one can read the neutrino masses as

mn =
v

2
(f ν

diag)nn . (1.44)

5The number of sterile neutrinos is completely arbitrary since they do not spoil any symmetry of the theory.
6PNMS is an acronym for Pontecorvo, Nakagawa, Maka, and Sakata.
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Since all νR charges are zero, the weak current is once again written only in terms of left-handed
fields as in (1.39)

jµℓ,WC = 2νLγ
µℓL = 2ν0LV

ν
L
†γµW ℓ

Lℓ0L = 2ν0LV
ν
L
†W ℓ

Lγ
µℓ0L = 2ν0LU

†
PNMSγ

µℓ0L , (1.45)

where the mixing matrix is

UPNMS ≡ U = W ℓ
L
†
V ν
L . (1.46)

We now redefine the neutrino flavor eigenstates so that they are obtained from the mass eigenstates
by multiplying them by the mixing matrix U :

νL → W ℓ
L

†
νL = W ℓ

L

†
(V ν

LV
ν
L
†)νL = U(V ν

L
†νL) = Uν0L . (1.47)

With this redefinition the weak charged current is

jµℓ,WC = 2ν0LU
†γµℓ0L → 2νLUU

†γµℓ0L = νLγ
µℓ0L (1.48)

Also in this case, as in (1.39) for massless neutrinos, we have defined the neutrino flavor eigenstates
so that each neutrino flavor couples to the corresponding charged lepton only. To unclutter the
notation, we will rename from now on the lepton mass eigenstates ℓ0 as ℓ. To summarize, the
Yukawa part of the Lagrangian in the SM extended with three sterile right-handed neutrinos after
symmetry breaking contains terms of the kind

ℓLMleptℓR + νLMννR + h.c. , (1.49)

whit nondiagonal complex matrices Mlept and Mν . Both matrices can be diagonalized through
two unitary matrices so that the terms in (1.49) are also diagonalized, at the price of a redefinition
of the field, the mass eigenstate fields. The left weak current preserves its form 2νLγ

µℓL if we
use the mixing matrix U to connect flavor and mass eigenstates fields, νL = Uν0L, and denote the
left-handed lepton mass eigenstates ℓ0L as ℓL, to simplify the notation.

1.2.2 Majorana Neutrino Masses

In the Weyl representation of the Dirac matrices, the expression of left and right–handled spinors
is the most simple (see the Appendix A.2 and B)

ψL =
1− γ5

2
ψ =

(
0
χL

)
,

ψR =
1 + γ5

2
ψ =

(
χR

0

)
,

(1.50)

where χL and χR are two-component Weyl spinors. If we remember that charge conjugation for a
Dirac spinor is defined by

C = iγ2γ0 ,

ψc = Cψ
T
= iγ2ψ∗ ,

(1.51)
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we can see that

ψc
L ≡ (ψL)

c = i

(
0 σ2

−σ2 0

)(
0
χ∗
L

)
=

(
iσ2χ∗

L

0

)
ψc
R ≡ (ψR)

c = i

(
0 σ2

−σ2 0

)(
χ∗
R

0

)
=

(
0

−iσ2χ∗
R

)
,

(1.52)

so that ψc
L is right-handed and ψc

R is left-handed. Note that parity transforms ψL into ψR and vice
versa. Therefore, out of ψL only, we can define a Majorana spinor

ψ = ψL + CψL
T
=

(
iσ2χ∗

L

χL ,

)
(1.53)

which satisfies

ψc = iγ2
(
iσ2χ∗

L

χL

)∗

= i

(
0 σ2

−σ2 0

)(
−i(−σ2)χL

χ∗
L

)
=

(
iσ2χ

∗
L

χL

)
= ψ , (1.54)

so that it coincides with its complex conjugate, it is real and has two degrees of freedom. Neutrinos
are the only fermions that can be of Majorana type, since they have no electric charge. In case they
are massless, the Dirac or Majorana nature of neutrinos can not be ascertained because they satisfy
the same Weyl equation: Majorana and Dirac neutrinos would be phenomenologically indistin-
guishable. They could only be distinguished from effects related to neutrino masses. Since the
SM has an intrinsic left symmetry, let us write the lagrangian for a massive left-handed Majorana
neutrino. From the Lagrangian for a massive Dirac neutrino, see equation (B.10), we can convince
ourselves that the lagrangian for one Majorana neutrino can be written as

LM = 1
2
(νLi/∂νL + νcLi/∂ν

c
L)− 1

2
(νcLνL + νLν

c
L) . (1.55)

In the equation (1.55), the structure of the kinetic term is left–/∂–left plus right–/∂–right, the only
two terms surviving in ν /∂ν, while in the mass term only right-left products are non-zero. Let us
emphasize again that a Majorana mass term like νcLνL it is not admissible in the SM, since it has
Y = −1. In fact, νL has Y = Q− I3 = 0− 1/2 and from the first of (1.52) (see also Appendix B),
we see that νcL is also left-handed and has Y = −1/2. All in all, νcLνL has I3 = 1 and Y = −1 and
it does not respect the SU(2)L × U(1)Y symmetry. To derive the equation of motions by varying
the lagrangian with respect to the fields, it is useful to express the lagrangian (1.55) in terms of νL
alone. To this end we observe that

νcL = (CνL
T ) = (CνL

T )†γ0 = (C(ν†Lγ
0)T )†)γ0 = (Cγ0ν∗L)

†γ0 = iνTLγ
0iγ2γ0γ0 =

= iνTLγ
0iγ2 = −νTLC† .

(1.56)

Thanks to (1.56) and to the properties

C† = C−1 = −C = CT CγTµC
† = −γµ C†γµC = γTµ , (1.57)

the Majorana neutrino lagrangian (1.55) can be rewritten as

L =
1

2

[
νLi/∂νL + νTL i/∂

T
νL

T −m(−νTLC†νL + νLCνL
T )
]
. (1.58)
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To derive the equation of motion, the easier way is to vary the lagrangian terms that depend on νL.
First we note that

δ(νLCνT
T ) = δνLjCjkνLk + νLjCjkδνLk = δνLjνLkCjk − δνLkνLjCjk =

= δνLjνLkCjk − δνLjνLkCkj = 2δνLjνLkCjk ,
(1.59)

because of the antisymmetry of C. Then we have

δL(νL) =
1

2
(δνLji/∂jkνLk + νLjiδ(/∂kjνLk)−

m

2
(2δνLjCjkνLk)) . (1.60)

Consequently

∂L
∂(∂µνLi)

= − i

2
νLjγ

µ
ij ,

∂L
∂νLi

=
i

2
(/∂νL)i −

m

2
2νLkCik .

(1.61)

Therefore, from Lagrange equations we get

∂L
∂(∂µνLi)

− ∂L
∂νLi

= 0 ⇒ − i

2
(/∂νL)i − i

2
(/∂νL)i +mCijνLi = 0 . (1.62)

We have obtained the equation for a Majorana spinor

i/∂νL = mCνL
T , (1.63)

i.e. the Weyl equation for a Dirac field with ψR = CψL
T

.

1.3 Mass terms in the lagrangian: the general case
For the time being, we shall have our discussion for the case of only one fermion generation. We
have seen that a Dirac mass term into the SM lagrangian requires the introduction of an additional
neutrino field νR, besides the left-handed neutrino field νL. The νR is a sterile neutrino, transform-
ing as {1,1, 0}, with no charge at all under the SM gauge groups. We then can have a Dirac mass
term of the kind

LD = −mD(νRνL + νLνR) , (1.64)

that comes from the Yukawa sector of the SM lagrangian, once we add a νR, and that it respects
the symmetry of the theory. Concerning Majorana masses, we can have two more terms, because
we can add a Majorana term for both νR and νL:

LM = −1

2
mLνcLνL − 1

2
mRνcRνR + h.c. . (1.65)

While the right-handed neutrino term does not spoil the gauge symmetry, the left-handed term is
not admissible in the SM, and must be viewed as an effective low energy term generated by a
higher dimensional operator, suppressed by some pover of an unknown high-energy scale, where
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the new physics is manifested. Let us introduce a left doublet N , to write in a compact way the
most general mass lagrangian, i.e. the sum of (1.64) and (1.65), and a suitable mass matrix M

N =

(
νL
νcR

)
, M =

(
mL mD

mD mR

)
. (1.66)

The most general mass term lagrangian will be written as

L = −1

2
N cMN + h.c. = −1

2

(
νcL νR

)(mL mD

mD mR

)(
νL
νcR

)
+ h.c. =

= −1

2
(mLνcLνL +mDνcLν

c
R +mDνRνL +mRνRν

c
R) + h.c. =

=
1

2
(mLνcLνL ++mRνcRνR + 2mDνRνL) + h.c. = LM + LD ,

(1.67)

where we have used the fact that

νRν
c
R

C−−−−→ νcRνR , (1.68)

and that
νcLν

c
R = (−νTLC†)CνR

T = −νTLνRT = −(−νRνL)T = νRνL . (1.69)

Regardless of the Dirac or Majorana nature of neutrino masses in the most general lagrangian (1.67),
from the nondiagonal form of the neutrino mass matrix M we see that νL and νR do not have def-
inite masses. It can be demonstrated that, since M is symmetric and complex, we can go to the
basis of the mass eigenstates n, through a two dimensional unitary matrix U :

N =

(
νL
νcR

)
= U

(
ν1L
ν2L

)
= Un ,

UTMU =Mdiag =

(
m1 0
0 m2

)
.

(1.70)

Note that this is not the usual diagonalization through U−1, since on the left of M there is UT .
Consequently, the lagrangian mass term (1.67) begins

L = −1

2
N cMN + h.c. = −1

2
N c(UT )−1MdiagU

−1N + h.c. =

= −1

2
ncMdiagn+ h.c. = −1

2

2∑
i=1

miνiνi ,
(1.71)

where the Majorana states νi = νiL + νciL have been introduced and we have used the fact that
νciLν

c
iL = νiLνiL = 0. Thus, we have discovered that, in the most general case of an arbitrary mass

matrix M , neutrinos are Majorana particles. Going back to the definition of the mass matrix M we
note that only two masses among mL, mR and mD can be chosen to be real by rephasing the fields
νL and νR. We choose to take mR and mD as real and mL as complex. Let us try to summarize
what we have obtained so far:

• Since the SM is constructed with left-handed fields and we need right-handed neutrino fields
to build neutrino mass terms in the lagrangian, we considered the two fields νR and νcR. We
know that νcR transforms like νL and, in the chiral representation of the Dirac matrices, has
only lower “left” components;
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• We considered the most general lagrangian containing Majorana masses for νL and νR and
a Dirac term coupling left and right fields. We regroup these terms in matrix notation as
N cMN + h.c.;

• We diagonalize the mass term and discover that the neutrino states with definite masses are
Majorana left-handed particles connected to νL and νcR through a 2×2 unitary mixing matrix
U . The diagonalization is realized through UTMU and not U−1MU .

• While νL feels the weak interaction, νR is sterile and is a singlet under the SM gauge group.

It is possible, and relatively easy, to generalize the previous discussion to the case of three
generations of active neutrinos and ns right-handed sterile neutrinos. To this end, we introduce the
arrays

N =

(
νL

νc
R

)
, with νL =

νeLνµL
ντL

 and νc
R =


νc1R
νc2R
. . .
νcnsR

,

 (1.72)

and the mass matrix analogous to the mass matrix of (1.66):

Mn =

(
ML MD

MT
D MR

)
. (1.73)

The Mn in (1.73) is a squared symmetric complex matrix with dimension n = 3+ns, contain-
ing three blocks. ML is a 3× 3 complex symmetric matrix , MR is a ns × ns complex symmetric
matrix andMD is a 3×ns complex matrix. The lagrangian in this general case may be now written
as

L = −1

2
N cMN + h.c. . (1.74)

Thanks to the fact that also in this case M is symmetric and complex, it can be diagonalized
through a unitary matrix Un in the following way:

UT
nMnUn =Mndiag =

(
M1 0
0 M2

)
, (1.75)

where M1 is the diagonal mass of the three active neutrino mass eigenstates and M2 the diagonal
mass matrix for the ns sterile neutrinos. In this general case, the neutrino mass eigenstates are
Majorana neutrinos, and one can write

L = −1
2
N cMN + h.c. = −1

2

n∑
i=1

miνiνi . (1.76)

In the right-hand side of (1.76), the first three Majorana neutrino fields correspond to the active
neutrino fields να = ναL + νcαL with α = e, µ, τ , while the indices from 4 to n correspond to the
Majorana sterile neutrino fields.

A final remark about the notation is in order. Often the lagrangian mass term

L = −1

2
N cMN + h.c. , (1.77)
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both in one generation or in the general case, is written as

L = −1

2
N cMN + h.c. = −1

2
(−NTC†)MN + h.c. =

1

2
NTC†MN + h.c. , (1.78)

and sometimes, with an abuse of notation, C† is omitted.
In equation (1.48), we saw that the weak charged current can be written, because of the neutrino

mixing, as
jµℓ,WC = 2νLγ

µℓL = 2ν0LU
†
PNMSγ

µℓ0L , (1.79)

when neutrinos are Dirac particles. It can be demonstrated that, if neutrinos are Majorana particles,
the expression for the charged current is still the same, but the mixing matrix U contains two
additional phases. These new phases appear because the Majorana mass term is not invariant under
a global U(1) gauge transformation. Explicitly, if we consider the phase transformation νL →
eiϕνL for a Majorana neutrino field, νcL → eiϕνcL, because we have two complex conjugations.
Equivalently, we immediately see that νTLC

†νL → ei2ϕνTLC
†νL.

In the general case of three active neutrinos and ns sterile neutrinos that are all Majorana
fields, as we saw in (1.76), the mixing matrix U is a 3 × (3 + ns) rectangular matrix that can be
parametrized in terms of 3 + 3ns mixing angles and 3 + 3ns phases.

1.4 Generation of neutrino masses: the See-Saw mechanism
We have discussed the nature of the possible mass terms present in extensions of the SM with
massive neutrinos. We wonder what mechanisms can generate these terms. We have seen it that
the simplest extension of the SM, in which three sterile right-handed neutrinos are introduced,
results in Dirac mass terms, in complete analogy analogous with the charged fermion case, but
fails to explain the smallness of the Yukawa couplings needed to generate such small masses.
One interesting possibility is that neutrino masses come from a non-renormalizable dimension five
lagrangian term, suppressed by a large scale M , possibly related to new physics. If we insist on
preserving the gauge symmetry, the term mLνcLνL cannot be present in the Lagrangian, since it
violates the hypercharge of one unit and it is a triplet of SU(2). For the same reason, we cannot
introduce terms like LcL. If we want to have both a SU(2) and a Y singlet, we should use LΦ̃
and Φ̃TLc (omitting flavor indices), both transforming as right-handed neutrinos. Here, however,
we face the problem of renormalizability, since to have a neutrino mass term we must include the
product (LΦ̃)(Φ̃TLc) that has dimension 3/2+1+1+3/2 = 5 and it not renormalizable. The new
term must be divided by a scale M with dimension of a mass, and can be multiplied by a generic
dimensionless coefficient g of order 1:

LWeinberg = − g

M
(LΦ̃)(Φ̃TLc) + h.c. . (1.80)

After symmetry breaking we have

g

M
(LΦ̃)(Φ̃TLc) → 1√

2

(
νL eL

)(0
v

)
1√
2

(
0 v

)(νcL
ecL

)
=
v2

2
νLν

c
L . (1.81)

Therefore, we find that

LWeinberg = − g

M
(LΦ̃)(Φ̃TLc) + h.c.→ − gv2

2M
(νLν

c
L + νcLνL) . (1.82)
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Let us note that the Weinberg operator is the only possible dimension five operator that can be
written and that it entails violation of the lepton number by two units, since both νL and νcL have
lepton number equal to -1. The Weinberg operator can be obtained by starting from a general
lagrangian 1.76, wheremL = 0, by integrating out the right-handed field νR. For instance, consider
the following lagrangian:

LD+M = −y(νRΦ̃†L+ LΦ̃νR)−
1

2
mR(νR

cνR + νRν
c
R) . (1.83)

If we derive the equation of motion for νR and suppose that it is very heavy so that the kinetic term
can be neglected, we find

∂LD+M

∂νR
= −yLΦ̃−mRνcR = ∂µ

∂LD+M

∂(∂µνR)
∼ 0 , (1.84)

Thus we have

νcR =
y

mR

LΦ̃ ,

νR = − y

mR

Φ̃TLc .

(1.85)

Substituting back into (1.83), we have

LD+M =
y

2mR

(LΦ̃Φ̃TLc + h.c.) , (1.86)

which is the Weinberg operator of equation (1.80) If in (1.83) we start from a mass matrix of the
form

M =

(
0 mD

mD mR ,

)
(1.87)

since the term proportional to mL would explicitly spoil gauge invariance. The mass eigenvalues
are the solutions of∣∣∣∣−λ mD

mD −λ+mR

∣∣∣∣ = −λ(mR − λ)−m2
D = 0 ⇒ λ1/2 =

mR ±
√
m2

R + 4m2
D

2
. (1.88)

There is no reason why mR should be small, an to the contrary, it could be related to some new
very high energy scale. We can make a series expansion in the small quantity mD/mR and obtain
approximately

m1/2 =
mR ±mR

√
1 + 4m2

D/m
2
R

2
∼ mR ±mR(1 + 2m2

D/m
2
R)

2
⇒

m1 ∼ −m
2
D

mR

m2 ∼ mR .
(1.89)

If we define the mass eigenstates through the mixing matrix U as(
νL
νcR

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ν1
ν2

)
with UMU−1 =Mdiag , (1.90)

and we impose that off diagonal terms of Mdiag are 0, then we easily find tan 2θ = 2mD/mR ≲ 1.
This in turn implies cos θ ∼ 1 −m2

D/m
2
R and sin θ ∼ mD/mR. Therefore νL ∼ ν1 and νcR ∼ ν2.

If we assume that mD is at the scale of the electroweak interaction, mD ∼ 100 GeV, and mR at the
Grand Unification (GUT) scale, mR ∼ 1014 GeV, then the lightest neutrino mass m2 ∼ 0.1 eV, in
the ballpark of the experimentally expected values. This mechanism is called the see-saw, a tiny
active neutrino mass obtained from a sterile neutrino mass at the GUT scale.
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Neutrinos masses and their origin

• Neutrino masses can be included in the model in two ways:

Dirac terms ∼ νLνR + h.c. ,

Majorana terms ∼ νcLνc + νcRνR + h.c. .

• If we define a left isodoublet N = (νL, ν
c
R) the most general case with Majorana and

Dirac mass terms at the same time can be summed up in the lagrangian

L = −1

2
N cMN + h.c. with M =

(
mL mD

mD mR

)
. (1.91)

• The see-saw mechanism provides an intriguing way to explain the smallness of the active
neutrino masses. By starting from a lagrangian with Dirac and Majorana terms with
mL = 0, after integrating away the massive right-handed sterile neutrino field, a small
mass of the order m2

D/mR is generated for the active neutrino.
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ναℓ−α

W−

(a)

νανα

Z
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Figure (1.1) : SM Feynman vertices for CC and NC neutrino interactions.

1.5 Neutrino Interactions
Neutrinos interact with other particles only through the weak force, thus exchanging W± and Z
vector bosons. In section 1 we have explicitly written some of the terms of the SM lagrangian
involving neutrinos. Neutrino interactions are governed by the charged (CC) and neutral (NC)
lagrangian terms:

LCC = − g

2
√
2
(jµℓ,WCWµ + jµℓ,WC

†W †
µ) ,

LNC = − g

2 cos θW
jµℓ,NCZµ

(1.92)

where the charged and neutral current are

jµℓ,WC = 2νLγ
µℓL = 2

∑
α=e,µ,τ

ναLγ
µℓαL =

∑
α=e,µ,τ

ναγ
µ(1− γ5)ℓα ,

jµℓ,NC = νLγ
µνL =

∑
α=e,µ,τ

ναLγ
µναL =

1

2

∑
α=e,µ,τ

ναγ
µ(1− γ5)να ,

(1.93)

The vertices corresponding to the interaction terms of equations (1.92) are shown in Figure 1.1. In
the SM the electron, muon and tau lepton numbers are conserved, so that to a lepton on the left
(initial state) corresponds a neutrino on the right (final state) and vice versa, while to an antilepton
will correspond in the other state an antineutrino. Equivalently, the couples neutrino-antilepton
or antineutrino-lepton can be found in the initial or in the final state. Since ordinary matter is
composed of electrons, neutrons and protons, we will briefly review the neutrino interactions with
these particles.

1.5.1 Neutrino-electron scattering

Let us consider the elastic scattering processes να + e− → να + e− and να + e− → να + e−, in
which the initial and final state coincide. For νµ and ντ neutrinos the scattering can proceed only
through the Z, while for a νe there is a possibility to exchange a W , so that the neutrino goes into
an electron and vice versa. At low energies, as compared to the Z and W masses, E ≪ 100 GeV,
the momentum of the virtual vector boson can be neglected in the denominator of the propagator
and the process can be described by an effective four-fermion Fermi interaction. Let us start with
the νee− scattering that contains both CC and NC diagrams, as shown in Figure 1.95. The two
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νee−

νe e−

p1 p3

W

p2
p4

+

νeνe

e− e−

p1 p3

Z

p2 p4

(1.95)

Figure (1.2) : Feynman diagrams for the scattering of neutrinos on electrons. On the left the CC
diagrams, on the right the NC channel.

lagrangian terms for these two diagrams are

L(νee− → νee
−) =− GF√

2
{[νeγµ(1− γ5)e] [eγµ(1− γ5)νe] +

+ [νeγ
µ(1− γ5)νe]

[
eγµ(g

ℓ
V − gℓAγ5)e

]}
=

=− GF√
2
[νeγ

µ(1− γ5)νe]
[
eγµ((1 + gℓV )− (1 + gℓA)γ5)e

]
,

(1.94)

where gℓV = −1/2 + 2 sin2 θW and gℓA = −1/2. In Figure (1.3), we se that there is a hierarchy be-
tween the cross sections, that, for the integrated cross sections, can be approximately summarized
as

σνe : σνe : σνµ,τ : σνµ,τ = 1 : 0.42 : 0.16 : 0.14 . (1.96)

The difference in the neutrino-antineutrino cross-section is a consequence of the V − A structure
of the weak interaction while the difference between νee

− and νµ,τe
− scattering is due to the

additional charged current diagram of the Figure 1.95. As we will see in the section 1.5.4, on
dimensional ground, the total cross section must be proportional to the center-of-mass system
(CMS) squared total energy, σ ∼ G2

F s. It is useful to introduce the inelasticity parameter y so
defined

1− y = −u
s
=

1

2
(1 + cos θ) , (1.97)

where u and s are the Mandelstam variables7 and θ is the scattering angle of the electron in the
center-of-mass frame reference. In the following, we will use the CMS and assume the high-energy
limit, neglecting the electron mass. With an explicit calculation, it can be shown that the following
results hold true for the differential cross-section νx e−:

• The differential cross-section for the neutral current scattering is

dσNC

dy
(νxe

− → νxe
−) =

G2
F s

4π

[
(geV + geA)

2 + (geV + geA)
2(1− y)2

]
. (1.98)

7Given a scattering of two particles with momenta p1 and p2 into two particles of momenta p3 and p4, the Man-
delstam variable s, t, u are defined in the followin way: s = (p1 + p2)2, t = (p1 − p3)

2 and u = (p1 − p4), where p1
and p3 refer to the “most similar” particles in the initial and final state.



Neutrino Physics and Astrophysics 21

0 1 2 3 4 5 6 7 8 9 10
E  [MeV]

10 43

10 42

10 41

 [c
m

2 ]
e e
e e
x e
x e

Figure (1.3) : Neutrino-lepton cross sections.

The factor in parentheses is equal to (−1 + 2 sin2 θW )2 + (2 sin2 θW )2(1− y)2. Since geL =
(geV + geA)/2 and geL = (geV − geA)/2, we see that in (1.98), the ν scattering on the left and
right components of the electron add incoherently. However, the right part is suppressed
by the factor (1 − y)2 that, when integrated over, gives a factor 1/3. Numerically, (−1 +
2 sin2 θW )2+(2 sin2 θW )2/3 ∼ 0.37. The presence of the term 1−y = (1+cos θ)/2 is related
to the left-handed nature of the neutrino and the conservation of the angular momentum, as
can be seen in Figure 1.4.

• The differential cross-section for the charged current scattering is

dσCC

dy
(νee

− → νee
−) =

G2
F s

4π
. (1.99)

In this case, only νe can interact with electrons and the cross-section is isotropic. This is a
consequence of the fact that only the left part of the electron is interacting with the neutrino,
and the angular momentum is conserved, whatever the angle of the final electron.

• For the νe scattering, both the CC and NC diagrams contribute, and they must be taken into
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account at the same time The result of the calculation is

dσCC+NC

dy
(νee

− → νee
−) =

G2
F s

4π

[
(geV + geA + 2)2 + (geV − geA)

2(1− y)2
]
, (1.100)

so that the result is the same as the NC one, with the substitutions geV → geV + 1 and geA →
geA+1. Plugging into the cross sections the numbers, one obtains the suppression of a factor
∼ 0.16 between the cross section νµ,τe− → νµ,τe

− and νee− → νee
−.

• For the antineutrinos, the cross-section is suppressed with respect to the neutrino one. The
crossing symmetry in the evaluation of a Feynman diagram, allows one to trade an incoming
(outgoing) particle for an outgoing (incoming) antiparticle. Looking, for instance, at the right
diagram of Figure 1.95, we see that this amounts to the change p1 ↔ −p3 and, therefore, to
s ↔ u in the matrix element. By exploiting the fact that the matrix element is proportional
to s2, we have the substitution

dσCC

dy
(νee

− → νee
−) =

G2
F s

2

4πs
→ dσCC

dy
(νee

− → νee
−) =

G2
Fu

2

4πs
=
G2

F s
2(1− y)2

4π
.

(1.101)
When the formula (1.101) is integrated over y, we find a suppression of 1/3 of the antineu-
trino cross-section. Strictly speaking, 1/3 is the suppression factor for energies larger than
me but smaller than the electroweak scale.

1.5.2 Neutrino-nucleon scattering

From the point of view of the neutrino detection, it also very important to know the neutrino-
nucleon cross-section. In general, we have to consider both CC and NC interactions of neutrinos
and antineutrinos hitting free nucleons or nucleons bounded in nuclei. This very last case is of
fundamental importance for long-baseline oscillation neutrino experiments. Because of lepton
flavor conservation, CC neutrino interaction will produce a negative charged lepton in the final
state, while antineutrino interactions, instead, will produce positively charged leptons. To produce
the lepton in the final state, neutrinos must posses energy above a threshold which, in the laboratory
system, is

Eν > Eth =
m2

ℓ + 2Mmℓ

2M
. (1.103)

For νe, Eth ∼ 0, while for νµ and ντ we found, respectively, Eth ∼ 0.11 GeV and ∼ 3.5 .eV.
Equation (1.103) simply expresses the requirement s = (Eν +M)2 ≳ (mℓ +M)2, where the right

θνL

νL

eL

eL

θνL

νL

eR

eR

Figure (1.4) : The conservation of angular momentum in the νe− scattering suppresses backward
scattering for right-handed electrons.
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Figure (1.5) : Feynman diagrams for the scattering of neutrinos on electrons.
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Figure (1.6) : Neutrino-Nucleon cross-section for Quasi-elastic (QE), Resonant (RES) and Deep
Inhelastic Scattering (DIS) interactions..

side is the energy squared, in the case of negligible kinetic energy of the lepton and the nucleon in
the final state. In the diagram (a) of Figure (1.5) one considers the quasi-elastic scattering neutrino-
nucleon processes νe + n → e− + p and νe + p → e+ + n, also dubbed as inverse neutrino beta
decay.

The name quasi-elastic comes from the fact that, by ignoring the proton-neutron mass differ-
ence and the electron mass, the process can be considered “elastic”. In this case, the neutrino probe
does not break up the nucleon. The relevant energies of the incoming neutrino are ranging from a
few hundreds of MeV to a few G.V. With the increasing of the neutrino energy, the nucleon can
be excited to a resonance, diagram (b) of Figure 1.5, for instance the ∆, afterwords decaying in a
pion and a nucleon. Also in this case, the energy of the neutrino (∼ 1− 10 GeV) is not enough to
break up the nucleon. Above around 10 GeV, diagram (c) of Figure 1.5, the neutrino starts to see
the internal structure of the nucleon and the scattering breaks up it, producing a bunch of hadronic
debris. The behavior of the νN cross-section is shown in Figure 1.6.
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Figure (1.7) : Coherent neutrino scattering cross sections (from “New results from COHERENT”,
Daniel Pershey, Plenary Talk at Neutrino 2022).

1.5.3 Coherent Neutrino Scattering

Coherent neutrino scattering refers to a process in which a neutrino scatters off an entire atomic
nucleus as a whole, rather than interacting with individual nucleons within the nucleus. More
precisely, the Coherent Elastic Neutrino Nucleus Scattering (CEνNS) is the NC scattering of a
neutrino with a nucleus, in which the nucleus is not excited but receives a small kick in the col-
lision. The weak interaction can become “coherent” when the energy of the neutrino is very low
and the size of the target nucleus is relatively large. In this situation, the entire nucleus can act
as a single coherent target for the neutrino in the reaction ν + A → ν + A. Coherent neutrino
scattering is a relatively new field of research, with experiments designed to detect this process
being conducted in recent years. It has the potential to provide new insights into the properties of
neutrinos and the structure of atomic nuclei. The cross section is

σcoh ≃
G2

FM

2π

Q2
W

4
F 2(q2)

(
2− MT

E2
ν

)
. (1.104)

where Eν is the energy of the incoming neutrino, M is the mass of the target nucleus, QW is the
weak charge of the target nucleus, F (q2) is the nuclear form factor (F = 1 for full coherence), and
q2 is the momentum transfer squared. The weak charge of the nucleus,QW = N−(1−4 sin2 θW )Z,
depends on the neutron number N , so that σcoh ∼ N2, a large enhancement that makes it possible
to measure this cross section. For instance, in Figure (1.7), you can see an enhancement of the
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total cross section of about 1 or 2 order of magnitude between the blue curves, for the coherent
interactions, and the green and black ones for other interactions.

1.5.4 Neutrino Absorption

As you can see in Figures (1.6) and (1.7), the order of magnitude of the neutrino cross sections in
matter is of the order of 10−38 cm2. Actually, this result can be obtained with a simple order of
magnitude estimation. On dimensional ground,

σ ∼ G2
F s , (1.105)

since the matrix element is proportional to the Fermi constant GF , that has dimension of inverse
energy squared, and s is the energy available for the reaction. If we evaluate in the target rest
system the total energy, we get

s = [(M, 0) + (E,Eu⃗)]2 =M2 + 2ME ∼ 2ME , (1.106)

where M is the target mass, E the neutrino energy, and we assume ME ≫ M2. Therefore, we
have

σ ∼ G2
F s ∼

G2
F

GeV−4GeV−4

(
ME

GeV2

)
GeV2 = 10−10

(
ME

GeV2

)
(197 MeV fm)2

GeV2 ∼

∼ 10−10

(
ME

GeV2

)
104 10−6 10−26 cm2 ∼ 10−38

(
ME

GeV2

)
cm2 .

(1.107)

The neutrino mean free path can be estimated as

ℓ ∼ 1

nσ
, (1.108)

where n is the target number density. In ordinary matter, n ∼ NA ∼ 1024 cm−3, so that nσ ∼ 10−14

cm−1. Therefore, a neutrino of energy of ∼ 1 GeV has a mean free path of the order of 109 km.
The mean free path is of the order of the Earth diameter when the neutrino energy is ∼ 105 GeV.
Inside a forming neutron star, the number density can be as high as 1012NA cm−3, so that MeV
neutrinos will have a mean free path of the order of one kilometer or so.
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2 Neutrino Oscillations
As we saw in the previous section, neutrino mass and flavor eigenstates do not coincide. The im-
mediate consequence of this fact is the phenomenon of the neutrino oscillations: when neutrinos
are produced, they are flavor eigenstates, the eigenstates of the weak interaction; when they prop-
agate in vacuum, the states with definite momenta are the mass eigenstates. These two bases are
related to each other by the mixing matrix U : if U is not trivial, the mass eigenstates will develop
different phases during their propagation and, at the detection point, their superposition will no
longer be equal to the initial one. Thus, there will be a non-zero probability of detecting a neutrino
with flavor different from the initial one.

2.1 Neutrino Oscillations in vacuum
A generic unitary 3×3 matrix can be parametrized by means of 3 mixing angles (θ12, θ13, θ23) and
one phase δ, (see C.2). The standard parametrization for U is

U = R23(θ23)ΓδR13(θ13)Γ
†
δR12(θ12) =

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 ,
(2.1)

where cij = cos θij and sij = sin θij and

R23(θ23) =

1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

 ,

R13(θ13, δ) =

 cos θ13 0 sin θ13e
−iδ

0 1 0
− sin θ13e

iδ 0 cos θ13

 ,

R12(θ12) =

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 ,

Γδ = diag(0, 0, eiδ) .

(2.2)

The three R23, R13 and R12 matrices are ordinary 3-dimensional rotations. As we will see, Γδ is
related to CP-violating transitions. Note that this is just one of the possible ways to parameterize
the mixing matrix. The rotation matrices are defined in such a way that the mixing angles are real,
and defined in the intervals [0, π/2]. The CP-violating phase may vary in the range δ ∈ [0, 2π].
Let us consider the mixing of the three known active neutrino states |να⟩, with α = e, µ, τ . Flavor
neutrino states are a superposition of mass eigenstates, weighted by the U∗ matrix

|να⟩ =
3∑

i=1

U∗
αi |νi⟩ , (2.3)

and, conversely, multiplying by Uαj and summing over α∑
α

Uαj |να⟩ =
∑
i,α

UαjU
†
iα |νi⟩ =

∑
i

δij |νi⟩ = |νj⟩ . (2.4)
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The presence ofU∗ in equation (2.3) is due to the fact that a neutrino in the initial states corresponds
to the filed ν. However, if you consider a generic states |ν⟩ as a superposition of the flavor or the
mass eigenstates in terms of its components να or νi, respectively:

|ν⟩ =
3∑

i=1

(|νi⟩ ⟨νi|) |ν⟩ =
3∑

i=1

⟨νi|ν⟩ |νi⟩ =
3∑

i=1

νi |νi⟩ ,

|ν⟩ =
∑

α=e,µ,τ

(|να⟩ ⟨να|) |ν⟩ =
∑

α=e,µ,τ

⟨να|ν⟩ |να⟩ =
∑

α=e,µ,τ

να |να⟩

.

(2.5)

The components transform with U , like the fields. In fact

|ν⟩ =
∑

α=e,µ,τ

να |να⟩ =
∑

α=e,µ,τ

να
3∑

i=1

U∗
αi |νi⟩ =

3∑
j=1

νj |νj⟩ ⇒

νi =
∑

α=e,µ,τ

U∗
αiν

α , να =
3∑

i=1

Uαiν
i .

(2.6)

We want to describe a process in which neutrino of flavor α is produced at time t = 0, and it is
detected at time t as a neutrino of flavor β. We suppose that the neutrino is ultrarelativistic. This
means that for each neutrino νi, the energy Ei can be approximated as

Ei =
√
p2i +m2

i = pi

√
1 +m2

i /p
2
i ∼ pi(1 +m2

i /2p
2
i ) ∼ p+m2

i /2E , (2.7)

where, in the last equality, we assume pi ∼ Ei ∼ p ∼ E for all mass eigenstates, neglecting a
quantity proportional to the tiny squared mass m2

i . Moreover, to the same order we replace the
time t with the neutrino path L. The amplitude for the να → νβ transition to happen is ⟨νβ|να(t)⟩
and the probability is

P (να → νβ) = |⟨νβ|να(L)⟩|2 =
∣∣∣∣∣∑

ij

UβjU
∗
αi ⟨νj|νi(L)⟩

∣∣∣∣∣
2

=

∣∣∣∣∣∑
ij

UβjU
∗
αi ⟨νj|e−iEiLνi⟩

∣∣∣∣∣
2

=

=

∣∣∣∣∣∑
ij

UβjU
∗
αie

−ipiL(1+m2
i )/2E

2
i δij

∣∣∣∣∣
2

=

∣∣∣∣∣∑
i

UβiU
∗
αie

−ipL(1+m2
iL)/2E

∣∣∣∣∣
2

=

=

∣∣∣∣∣e−ipL
∑
i

UβiU
∗
αie

−iLm2
i /2E

∣∣∣∣∣
2

=
∑
ij

UβiU
∗
αie

−iLm2
i /2EU∗

βjUαje
iLm2

j/2E =

=
∑
ij

U∗
αiUβiUαjU

∗
βje

−iL(m2
i−m2

j )/2E =
∑
ij

U∗
αiUβiUαjU

∗
βje

−iL∆m2
ij/2E ,

(2.8)

where we have introduced the squared-mass differences ∆m2
ij = m2

i − m2
j . This is the general

formula for the neutrino oscillation in three generations in vacuum. This formula can be written in
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three different ways:

P (να → νβ) =
∑
ij

U∗
αiUβiUαjU

∗
βje

−iL∆m2
ij/2E

=
∑
i

|Uαi|2|Uβi|2 + 2
∑
i>j

U∗
αiUβiUαjU

∗
βje

−iL∆m2
ij/2E

= δαβ − 2
∑
i>j

Re(U∗
αiUβiUαjU

∗
βj)

(
1− cos

∆m2
ijL

2E

)
+

+ 2
∑
i>j

Im(U∗
αiUβiUαjU

∗
βj) sin

∆m2
ijL

2E
.

(2.9)

The second expression for Pαβ(L,E) comes simply from separating in the double sum the cases
i = j from i ̸= j, and from the observation of the symmetry in i and j of the product of the four
mixing matrix elements. The third formula of (2.9) can be easily demonstrated by squaring the
unitary condition ∑

i

UαiU
∗
βi = δαβ , (2.10)

from which we get(∑
i

UαiU
∗
βi

)2

=
∑
i

UαiU
∗
βi

∑
k

UαkU
∗
βk =

∑
i=k

UαiU
∗
βiUαkU

∗
βk + 2

∑
i>k

UαiU
∗
βiUαkU

∗
βk =

=
∑
i=k

|Uαi|2|Uβi|2 + 2
∑
i>k

Re
(
UαiU

∗
βiUαkU

∗
βk

)
.

(2.11)

Going back to equations (2.9), we see that the neutrino vacuum oscillation probability depends
on the squared-mass differences, on the ν path length, and on the ν energy. The mixing matrix
elements Uαi are new parameters for the model that will extend the SM, so to include neutrino
masses. If the generic Uαi is rephased as eiθαUαie

iθi , then the product U∗
αiUβiUαjU

∗
βj will turn into

itself:

U∗
αiUβiUαjU

∗
βj → e−iθαU∗

αie
−iθieiθβUβie

iθieiθαUαje
iθje−iθβU∗

βje
−iθj = U∗

αiUβiUαjU
∗
βj . (2.12)

Thanks to this invariance property, it is possible to rephase charged lepton and neutrino fields. In
the case of Majorana neutrinos, the mixing matrix U of equation (2.1) will contain two additional
phases

UMajorana = U Diag(1, eiϕ1 , eiϕ2) , (2.13)

but the oscillation probability (2.9) will not depend on ϕ1 and ϕ2. The vacuum oscillation prob-
ability for antineutrinos can be obtained from (2.9), with the substitution U → U∗. The vacuum
oscillation probability is CPT-invariant, P (να → νβ) = P (νβ → να), while the CP-violating term
can be written as

P (να → νβ)− P (να → νβ) = 4
∑
i>j

Im(U∗
αiUβiUαjU

∗
βj) sin

2
∆m2

ijL

2E
= ,

= 4
∑
i>j

J ij
αβ sin

∆m2
ijL

2E
,

(2.14)
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where
J ij
αβ = U∗

αiUβiUαjU
∗
βj , (2.15)

is called the Jarlskog invariant that vanishes for δ = 0, π, while is maximal for δ = π/2, 3π/2.
The derivation of the oscillation probability was not rigorous, but a complete treatment in

quantum field theory gives the same results. However, a few remarks are in order: First of all,
the formula (2.9) is valid if the different contributions of mass eigenstates at the production and
detection point can be ignored, as it is in all real experiments. Moreover, the removal of the equal
momentum assumption, i.e. the fact that we assumed all neutrinos to have the same momentum
p, does not alter the final result. Finally, also a rigorous treatment, without the assumption t =
L, does not change the final result. Oscillations are a quantum process that requires coherence.
Thanks to their very weak interactions, neutrinos can maintain coherence over very long distances.
Moreover, both at the creation and detection points, the mass eigenstates wave packets must not be
distinguishable and a coherent flavor superposition must be possible. Consider, for instance, the
case where the neutrino momentum is measured with very high precision so that the uncertainty
on the neutrino mass is smaller than the mass gap between two neutrinos:

δm2 =
∂m2

∂p
δp = 2pδp≪ ∆m2 . (2.16)

From the Heisenberg principle we derive the error on the position determination

δx ≳
1

δp
∼ 2E

∆m2
∼ L0

2π
, (2.17)

where L0 is the oscillation length (see (2.22)). Therefore the uncertainty on x is of the order
of the oscillation length, and oscillations will be destroyed: the flavor eigenstates becomes an
incoherent sum of mass eigenstates. Another possibility that will destroy the oscillation pattern
is realized when the separation between the neutrino wave packets becomes so large that the two
packets no longer overlap and their interference is not possible anymore. Summarizing, the wave
packet formalism allows one to see that oscillations are possible if the momentum is not too well
determined, so that there can be a transition from one mass eigenstate to the other, and the two
wave packets are not separated with respect to their size.

2.1.1 Neutrino Oscillations in vacuum: two generations

To understand the behavior of the oscillation probability it is better to study the formula for two
neutrino generations. In this case, the mixing matrix only depends on one mixing angle, and there
is no phase. U is simply a rotation matrix in the plane by an angle θ:

U =

(
cos θ sin θ
− sin θ cos θ

)
. (2.18)

If we call the two flavor e and µ, then we have

P (νe → νµ) = −2Ue2Uµ2Ue1Uµ1

(
1− cos

∆m2
12L

2E

)
= 2 sin2 θ cos2 θ · 2 sin2 ∆m

2L

4E
=

= sin2 2θ sin2 ∆m
2L

4E
.

(2.19)
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where we have denoted with ∆m2 the squared-mass difference ∆m2
21 = m2

2 −m2
1. First of all, let

us calculate the numerical factor hidden in equation (2.19):

∆m2L

4E
=
∆m2

eV2 eV2 L

km
km

1

4
E

GeV
GeV

=

=

(
∆m2

eV2

)(
L

km

)
(

E

GeV

) eV m

4 106
1

197 MeV fm
= 1.27

(
∆m2

eV2

)(
L

km

)
(

E

GeV

) =

= 1.27

(
∆m2

eV2

)(
L

m

)
(

E

MeV

) .

(2.20)

Therefore, we can rewrite (2.19) as

Peµ = sin2 2θ sin2 ∆m
2L

4E
=

= sin2 2θ sin2

1.27
(
∆m2

eV2

)(
L

km

)
(

E

GeV

)
 .

(2.21)

When we speak of neutrino oscillations, we mean oscillations in space, depending on the trav-
eled distance L, or oscillations in the energy E, when the distance is fixed. In the first case, the
oscillation length is

L0 = π
4E

∆m2
=

π

1.27

(
E

GeV

)
(
∆m2

eV2

) . (2.22)

Let’s make two examples that are relevant for atmospheric and solar neutrinos that we will discuss
later. In the first case, we can consider E ∼ 1 GeV, ∆m2 ∼ 2.5 × 10−3 eV2 and we obtain
L0 ∼ 990 km. In the second case, the one relevant for solar neutrinos, with energy E ∼ 1 MeV,
∆m2 ∼ 7.5 × 10−5, the oscillation length is L0 ∼ 32 km. The oscillation probability (2.21) is
invariant under the transformations θ → θ − π/4 and ∆m2 → −∆m2. The amplitude of the
oscillations is sin2 2θ. If we mediate the probability over many oscillation cycles, then we get a
factor one half from the sine squared:

P ave
eµ =

1

2
sin2 2θ . (2.23)

If the distance traveled by a neutrino is very large, then the neutrino flavor state will be an inco-
herent sum of mass eigenstate and viceversa. Therefore, Pee = Pe1P1e + Pe2P2e = cos2 θ cos2 θ +
sin2 θ sin2 θ = cos4 θ + sin4 θ = (cos2 θ + sin2 θ)2 − 2 sin2 θ cos2 θ = 1 − 1/2 sin2 2θ, where we
have denoted with Piα and Piα the probability of detecting να as a νi and viceversa. Similarly,
, Peµ = Pe1P1µ + Pe2P2µ = cos2 θ sin2 θ + sin2 θ cos2 θ = 2 cos2 θ sin2 θ = 1 − Pee. Thus, we
see that the probabilities for averaged oscillations and for complete decoherence are equal, for two
neutrino generations.
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Vacuum Neutrino Oscillations

• In the three-generation neutrino framework, the mixing matrix U depends on three mix-
ing angle (θ12, θ13, θ23) and one phase δ, and can be parametrized by means of three
rotation matrices as U = R23(θ23)ΓδR13(θ13)Γ

†
δR12(θ12) and Γδ = diag(1, 1, eiδ)

• In the three-generation neutrino framework, the mixing matrix U depends on three mix-
ing angle (θ12, θ13, θ23) and one phase δ, and can be parametrized by means of three
rotation matrices as U = R23(θ23)ΓδR13(θ13)Γ

†
δR12(θ12);

• U is the matrix connecting flavor and mass eigenstates through |να⟩ =
3∑

i=1

U∗
αi |νi⟩;

• The vacuum oscillation probability can be written as

P (να → νβ) =
∑
ij

U∗
αiUβiUαjU

∗
βje

−iL∆m2
ij/2E ; (2.24)

• If neutrinos are Majorana particles then UMajorana = U diag(1, eiϕ1 , eiϕ2), but the oscil-
lation probability formula does not change;

• In the case of two neutrino generations

Peµ = sin2 2θ sin2 ∆m
2L

4E
= sin2 2θ sin2

1.27
(
∆m2

eV2

)(
L

km

)
(

E

GeV

)
 (2.25)
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Figure (2.1) : Feynman diagrams for the scattering of neutrinos in matter.

2.2 Neutrino Oscillations in Matter
As we have seen in Section 1.5, when neutrinos propagate through matter, for instance through the
Earth, they interact with electrons and nucleons. Their interaction can be mediated by the W and
the Z boson, as shown in Figure (2.1). When neutrinos interact with electrons, both charged and
neutral current interactions are possible. Moreover, the scattering can be incoherent or coherent. A
simple estimate shows that in most cases incoherent scattering is very small and can be neglected.
From the four-fermion interaction, we expect the incoherent cross section to be proportional to the
Fermi constant GF squared. As we saw in section (1.5.4), we expect σ ∼ G2

F s, where s is the
center-of-mass energy squared. If we assume, for instance, that a nucleon of mass M = 1 GeV, at
rest in the laboratory frame, scatters a neutrino of energy E, then σ ∼ 3.9×10−38cm2(E/GeV). If
we multiply a cross-section of the order of 10−38 cm2 by the target number density n, for instance
of the Earth, n ∼ 3.3 gr cm−3, then we get the mean free path

L ∼ 1

NAnσ
∼ 1014

E/GeV
cm , (2.26)

where we assumed there are ∼ NA scattering centers of mass M = 1 GeV per gram.
The smallness of the weak cross-section can be compensated by coherent scattering when

neutrinos propagate in matter, the so-called “coherent forward elastic scattering”. Here forward
elastic scattering means that the momentum of neutrinos is unchanged and that there is a change of
the phases in the wave function. When the scattering is happening coherently on all the particles of
the medium, the net effect is an enhancement of the cross-section by a factor n, so that this process
can result in a sizable effect. To calculate the effective hamiltonian for this process, let us start
from the charged current interaction term in the Fermi theory:

Hcc =
GF√
2
[νeγµ(1− γ5)e] [eγ

µ(1− γ5)e] , (2.27)

which is the tree level contribution in the low-energy case, when the momentum is much lower
than the W or Z boson mass. After rearranging the fields through a Fierz transformation, we get

Hcc =
GF√
2
[eγµ(1− γ5)e] [νeγ

µ(1− γ5)νe] . (2.28)

We need to make an average of this interaction hamiltonian over the medium, i.e. the part de-
pending on electron fields. To do so, we consider the rest frame of the medium and a distribution
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function f(E, T ) which counts the density of electrons with given energy E, momentum p and
temperature T , normalized so that ∫

d3p f(E, T ) = NeV , (2.29)

where Ne is the number of electrons contained in the volume V . To calculate the average over
the medium, we have to integrate over momenta, and sum up over spin, the matrix element of Hcc

between the states of the electron |e(p, s)⟩:

|e⟩ = |e(p, s)⟩ = 1

2EV
b†(p, s) |0⟩ ,

⟨Hcc⟩ =
GF√
2
νeγµ(1− γ5)νe

∫
d3p

1

2

∑
spin

⟨e| eγµ(1− γ5)e |e⟩ .
(2.30)

When the field e and e hit the state |e⟩ on the left or ⟨e| on the right, they give the spinors u or u
times a normalization constant depending on the convention adopted.8 The sum over the spin of
the spinor product uu gives ∑

spins

ue(p, s)ue(p, s) = /p+me , (2.31)

and the result is

1

2

∑
spin

⟨e| eγµ(1− γ5)e |e⟩ =
1

4EV
Tr[(/p+me)γ

µ(1− γ5)] =

=
1

4EV
Tr(/pγ

µ −meγ
µγ5) =

1

4EV
Tr(/pγ

µ) =
pµ

EV
.

(2.32)

Going back to the hamiltonian we have

⟨Hcc⟩ =
GF√
2 V

∫
d3pf(E, T )νeγµ(1− γ5)νe

pµ

E
=

GF√
2 V

∫
d3pf(E, T )νeγ

0 2 νeL
p0

E
=

=
√
2GFNe νLγ

0νeL = VCC νeLγ
0νeL ,

(2.33)

where the potential VCC =
√
2GFNe has been introduced and the vector part depending on p⃗ of

the integral is zero, because the integrand function is odd. It can be shown that formula (2.33)
changes the potential energy of the neutrino by the amount VCC .

In a similar way, one can show that, for the neutral current scattering over a fermion f , the
result is V f

NC =
√
2GFNfg

f
V , since in the expression (2.28) for the hamiltonian, the part relative

to the fermion will change according to the substitution 1− γ5 → gfV − gfAγ
5. Taking into account

8Here we follow the convention of [3].
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that gfV = I3 −Q sin2 θW , we have explicitly

geV = −1

2
+ sin2 θW ,

guV = +
1

2
+

2

3
sin2 θW ,

gdV = −1

2
− 1

3
sin2 θW ,

gpV = +
1

2
+ sin2 θW ,

gnV = −1

2
.

(2.34)

Since matter is usually neutral, the neutral-current potential is

VNC = −1

2

√
2GFNn . (2.35)

With this result, the general matter potential can now be written as

Vα = VCCδαe + VNC =
√
2GF

(
Neδαe − 1

2
Nn

)
. (2.36)

Now, the task is to derive the flavor evolution equation in the presence of the matter potential (2.36).
The evolution of a given flavor state |να(t)⟩ is governed by the full hamiltonian containing the
vacuum term H0 and the matter term HI = Vα. The meaning of the α subscript is that at t = 0 we
impose |ν(0)⟩ = να. The evolution equation is

i
d

dt
|να(t)⟩ = H |να(t)⟩ = (H0 +HI) |να(t)⟩ . (2.37)

The free hamiltonian is diagonal in the mass basis (ν1, ν2, ν3)
T , so that H0 |νi⟩ = Ei |νi⟩ or, in

matrix notation,

Hd
0 =

E1 0 0
0 E2 0
0 0 E3

 , (2.38)

while the interaction term is diagonal in the flavor basis

HI |να⟩ = Vα |να⟩ . (2.39)

To find the oscillation probabilities we will proceed in a way similar to that of the vacuum oscilla-
tions. The probability amplitude Aαβ(t) of finding the state in the flavor β at the time t is

Aαβ(t) = ⟨β|να(t)⟩ . (2.40)

These amplitudes are none other than the components of equations (2.5). By projecting equa-
tion (2.37) on ⟨β| we have

i
d

dt
Aαβ(t) = ⟨β|H|να(t)⟩ = ⟨β|H0|να(t)⟩+ ⟨β|HI |να(t)⟩ =

=
∑
γ

⟨β|H0|γ⟩ ⟨γ|να(t)⟩+
∑
γ

⟨β|HI |γ⟩ ⟨γ|να(t)⟩ =

= (H0)βγAγα(t) + (HI)βγAγα(t) .

(2.41)
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The matrix elements of H in (2.41) are calculated in the flavor basis, and, as anticipated before,
only HI is diagonal in that basis

⟨β|HI |γ⟩ = Vγ ⟨β|γ⟩ = Vγδβγ . (2.42)

For the free hamiltonian part, by taking into account that from (2.3) we get ⟨j|α⟩ = U∗
αȷ, we can

evaluate the matrix element as

(H0)βγ = ⟨β|H0|γ⟩ =
∑
ij

⟨β|i⟩ ⟨i|H0|j⟩ ⟨j|γ⟩ =
∑
ij

UβiHd
ijU

∗
γj = (UHdU †)βγ . (2.43)

Before proceeding, we observe that also in this case, as in (2.7), for ultrarelativistic neutrinos we
can use the approximation Ei ∼ p+m2

i /2E, and in matrix notation

Hd
0 =

E1 0 0
0 E2 0
0 0 E3

 ∼


p+

m2
1

2E
0 0

0 p+
m2

2

2E
0

0 0 p+
m2

3

2E

 =

=

(
p+

m2
1

2E

)
I +


0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E

 .

(2.44)

We can write the matter potential in matrix notation, in the flavor basis, with an explicit possible
dependence on the position x

V =

Ve 0 0
0 Vµ 0
0 0 Vτ

 = VNC(x)I +

VCC(x) 0 0
0 0 0
0 0 0

 =

= VNC(x)I +

√
2GFNe(x) 0 0

0 0 0
0 0 0

 .

(2.45)

If we introduce the vector
Aα =

(
Aαe Aαµ Aατ

)
, (2.46)

and replace t with x, we can rewrite equation (2.41) as

i
d

dx
Aα(x) = (UHdU † + V )Aα(x) =

(
p+

m2
1

2E
+ VNC

)
Aα(x)+

+


√
2GFNe(x) 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E

Aα .

(2.47)
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We can easily convince ourselves that the first term of (2.47) is irrelevant to the oscillations, since
the redefinition

Aα(x) → A′
α(x) = Aα(x) e

−i

(
p+

m2
1

2E

)
x−i

∫ x
0 VNC(x′)dx′

, (2.48)

will make it disappear from the right-hand side of (2.47). In fact, with this substitution we have

i
d

dx
A′

α = i

(
d

dt
Aα

)
e
−i

(
p+

m2
1

2E

)
x−i

∫ x
0 VNC(x′)dx′

+

+Aα

(
p+

m2
1

2E
+ VNC(x)

)
e
−i

(
p+

m2
1

2E

)
x−i

∫ x
0 VNC(x′)dx′

,

(2.49)

and, by using equation (2.47), we find that the evolution equation for A′
α does not contain anymore

the term proportional to the identity matrix. From now on, we will refer to A′
α, without the prime

and the transformation (2.48) will be implicit. Finally, if we introduce the two matrices

M =

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

 , A =

2
√
2GFENe(x) 0 0

0 0 0
0 0 0

 . (2.50)

The evolution equation is then written as

i
d

dx
Aα(x) =

1

2E
(UMU † + A)Aα(x) = HfAα(x) , (2.51)

where, to describe neutrino oscillations in matter, the hamiltonian Hf in the flavor basis has been
introduced

Hf =
1

2E
(UMU † + A) . (2.52)

The explicit form of Hf , confirms once again that the neutrino oscillations depend on the squared-
mass differences and not on absolute masses. When the matter potential depends on x, in general,
the full solution of equation (2.52) must be computed numerically. Analytical solutions exist in a
few cases, for analytical matter profiles, and, in particular, for constant matter density.

2.2.1 Two-flavor neutrino oscillations in matter: constant density

Let us consider the mixing of two neutrinos, νe and νµ, for constant density matter, Ne(x) = Ne.
We define ACC = 2

√
2GFENe, so that the flavor evolution equation is

i
d

dx

(
Aee

Aeµ

)
=

1

2E

[(
cos θ sin θ
− sin θ cos θ

)(
0 0
0 ∆m2

)(
cos θ − sin θ
sin θ cos θ

)
+

(
ACC 0
0 0

)](
Aee

Aeµ

)
=

=
1

2E

(
∆m2 sin2 θ + ACC sin θ cos θ∆m2

sin θ cos θ∆m2 ∆m2 cos2 θ

)(
Aee

Aeµ

)
=

=
1

2E

(
∆m2(1

2
− cos 2θ) + ACC

1
2
sin 2θ∆m2

1
2
sin 2θ∆m2 ∆m2(1

2
+ cos 2θ)

)(
Aee

Aeµ

)
=

=
∆m2 + ACC

4E

(
Aee

Aeµ

)
+

1

4E

(
−∆m2 cos 2θ + ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − ACC

)(
Aee

Aeµ

)
.

(2.53)
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As we have done before, we disregard the first term on the right-hand side of (2.53), that is irrele-
vant for the oscillations, and we finally rewrite

i
d

dx

(
Aee

Aeµ

)
= Hf

(
Aee

Aeµ

)
,

Hf =
1

4E

(
−∆m2 cos 2θ + ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − ACC

)
.

(2.54)

The matter hamiltonian in the flavor basis can be diagonalized through an orthogonal (unitary)
transformation, since it is real and symmetric:

Um =

(
cos θm sin θm
− sin θm cos θm

)
,

UmHfU
T
m =

1

4E

(
−∆m2

m 0
0 ∆m2

m

)
= Hd .

(2.55)

with
∆m2

m =
√

(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2 ,

tan 2θm =
tan 2θ

1− ACC

∆m2 cos 2θ

.
(2.56)

In particular we have

sin 2θm =
sin 2θ√

(cos 2θ − ACC/∆m2)2 + sin2 2θ
,

cos 2θm =
cos 2θ − ACC/∆m

2√
(cos 2θ − ACC/∆m2)2 + sin2 2θ

,

(2.57)

What we have obtained implies that the neutrino propagation in a medium with constant electron
density can be studied exactly as the vacuum case, provided we use the matter mixing angle θm and
the matter squared-mass difference θm. In fact, the evolution equation for the oscillation amplitudes
is

i
d

dx

(
Aee

Aeµ

)
= UmHdU

T
m

(
Aee

Aeµ

)
⇒ i

d

dx
UT
m

(
Aee

Aeµ

)
= HdU

T
m

(
Aee

Aeµ

)
⇒

i
d

dx

(
Am

ee

Am
eµ

)
= Hd

(
Am

ee

Am
eµ

)
=

1

4E

(
−∆m2

m 0
0 ∆m2

m

)(
Am

ee

Am
eµ

)
.

(2.58)

were (Am
ee,Am

eµ) are the oscillation amplitudes for the matter eigenstates, defined by the rotation
|να⟩ = (Um)αi |i⟩. Since Hd is diagonal, the time evolution of (Am

ee,Am
eµ) is simple:

Am
ee(x) = Am

ee(0)e
i
∆m2

mx

4E

Am
eµ(x) = Am

ee(0)e
−i∆m

2
mx

4E

(2.59)
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Flavor and mass amplitudes are related through the rotation Um and thus(
Aee(x)
Aeµ(x)

)
=

(
cos θm sin θm
− sin θm cos θm

)(
Am

ee(x)
Am

eµ(x) .

)
(2.60)

If, for instance, the initial state is an electron neutrino, i.e. (Aee(0),Aeµ(0)) = (1, 0), for the
matter initial amplitudes we will have (Am

ee(0),Am
eµ(0)) = (cos θm, sin θm), Therefore, for Aee(x)

we obtain

Aee(x) = cos θmAm
ee(x) + sin θmAm

eµ(x) =

= cos θmAm
ee(0)e

i
∆m2

mx

4E + sin θmAm
eµ(0)e

−i∆m
2
mx

4E =

= cos2 θme
i
∆m2

mx

4E + sin2 θme
−i∆m

2
mx

4E .

(2.61)

For the probability the result is

Pee = |Aee(x)|2 =

cos2 θme
i
∆m2

mx

4E + sin2 θme
−i∆m

2
mx

4E

 ·

cos2 θme
−i∆m

2
mx

4E + sin2 θme
i
∆m2

mx

4E

 =

= cos4 θm + sin4 θm + sin2 θm cos2 θm

ei∆m
2
mx

2E + e
−i∆m

2
mx

2E

 =

= cos4 θm + sin4 θm + 2 cos
∆m2

mx

2E
sin2 θm cos2 θm =

= 1− 2 sin2 θm cos2 θm + 2 cos
∆m2

mx

2E
sin2 θm cos2 θm =

= 1− 2 sin2 θm cos2 θm

(
1− cos

∆m2
mx

4E

)
= 1− sin2 2θm sin2 ∆m

2
mx

4E
.

(2.62)

From an explicit calculation or, more simply, from the probability conservation we obtain

Peµ = 1− Pee = sin2 2θm sin2 ∆m
2
mx

4E
. (2.63)

Going back to (2.56), we see that

θm → ±π
4

when
ACC

∆m2 cos 2θ
→ ∓1 . (2.64)
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When θm → ±π/4, we say that the mixing is maximal, because the amplitude of the oscillations is
maximal (sin 2θm = 1), even if the vacuum mixing angle is small. This resonance phenomenon is
called the Mikheyev–Smirnov–Wolfenstein (MSW) effect. Note that for neutrinos (ACC > 0) the
resonance can happen for θ < π/4, while for antineutrinos (ACC < 0) the vacuum mixing must be
in the second octant, θ > π/4. Note also that when the resonance condition ACC = ∆m2 cos 2θ
is satisfied, the diagonal elements of the Hf are equal to zero, in accordance with the fact that the
oscillation probability amplitude is maximal. Finally, at the resonance, the matter mass squared
difference is minimal.

As we will see, matter effects give rise to many interesting consequences for neutrino oscilla-
tions, but before we proceed, it is better to take a step back a to summarize in simple terms what
we have done.

2.2.2 Two-flavor neutrino oscillations in matter: varying density

Let us rewrite equations (2.54) and (2.56), that we have derived to study the neutrino propagation
in constant matter density

Hf =
1

4E

(
−∆m2 cos 2θ + ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − ACC

)
∆m2

m =
√

(∆m2 cos 2θ − ACC)2 + (∆m2 sin 2θ)2 ,

tan2 2θm =
tan 2θ

1− ACC

∆m2 cos 2θ

.

(2.65)

The flavor hamiltonian is connected to the matter mass diagonal hamiltonian through the rotation
Um:

UmHfU
T
m =

1

4E

(
−∆m2

m 0
0 ∆m2

m

)
= Hd ⇒ Hf = UT

mHdUm =

=
1

4E

(
cos θn − sin θn
sin θm cos θm

)(
−∆m2

m 0
0 ∆m2

m

)(
cos θn sin θn

− sin θm cos θm

)
=

=

(
−∆m2

m cos 2θn ∆m2
m sin 2θn

∆m2
m sin 2θm ∆m2

m cos 2θm

)
.

(2.66)

On one side, it is always possible to numerically solve equation (2.51) with the hamiltonian (2.66),
when ACC depends on x. On the other side, we can study the evolution of the mass eigenstates in
matter by changing basis in equation (2.51) as we have done before, but by taking into account,
this time, that also the matrix elements of Um depends on x:

i
d

dx

(
Aee

Aeµ

)
= UmHdU

T
m

(
Aee

Aeµ

)
⇒ i

d

dx

[
Um

(
Am

ee

Am
eµ

)]
= UmHd

(
Am

ee

Am
eµ

)
⇒

i
dUm

dx

(
Am

ee

Am
eµ

)
+ Umi

d

dx

(
Am

ee

Am
eµ

)
= UmHd

(
Am

ee

Am
eµ

)
.

(2.67)
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Figure 2: These plots show the e↵ective mixing angle (bottom) and the mass
eigenstates (upper) in matter change as a function of the electron density ne. It
is assumed E⌫ “ 1 MeV, m1 “ 0 eV and �m2 “ 7.5 ˆ 10´5 eV2. Each column
refers to a di↵erent choice of sin2 ✓: 10´6 (left) and 0.3 (right).

11

Figure (2.2) : Effective mixing angle (bottom) and mass eigenstates (up) in matter, as a function
of the electron density ne

Multiplying both sides of the equation (2.67) by UT
m, we have

i
d

dx

(
Am

ee

Am
eµ

)
= Hd

(
Am

ee

Am
eµ

)
− iUT

m

dUm

dx

(
Am

ee

Am
eµ

)
=

=

[
1

4E

(
−∆m2

m 0
0 ∆m2

m

)
− i

(
0 dθm/dx

dθm/dx 0

)](
Am

ee

Am
eµ

)
.

(2.68)

Finally, we can write

i
d

dx

(
Am

ee

Am
eµ

)
=

1

4E

(
−∆m2

m −4iEdθm/dx
−4iEdθm/dx ∆m2

m

)(
Am

ee

Am
eµ

)
. (2.69)
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If the electron density depends on x the off diagonal terms in (2.69) must be taken into account.
Explicitly, we find by a direct calculation

dθm
dx

=
∆m2 sin 2θA′

CC(x)

(∆m2)2 + ACC(x)2 − 2∆m2ACC(x) cos 2θ
. (2.70)

With the help of the formula
sin 2θ∆m2 = sin 2θm∆m

2
m , (2.71)

equation (2.70) can also be written as

dθm
dx

=
1

2

sin 2θm
∆m2

m

dACC

dx
. (2.72)

The off-diagonal terms of (2.69) will induce oscillations between the neutrino matter eigenstates,
ν1m ↔ ν2m. However, if the adiabaticity parameter γ, the ratio of off-diagonal to diagonal terms
is small,

γ =
∆m2

m

4Ed|θm/dx
| ≪ 1 , (2.73)

then, during the propagation in matter, ν1m and ν2m evolve separately, adiabatically. This is, for
instance, the case of solar neutrinos. Figure 2.2 shows an example of the adiabatic evolution of
mass eigenstates and of the matter effective mixing angle, when the electron density changes.
Nonadiabatic transitions can happen only around the resonance with a probability Pc that depends
on the matter potential profile, and can be calculated, for instance, with the Landau-Zener formula:

Pc = 1− exp

(
−π∆

2

E

)
, (2.74)

where ∆ is the energy difference between the two mass eigenstates at the resonance and E is
the neutrino energy. In the case of solar neutrinos, when the neutrino energy E ≳ few MeV we
know that the evolution is adiabatic. The two-generation oscillations, neglecting θ13, depend on
(θ12, δm

2). Neutrinos are produced inside the Sun, where the density is very high andACC/δm
2 ≳

1, so that from (2.57) we get θm12 ≃ π/2, and the initial neutrino state ν ine = νm2. The adiabatic
evolution implies that, when neutrinos reaches the surface of the Sun, the final state is still a
ν2, but now in vacuum. The probability P (νe → νe) = sin2 θ12 is the probability of “finding”
a νe in a ν2. When E ≲ few MeV, from (2.57) one has θm12 ≃ θ12, at the production point
and ν ine = cos θ12νm1 + sin θ12νm2. Afterwards, the mass eigenstates evolve adiabatically, and
at the Sun surface θm12 = θ12. Since the oscillation length is much smaller than the path, we
can assume kinematic decoherence by averaging out the interference terms, so that when leaving
the sum the probability of having a ν1 is cos2 θ12, the probability of having a ν2 is sin2 θ12. By
taking into account the probability of finding a νe in the mass eigenstates, one has P (νe → νe) =
cos4 θ12 + sin4 θ12 = 1− 1/2 sin2 θ12.
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Neutrino Oscillations in Matter

• We saw that the neutrino coherent forward scattering on matter particle, for instance
electrons, of density Ne(x), will generate an additional potential Vα, to be added to the
free hamiltonian of a propagating να;

• For neutrino scattering on ordinary matter, the only term that matters is Ve =
√
2GFNe(x);

• We have written the flavor evolution equation for the oscillation amplitudes and found
that their evolution is governed by the vacuum hamiltonian UMU †/2E, plus a flavor
diagonal term for the ee matrix element that ACC/2E = Ve;

• We have considered later the simplest case of constant density matterNe(x) = Ne in two
flavors, and we have diagonalized the hamiltonian through a rotation (unitary) matrix

Um =

(
cos θn sin θn

− sin θm cos θm

)
that connects the flavor and the matter “mass” states;

• The same oscillation formula as before will hold, if one replaces the vacuum mixing
angle and squared-mass difference with the matter ones.

• When the matter density changes slowly along the path, the evolution is adiabatic and the
instantaneous mass eigenstates changes slowly with the matter potential, and crossing
probability among them is negligible, except at the resonance.
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3 Neutrino Phenomenology
As we have seen in sections 1 and 2, the parameters governing neutrino physics are the three
masses (m1,m2,m3), the three mixing angles (θ12, θ13, θ23), one phase δ responsible for possible
CP violations, and two more phases (ϕ1, ϕ2), if neutrinos are Majorana particles.

3.1 Neutrino oscillations Parameters
Neutrino oscillations depend on the squared-mass differences ∆mij = m2

i − m2
j , and not on the

absolute masses, and are unaffected by the Majorana phases. Therefore, the parameter space that
can be investigated with oscillation experiments is six-dimensional, (θ12, θ13, θ23, ∆m2

21, ∆m
2
32, δ).

There is an ambiguity on the order of the neutrino masses. By convention, we assume ∆m2
21 =

m2
2−m2

1 > 0 and we refer to it as δm2, without the 12 subscript. Two possibilities remain, however,

⌫1

⌫2

⌫3

⌫3

+�m2

��m2

�m2

Normal 
Ordering

Inverted 
Ordering

Figure (3.1) : Neutrino mass ordering, normal and inverted.

m3 > m2 > m1 and m3 < m1 < m2, as shown in Figure (3.1). We call Normal Ordering (NO)
the case in which the (m1,m2) doublet is lighter than m3, Inverted Order (IO), the opposite one.
We also adopt a new definition for the squared-mass differences, to avoid the potential confusion
arising from the fact that, in NO, the largest positive mass difference is ∆m2

31, while, in IO, is
−∆m2

32. We define the “large” squared-mass difference

∆m2 = m2
3 −

m2
1 +m2

2

2
. (3.1)

To go from NO to IO, with equal ∆m2
32 in NO and ∆m2

13 in IO, it is enough to change ∆m2 with
−∆m2. Commonly, ∆m2 and δm2 are referred to as the “atmospheric” and “solar” squared-mass
difference, respectively.

Oscillation experiments are not sensitive to the absolute mass scale of the neutrino spectrum,
i.e. to m1 in NO, and to m3 in IO. There are, nevertheless, experiments sensitive to this absolute
scale: they will be discussed in section 4. There are observables depending on the sum of neutrino
masses, also in cosmology and astrophysics.
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3.2 Neutrino Sources
Neutrinos are produced by a variety of sources, as the Sun in the nuclear reactions, supernova
explosions, cosmic ray interactions with the nuclei in the atmosphere, and man-made sources, such
as nuclear reactors and particle accelerators. The neutrino energy spectrum at Earth is summarized
in Figure (3.2) It is remarkable that the neutrino energy spans a huge range of orders of magnitude,
from 10−6 to 1020 eV, with a flux ranging from 10−36 to 1015 eV−1 cm−2 sec−1. We can briefly
summarize the different spectrum components with increasing energies:

• Relic neutrinos from thr Early Universe (CNB, Cosmic Neutrino Background). These neutri-
nos are a remnant echo of the Universe about 1 sec after the Big Bang, and, in the hypothesis
of massless neutrinos, have a density today of ∼ 112 cm−3 να + να for each flavor α.
They have a blackbody spectrum at T = 1.945 K, corresponding to energy of 0.168 meV.
If we assume NO (m1 < m2 < m3) and m1 = 0, then m2 =

√
δm2 ∼ 8.6 meV and

m3 ∼
√
∆m2 ∼ 50 meV. The high number density of relic neutrinos implies that, even if

at least two of them are nonrelativistic, the neutrino flux is very high, as Figure (3.2) shows.
The flux is of the order of 1010 − 1014 eV−1 cm−2 sec−1 (flux ϕ ∼ n× v), depending on the
details of the neutrino mass spectrum.

• Big-Bang Nucleosynthesis neutrinos. During the first few minutes after Big Bang, neutrinos
are produced from neutron and 3H decays, with an energy ∼ 10 − 100 meV. Their flux is
the dominant one in a small window between the CNB and the flux of solar neutrinos.

• Solar Neutrinos. These neutrinos are produced in the hydrogen fusion through the pp chain
and the CNO cycle. Neutrino energies vary from ∼ 0.1 to ∼ 20 MeV. The flux of solar
neutrinos at Earth is Φ ∼ 6.5 1010 cm−2 sec−1 with a number density of ∼ 2.2 cm−3. There
is also a thermal component of the solar neutrino spectrum in the keV range, produced by
plasmon decay (plasma oscillations leading to γ → ν + ν), Compton processes (γ + e− →
e− + ν + ν) and electron bremsstrahlung (e− + Ze→ e− + Ze+ ν + ν).

• Geoneutrinos. Some radioactive isotopes in the Earth crust and mantle, 238U, 232Th and 40K
produce a flux of antineutrinos νe with energies of few MeV, in the same energy range as
solar neutrinos. Although smaller than the solar one (Φνe ∼ 2 × 10−6 cm−2 sec−1, depend-
ing on the position on earth’s surface), this flux has been measured and gives geological
information on the Earth interior.

• Reactor Neutrinos. Nuclear reactors all over the world produce a flux of antineutrinos νe
from the beta decays of the fission products of 235U, 239Pu, 238U, and 241Pu. The energy
range is ∼ 0 − 10 MeV, and while the global flux at Earth is just a few percent of the
geoneutrino one, near the reactor core, it is largely dominating even at distances of tens of
kilometers.

• Accelerator Neutrinos. Accelerator neutrinos with energies ∼ 1 GeV are produced by the
decay of pions, kaons and muons. Even if they do not constitute a significant global flux, it
is worth mentioning them here, among the terrestrial, man-made sources.

• Supernova Neutrinos. Supernova (SN) explosions emit, in a few seconds, a huge flux of
MeV neutrinos. However, the integral of all the collapsed and collapsing starts, about 2 per
second in the visible Universe, generates an expected flux of the order of 10−1 cm−2 sec−1

MeV−1.
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Figure (3.2) : Grand Unified Neutrino Spectrum (GUNS) at Earth, integrated over directions
and summed over flavors. Solid lines are for neutrinos, dashed or dotted lines for antineutrinos.
The CNB spectrum corresponds to the masses (m1 = 0,m2 = 8.6,m3 = 50) meV, resulting
in a blackbody spectrum plus two monochromatic lines of nonrelativistic neutrinos with energies
corresponding to neutrinos with masses m2 and m3. Figure from [4].

• Atmospheric Neutrinos. The interaction of the cosmic rays with the atmosphere nuclei pro-
duces atmospheric neutrinos. They come mostly from the decays of the pions and muons
that are produced in the cosmic ray interactions. Atmospheric neutrino fluxes span a vast
energy range, like the cosmic rays that generate them: the energy goes from ∼ 200 MeV to
1020 eV,

• Extraterrestrial High-Energy Neutrinos. At energies from about TeV to PeV, neutrinos are
produced in the source (for instance star-forming galaxies, gamma ray bursts or active galac-
tic nuclei) or around it, or during cosmic ray propagation towards the Earth.

The impressive differentiation in the energies, processes and flux intensities of the neutrino sources
implies, in turn, diversification on the detection side, concerning the technologies and physics
involved. The study of the different GUNS components of Figure (3.2) is important, both from
the point of view of the neutrino physics and the study of the source properties. Typically, we
can simplify the problem in a production-propagation-detection scheme. Neutrino oscillations
certainly play a crucial role in the propagation from the source to the detector. The purpose of
the experiment is to extract the neutrino parameters, masses and mixing, from the data. On the
other hand, the physics of the source is not always sufficiently well known, and the properties
of the source and the neutrino parameters are to be determined at the same time from data, if
possible. The length scale of the neutrino path and the energy set the relevant parameters that can
be extracted from the experimental data at hand.
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Figure (3.3) : Schematic table of the various neutrino oscillations experiment categories. A
green or red box means that the experiment is sensitive to the correspondent parameter. If there is
only a subleading sensitivity, the color is opaque. Green is for disappearance, red for appearance
experiments. The blue squares indicate sensitivity to the mass ordering.

3.3 Phenomenology of Neutrino Oscillations
We show in Figure (3.3) the neutrino oscillation parameters that each class of experiments is sen-
sitive to. Even a quick glance at Figure (3.3) allows you to convince yourself that only a combined
analysis of the data can explore the whole neutrino oscillation parameter space. In many cases,
the small ratio δm2/∆m2 ∼ 3 × 10−2, reduces the analysis of a given class of experiments to an
effective two-generation oscillation problem, to a first approximation. For instance, solar neutrino
oscillations depend mainly on the “solar” parameters (δm2, θ12), atmospheric neutrino oscillations
on the “atmospheric” parameters (∆m2, θ23), short-baseline reactor neutrino experiments (Reactor
SBL) are sensitive to (∆m2, θ13) and long-baseline accelerator experiments are mainly sensitive to
(∆m2, θ23, θ13, δ).

3.3.1 Solar and long-baseline reactor neutrinos

The Sun produces electron neutrinos with energies Eν ∼ 1 MeV in fusion reactions. Because of
the relatively low energy, the absorption in solar matter can be neglected and the Sun is virtually
transparent to them. To detect solar neutrinos, we need large underground detectors to suppress the
cosmic rays background. The theoretical neutrino flux is shown in Figure (3.4). The pioneering
solar neutrino experiment was the Homestake experiment, the first to have found the solar neutrino
deficit. Neutrinos were detected using the inverse inverse β-decay νe +37 Cl →37 Ar + e− with
a threshold of 0.814 MeV. Homestake detected intermediate and high-energy neutrinos with the
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Figure (3.4) : Solar neutrinos.

main contribution coming from high-energy 8B neutrinos, as shown Figure (3.4). The gallium
radiochemical GALLEX/GNO and SAGE experiments have measured pp chain neutrinos, with a
threshold of 0.233 MeV, through the reaction νe +71 Ga →71 Ge + e−. Figure (3.4) shows how
the low threshold allows the cumulative measurement of solar neutrinos from all sources. Gallium
experiments measured a flux about half of that predicted by the SSM, with an error that proves the
deficit at more than 5σ. Super-Kamiokande and SNO measured the 8B spectrum, with a threshold
of about 5 MeV. The Super-Kamiokande used a water Cherenkov detector measuring the energy
and angular distribution of solar neutrinos through their elastic scattering on electrons. SNO was a
heavy-water Cherenkov detector that measured the angular and energy spectrum of solar neutrinos
through the following reactions

CC : νe + d→ p+ p+ e−

NC : να + d→ p+ n+ να

ES : να + e− → να + e− .

(3.2)

By exploiting all three processes (3.2), the SNO experiment was able to confirm the solar neutrino
deficit in a model independent manner. Today we know that the solar neutrino deficit is explained
by the so-called Large Mixing Angle Solution, shown in Figure (3.6). For the LMA solution, there
is no resonance for neutrinos with low energies (Eν ≲ 2 MeV) for which the survival probability
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Figure (3.5) : Energy profile of the solar
survival probability for different energies.
Also shown are the corresponding solar neu-
trino energy spectra, in arbitrary scale.
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is equal to its average value in vacuum, P (νe → νe) = 1 − 1/2 sin2 2θ, while for Eν ≳ 2 MeV
the resonance is crossed adiabatically. The MSW effect is also important when solar neutrinos
cross the earth, causing the so-called Day/Night effect, depending on neutrinos crossing or not the
Earth on their way to the detector. Even if there are many analytically accurate approximations
in different energy and density ranges, both for the Sun and the Earth propagation, in the end the
calculation must be performed numerically, as shown for instance in Figure (3.5).

The solar neutrino parameters, i.e. (δm2, sin2 θ12), and to a lesser degree sin2 θ13, are also
explored by LBL reactor neutrino experiments, in particular KamLAND. The result of the Kam-
LAND analysis is also shown in Figure (3.6). The combined analysis of Solar+KamLAND data
gives

sin2 θ12 = 0.303± 0.013 , δm2 = 7.36± 0.15 . (3.3)

3.3.2 Atmospheric neutrinos

Through interactions with nuclei in the air, primary cosmic rays produce cascades of particles, and,
among those products, atmospheric neutrinos. A typical scheme for the production processes of
atmospheric neutrinos is as follows:

p(n, α, . . . ) + NucAir →π±(K±) + . . .

π±(K±) → µ± + νµ(ν̄µ)

µ± → e± + νe(ν̄e) + ν̄µ(νµ) .

(3.4)

The energy spectrum of cosmic rays follows a power law distribution dϕ/dE ∝ E−(γ+1),
with good approximation. Experimentally, the observed terrestrial spectrum is characterized by
γ ≃ 1.7. In turn, the energy spectrum of atmospheric neutrinos follows the spectrum of primary
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Figure (3.7) : Examples of atmospheric neutrino fluxes, from the theoretical calculation [5].

cosmic rays up to energies of the order of 100 GeV, while at higher energies, γ increases by
one unit. The energy at which the slope of the spectrum changes depends on the zenith angle θ,
mainly through the angular factor coming from the decay of pions, which has a typical behavior
of ∼ sec θ. The increase in the slope of the energy spectrum is a result of the fact that, at low
energies, all secondary particles have time to decay. Hence, the neutrino spectrum reproduces that
of the primary cosmic rays. As the energy increases, fewer and fewer secondary particles have
time to decay.

Consider the ratio
r =

νµ + ν̄µ
νe + ν̄e

, (3.5)

which is particularly relevant in neutrino oscillation research. For cosmic rays with energies around
GeV, practically all secondary particles decay (including muons from the decay of pions, which
are the main source of νe and a relevant source of νµ). In this case, the neutrino production scheme
exemplified in (3.4) suggests that the ratio of νµ to νe should be ∼ 2. Additionally, since in primary
cosmic rays, protons are in excess compared to neutrons, π+ are slightly in excess compared to π−,
and one can expect ν̄e/νe ∼ µ−/µ+ < 1. Figure (3.7) shows the result of a numerical calculation.

In atmospheric neutrino experiments as Super-Kamiokande (SK), neutrino fluxes of are de-
tected through neutrino–nucleon collisions

νℓ +N → ℓ− + X , νℓ +N → ℓ+ + X . (3.6)

Being a water Cherenkov detector, SK cannot distinguish ℓ− from ℓ+, so does not distinguishes νℓ
form νℓ.
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3.3.3 Terrestrial neutrinos: Reactors and Accelerators Neutrinos

We mentioned the KamLAND experiment, in connection with solar neutrinos. It was an experi-
ment measuring reactor antineutrinos coming from a distance between 80 km and 800 km, with
an average of about 180 km. In combination with solar neutrinos, KamLAND data gave a first
hint in favor of a nonzero θ13. The other SBL reactor experiments Double CHOOZ, RENO and
more importantly, Daya Bay, have measured the mixing angle θ13 with great accuracy, sin2 θ13 =
0.0223± 0.006, but also ∆m2 with an accuracy comparable to the one of the LBL accelerator ex-
periments. Figure (3.8) shows the ratio of measured to expected νe flux from reactor experiments.
When the distance between the reactor core and the detector is ≳ 1 km (SBL), a deficit of the flux
is a signal of oscillations governed by θ13.

As for reactors, also in the case of accelerator experiments the baseline can be long or short.
All the SBL accelerator experiments did not find any indication of neutrino oscillations, with the
exception of the LSND experiment, which found a signal in the νµ → νe channel and a weaker
one in the νµ → νe, pointing to possible νµ and νµ to νs oscillations. A following project, Micro-
BooNE, found no evidence for a sterile neutrino, but with results still controversial. Currently, two
LBL accelerator experiments are studying the

(−)

ν µ → (−)

ν e channel, T2K and NOvA. These exper-
iments were optimized to measure θ13, but they give important information about the parameters
∆m2, θ13, θ23 and the CP phase δ. For instance, Figure (3.10) shows the allowed regions in the
planes (sin2 θ13, δ) and (sin2 θ23, ∆m

2
32), from the latest T2K data [7].

3.3.4 Global Analysis of Neutrino Oscillation Data

To get bounds to all oscillation parameters in the 6-dimensional parameter space (∆m2, δm2, θ12,
θ13,θ23, δ), one should combine the analysis of all experiments. Obviously, one could perform the
global combination from the beginning, both for normal and inverted ordering, but in this way, it is
much more difficult to understand all the correlations between the parameters. To this end, it can
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help to combine data into three different steps:

• We start by combining solar, KamLAND, and LBL accelerator data (Figure (3.11)). Solar
and KamLAND data are mainly sensitive to the solar parameters (δm2, θ12), and, to a sub-
leading order, to θ13. On the other hand, the solar parameters are a necessary input for the
LBL analysis. LBL data, by means of the νµ → νµ disappearance and the νµ → νe ap-
pearance channel, allow us to explore the parameters (∆m2, θ23, θ13). These three datasets
represent the minimal subsample of data sensitive to all the oscillation parameters.

• In the next step, we add the analysis of SBL reactor data (see Figure 3.12)), that improve
the constraints on (∆m2, θ13), and indirectly affect the parameters (θ23, δ) and the mass or-
dering, i.e. the sign of ∆m2. Through the correlations between the mass-mixing parameters,
the preference for the mass ordering is reversed, and NO ordering is preferred at ∼ 1.5σ.

• Finally, we add to the analysis the atmospheric data that are mainly sensitive to the “atmo-
spheric” parameters (∆m2, sin2 θ23) but also, to a lesser degree, to the solar parameters and
δ (Figure (3.13)). By combining all oscillation data, the sensitivity to the mass ordering can
rich the ∼ 2σ level.

Figures (3.11), (3.12) and (3.13) show the bounds on each oscillation parameter, by marginalizing
over all the others. Blue curves are for NO, red ones for IO. From solar and KamLAND data
(3.11), IO is slightly preferred at level of ∼ 1σ. The two parameters δm2 and sin2 θ12 are fairly well
measured, with almost gaussian uncertainties, that, if

√
∆χ2 is shown on the y axes, correspond

to straight lines. There is no significant difference between the bounds in NO and IO. The mixing
angles θ13 and θ23 are less accurately constrained, and there is a double minimum for both angles.
For θ23, this is a consequence of octant ambiguity in the νµ → νµ disappearance searches at LBL
accelerators. The bounds on the phase δ are weak, although it appears to be slightly favored around
π in NO, and around 3π/2 in IO, while it is disfavored around π/2 in both cases.

Figure 3.12 shows the results of the analysis, with the inclusion of SBL reactor data, which are
sensitive to |∆m2| and sin2 θ13. The uncertainty on sin2 θ13 is strongly decreased. The correlations
between the oscillation parameters alter the preference for the θ23 octant. The independent mea-
surements of∆m2, through a synergy between the SBL and LBL data, changes also the preference
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IO case by ∼1.0σ.

for the mass ordering, from IO to NO, with NO preferred at the level of ∼1.3σ. Note that the best-
fit value of ∆m2 is increased with respect to Figure (3.11). The preference for δ ∼ π (∼ 3π/2)
in both mass orderings does not change. Figure (3.13) shows the effect of adding atmospheric ν
data, which add further sensitivity to the atmospheric parameters, ∆m2 (and to its sign), sin2 θ23
and δ. Atmospheric data analysis depends on all parameters in a complicated way, since the SK
data span a large range of energies, and the information on neutrino and antineutrino oscillations is
integrated. The atmospheric analysis takes as inputs (δm2, θ12, θ13) from the combination of solar,
KamLAND and SBL reactor data. In particular, the inclusion of atmospheric data strengthens the
preference for NO at a level of ∼ 2.5σ), and flips the θ23 preference from the upper to the lower
octant in NO (at ∼ 1.6σ). The best-fit value of δ is slightly higher, and the δ = π is disfavored at
∼ 1.6σ. The bounds on each single parameter, do not allow us to understand how different datasets
combine or compete to set constraints on parameters. For these reasons, it is useful to look at the
combined bounds in the planes (sin2 θ13, sin2 θ23), (sin2 θ23, |∆m2) and (sin2 θ23, δ).

Figure (3.14) shows the covariance of the pair (sin2 θ23, sin
2 θ13) for increasingly rich data sets,

in both NO (top) and IO (bottom). In each row, it is shown the∆χ2, with respect to the correspond-
ing mass ordering. We see that there is an octant ambiguity for θ23, with two nearly degenerate
solutions at 1σ. Maximal mixing is allowed at ∼ 2σ. The dominant term in the LBL appearance
probability is proportional to sin2 θ23 sin

2 θ13 and induces an anticorrelation between θ23 and θ13.
Before including the results of the SBL reactors, the relatively large range for sin2 θ13, does not
select one of the two octants. In the central column, the SBL analysis, whose constraints on θ13 are
shown with a ±2σ error bars, tends to prefer the upper-octant solution, corresponding to a lower
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Figure (3.12) : As in Figure (3.11), but adding SBL data. The offset ∆χ2
IO−NO = +1.8 favors the

NO case by ∼1.3σ.
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Figure (3.13) : As in Figure (3.12), but adding atmospheric ν data (i.e., with all oscillation data
included). The offset ∆χ2

IO−NO = +6.5 favors the NO case by ∼2.5σ.
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Figure (3.14) : Regions allowed in the plane (sin2 θ23, sin
2 θ13) for different dataset combinations:

Solar + KamLAND + LBL accelerator data (left), + SBL reactor data (center), + Atmospheric data
(right). Top and bottom panels refer, respectively, to NO and IO as taken separately, without any
relative offset. The error bars in the middle panels show the ±2σ range for θ13 arising from SBL
reactor data only.

value of θ13, both for NO and IO. Therefore, the combination selects a more flattened region at
lower θ13. The best-fit values of θ23 flips into the upper octant for IO, suggesting that there is still
no robust indication for the θ23 octant. Combining all the data, there is virtually no improvement in
the θ13 constraints, and the preferred octant in NO for θ23 flips into the first θ23 octant, confirming
the instability of the θ23 solution. In particular, for both NO and IO, maximal mixing is allowed
at ∼ 2σ. Another interesting case, is that of the bounds in the plane (sin2 θ23, |∆m2|), shown
in Figure (3.15). In this figure we put |∆m2|, on the y axes, so that both mass orderings can be
represented in the same plot. The blue error bar in the second row represents the constraints on
∆m2, from SBL data alone. The SBL analysis favors relatively high values of ∆m2, as compared
to LBL data. Therefore, in the combination LBL+SBL, there is a better agreement in NO that in
IO. Additionally, relatively high values of θ23 are preferred, disfavoring θ23 maximal mixing. The
overall preferences for NO and for nonmaximal of θ23 are corroborated by atmospheric data that,
however, change in NO the preferred octant from the upper to the lower one. Even though SBL
experiments are not directly sensitive to the mass ordering, i.e. to the sign of ∆m2, and to the mix-
ing angle θ23, the correlations between the oscillation parameters make them capable of helping to
constrain both the mass ordering and θ23, once they are combined with other datasets.

Finally, it is also very interesting to look at the bounds on δ in the plane (sin2 θ23, δ) of Fig-
ure (3.16). The octant ambiguity leads to two quasi-degenerate best fits, surrounded by allowed
regions that merge at 2σ or 3σ. The allowed regions for δ are larger in NO, and approximately
correspond to the interval [π, 2π], at ∼ 3σ. In particular, CP-conserving case δ ≃ π is allowed
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Figure (3.15) : As in Figure (3.14), but in the plane (sin2 θ23, |∆m2|). The error bars in the
middle panels show the ±2σ range for |∆m2|, arising from SBL reactor data only.
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Figure (3.16) : As in Figure (3.15), but in the plane (sin2 θ23, δ).

at 2σ. In IO there is rather stable preference for CP-violation, δ ≃ 3π/2 in all data combina-
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Figure (3.17) : Bi-event plots: Total number of ν and ν appearance events for T2K and NOvA,
in four possible combinations. The slanted ellipses represent the theoretical expectations for NO
(blue) and IO (red), and for two representative values of sin2 θ23: 0.45 (lower octant, thin ellipses)
and 0.57 (upper octant, thick ellipses). The CP-conserving value δ = π and the CP-violating value
δ = 3π/2 are marked as a circle and a star, respectively. Each gray band represents one datum
with its ±1σ statistical error; the combination of any two data provides a (black dashed) 1σ error
ellipse, whose center is marked by a cross.

tions, and δ ≃ π is excluded at 3σ. The two parameters δ and θ23 appear to be uncorrelated in
IO. A slight negative correlation between δ and sin2 θ23 emerges when adding SBL reactor data.
The anticorrelation between δ and sin2 θ23 in NO moves the best fit of δ to slightly higher values,
since atmospheric neutrino data prefer δ ∼ 3π/2 and the lower octant of θ23. The CP-conserving
value δ = π is disfavored at 90% C.L. or, equivalently at ∼ 1.6σ. The bounds on all oscillation
parameters as well the percentage accuracy are reported in Table 2. In summary, current neu-
trino oscillation experiments, have measured the three mixing angles and the two squared-mass
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Table (2) : Global 3ν analysis of oscillation parameters: best-fit values and allowed ranges at
Nσ = 1, 2 and 3, for either NO or IO, including all data. The latter column shows the formal
“1σ fractional accuracy” for each parameter, defined as 1/6 of the 3σ range, divided by the best-fit
value and expressed in percent. We recall that ∆m2 = m2

3 − (m2
1 +m2

2)/2 and that δ ∈ [0, 2π]
(cyclic). The last row reports the difference between the χ2 minima in IO and NO.

Parameter Ordering Best fit 1σ range 2σ range 3σ range “1σ” (%)
δm2/10−5 eV2 NO, IO 7.36 7.21 – 7.52 7.06 – 7.71 6.93 – 7.93 2.3
sin2 θ12/10

−1 NO, IO 3.03 2.90 – 3.16 2.77 – 3.30 2.63 – 3.45 4.5
|∆m2|/10−3 eV2 NO 2.485 2.454 – 2.508 2.427 – 2.537 2.401 – 2.565 1.1

IO 2.455 2.430 – 2.485 2.403 – 2.513 2.376 – 2.541 1.1
sin2 θ13/10

−2 NO 2.23 2.17 – 2.30 2.11 – 2.37 2.04 – 2.44 3.0
IO 2.23 2.17 – 2.29 2.10 – 2.38 2.03 – 2.45 3.1

sin2 θ23/10
−1 NO 4.55 4.40 – 4.73 4.27 – 5.81 4.16 – 5.99 6.7

IO 5.69 5.48 – 5.82 4.30 – 5.94 4.17 – 6.06 5.5
δ/π NO 1.24 1.11 – 1.42 0.94 – 1.74 0.77 – 1.97 16

IO 1.52 1.37 – 1.66 1.22 – 1.78 1.07 – 1.90 9
∆χ2

IO−NO IO−NO +6.5

differences with an accuracy between 1% and 5%. the best known parameter is the atmospheric
∆m2, with an accuracy of 1.1%. The determination of the octant of θ23 is still fragile. The worst
known parameter is δ, with uncertainties ∼ 10 − 15%, depending on the mass ordering. There is
a preference at about 2.6σ for NO. The uncertainty on the CP phase comes mostly from a tension
between the NOvA and T2K experiments. This tension can be exemplified by a bi-event plots
where event rates at T2K and NOvA are compared. The plots in Figure (3.17) are a variation of
the bi-probability plots representing the νµ → νe and νµ → νe appearance probabilities in LBL
accelerator experiments, at fixed neutrino energy. If δ is continuously varied, the bi-probability
plot produces ellipses and can help to understand parameter degeneracies. By averaging over en-
ergy weighted by fluxes and cross sections, the probabilities can be converted into total number
of appearance events, and thus into bi-event plots, preserving elliptic shapes that can be compared
with experimental data. Figure (3.17) shows four possible combinations of the ν and ν appearance
events: the blue and red ellipses represent the theoretical expectations for NO and IO, respectively,
while the grey bands and the black ellipses represent the data with their 1σ statistical errors. The
mixing angle θ23 is fixed in the lower octant (thin) or upper octant (thick). Two representative val-
ues of δ (π and 3π/2) are indicated on each ellipse. One can analyze the experiments, separately,
as shown in the upper left and lower right plots. For T2K, the best agreement of theory and data is
reached for NO, with a clear preference for δ = 3π/2, and a slight preference for the upper octant
of θ23. For NOvA, the situation is not so clear, since all the colored ellipses are close to the ex-
perimental one. The agreement is larger in NO, with a preference for δ = π/2, with no significant
distinction of the θ23 octants.

If one combines T2K and NOvA separately in the ν and ν channels, as shown in the upper
right panel and in the lower-left panel, the best agreement of data and theory is now reached for
IO, with a clear preference for δ = 3π/2. The preference for the θ23 octant changes in the ν and ν
channel. It is evident that the combination of T2K and NOvA data results in a tension with respect
to the preferred δ, mass ordering and octant of θ23.
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4 Direct Measurements of Neutrino Masses
The absolute neutrino mass scale can be probed by non-oscillatory neutrino experiments. The
most sensitive laboratory experiments to date have been focussed on tritium beta decay and on
neutrinoless double beta decay. Beta decay experiments probe the so-called effective electron
neutrino mass mβ ,

mβ =
[
c213c

2
12m

2
1 + c213s

2
12m

2
2 + s213m

2
3

] 1
2 . (4.1)

Current experiments provide upper limits in the range mβ ≲ few eV.
Neutrinoless double beta decay (0ν2β) experiments are instead sensitive to the so-called effec-

tive Majorana mass mββ (if neutrinos are Majorana fermions)

mββ =
∣∣c213c212m1 + c213s

2
12m2e

iϕ2 + s213m3e
iϕ3
∣∣ , (4.2)

where ϕ2 and ϕ3 are the two Majorana phases. All 0ν2β experiments placed only upper bounds on
mββ .

Astrophysical and cosmological observations have started to provide indirect upper limits
on absolute neutrino masses, competitive with those from laboratory experiments. In particu-
lar, the combined analysis of high-precision data from Cosmic Microwave Background (CMB)
anisotropies and Large Scale Structures (LSS) has already reached a sensitivity of O(eV) for the
sum of the neutrino masses Σ = m1 +m2 +m3.

In beta decay experiments, a nucleus emits a beta particle (an electron or positron) and an
antineutrino or neutrino, for instance

A
ZX →A

Z+1 Y + e− + νe (4.3)

in which A
ZX , the parent nucleus, decays in a A

Z+1Y daughter nucleus, emitting an electron and
an antineutrino. The energy and momentum of the decay products can be measured to infer the
neutrino mass, by looking at the distortions, induced by neutrino masses, in the electron energy
spectrum. The final nucleus is much heavier than the leptons, and its kinetic energy ca be neglected.
Therefore, the neutrino energy is Eνe = Q − T , where T is the kinetic energy of the electron and
the Q-value is the total available energy. If neutrinos were massless, Q would coincide with the
maximal kinetic energy of the electron.

The differential reta for the beta decay can be written as

dΓ

dEe

=
G2

Fm
5
e

2π3
cos2 θC |M |2F (Z,Ee)EepeEνepνe , (4.4)

where θC is the Cabibbo angle, M is the nuclear matrix element, F (E,Z) is the Fermi function
which describes the Coulomb interaction between the emitted electron and the residual nucleus,
pα and Eα with α = e, νe are the momentum and energy of the final leptons. The product pνeEνe

can be rewritten as9

pνeEνe = Eνe

√
E2

νe −m2
νe = (Q− T )

√
(Q− T )2 −m2

νe (4.5)

9Acually, a more accurate formula must take into account the excited energy levels of the electrons in the final
atom.
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Figure (4.1) : Kurie plot for tritium beta decay.

The so-called Kurie function is defined in the following way, by factoring out all the terms that do
not depend on neutrino momentum or energy

K(T ) =

√
dΓ/dT

G2
Fm5

e

2π3 cos2 θC |M |2F (Z,Ee)Eepe
=

√
(Q− T )

√
(Q− T )2 −m2

νe , (4.6)

where we have used dT = d(Ee −me) = dEe. For massless neutrinos K(T ) = Q − T , while,
when mνe ̸= 0, K(T ) is no more linear in T . An example of the distortions in the linearity of the
Kurie plot is shown in Figure (4.1).

However, if the neutrino mixing is taken into account, the K(T ) becomes

K(T ) =

√√√√(Q− T )
3∑

i=1

|Uei|2
√

(Q− T )2 −m2
νi

(4.7)

If mi ≪ Q−T (for instance the KATRIN experiment Q ∼ 18.6 keV, and therefore, at the electron
spectrum endpoint, this condition is absolutely verified), then

√
(Q− T ))2 −m2

νi
= (Q− T )

√
1− m2

i

(Q− T )2
∼ (Q− T )− m2

i

2(Q− T )
, (4.8)

so that

3∑
i=1

|Uei|2
√

(Q− T )2 −m2
νi
∼

3∑
i=1

|Uei|2
[
(Q− T )− m2

i

2(Q− T )

]
=

= Q− T −
∑3

i=1 |Uei|2m2
i

2(Q− T )2
∼
√

(Q− T )2 −m2
β ,

(4.9)
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where we have introduced the “effective electron neutrino mass”, firstly defined in (4.13),

m2
β =

√√√√ 3∑
i=1

|Uei|2m2
i = c212c

2
13m

2
1 + s212c

2
13m

2
2 + s213m

2
3 . (4.10)

Note that mβ depends on the three masses mi and the two mixing angles θ12 and θ13, but not on θ23
The KATRIN β-decay experiment has recently presented the result mβ < 0.8 eV [8], representing
the first constraint on the effective β-decay mass in the sub-eV range.

Besides beta decay experiments, measuring the endpoint of the electron energy spectrum, an-
other class of experiments probes the possible neutrinoless double beta decay (0νββ) of some long
lived nuclei like 76Ge, 136Xe, 130Te,

A
ZX → A

Z+2Y + 2 e− . (4.11)

As pictorially shown in Figure (4.2), (0νββ) is possible when neutrinos are Majorana particles,
since it implies the existence of a vertex where two antineutrinos annihilate each other. The Feyn-
man diagram corresponding to a double neutron decay that happens inside the nucleus is shown in
Figure (4.3). The hal-life of a nucleus decaying though a neutrinoless double beta decay

1

T 0νββ
1/2

= G|Mnucl|2mββ , (4.12)

depends on the phase space G, the nuclear matrix element Mnucl, and on mββ ,

mββ =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ = ∣∣c213c212m1 + c213s
2
12m2e

iϕ2 + s213m3e
iϕ3
∣∣ . (4.13)

firstly introduced in (4.2). In particular, mββ depends on the absolute neutrino masses mi and
the two mixing angles θ12 and θ13, like mβ , but also on the two majorana phases, ϕ2 and ϕ3.
Figure (4.4) shows the current limits on the decaying half-life from current experiments. The
corresponding bounds on mββ require the knowledge of the nuclear matrix elements, that are still
affected by large theoretical uncertainties. Bothmβ andmββ depends on the oscillation parameters.

e−

e−

νe νe

Nucleus

e−

e−

νe

νe

Nucleus

Figure (4.2) : On the left, neutrino double beta decay; on the right, neutrinoless double beta
decay.
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Figure (4.3) : Feynman diagram for the neutrinoless double beta decay.
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Figure (4.4) : ∆χ2 functions in terms of the half-life T (top abscissa) and of the signal strength S = 1/T (bottom
abscissa). Left and right panels: separate experiments and their combinations for the same isotope, respectively.

The accurate knowledge of the two squared mass differences δm2 and ∆m2, makes it possible
to eliminate two absolute masses from the expression of mβ and mββ , leaving us with only one
unknown mass, for instance the smallest one,m1. Since, as we will see in the following, cosmology
and astrophysics constrain the sum of neutrino masses Σ = m1 + m2 + m3, a second, more
physically founded option, is to express m1, m2 and m3 as functions of δm2, ∆m2 and Σ, in both
mβ and mββ .
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5 Supernova Neutrinos
Supernova (SN) neutrinos are of great interest in astroparticle physics for several reasons. On
one side, since they are produced during the core-collapse of the star, they can give information
on the explosion mechanism. The knowledge of their energy spectrum, and its variation in time,
would be very useful to understand better the explosion and the dynamics of the shock wave.
From this point of view, neutrinos are a probe to study the interior of a newborn Supernova.
On the other side, if the explosion mechanism is well understood, SN neutrinos will allow us to
get another measurement of the mass-mixing oscillation parameters, not to mention the neutrino
magnetic moment and other possible “nonstandard” ν properties (for instance, the violation of
the Lorentz invariance). So far, 20 neutrino events were observed by the Kamiokande and IMB
experiments, during the SN 1987A explosion. Besides the observation of the next galactic SN
explosion, nowadays, experiments aim at measuring the diffuse SN neutrino flux, the relics of all
past SN explosions. We estimate there are ∼ 10 supernova explosions per second in the visible
Universe, and 1−3 galactic SN explosion per century. Given that oscillation parameters have been
measured with percent accuracy, today, the most important piece of information we could have
from a SN neutrino signal is on the mass ordering.

As Figure (5.1) shows, the timescale of the neutrino emission is of the order of about 10 sec,
with different flux characteristics and hierarchies. The energy range is ∼1-100 MeV with different
mean energy hierarchies in the three phases: the neutrino burst, the accretion phase and the proto-
neutron star cooling. During the gravitational collapse of the star, neutrinos carry away lepton
number and energy. Electron neutrinos are produced by electron captures on nuclei and on free
protons, in the first steps of the explosion. Then, they continue to be emitted, driving the evolution
toward a deleptonized neutron star. Neutrinos and antineutrinos of all flavors carry out most of the
gravitational binding energy of the nucleus and can transfer energy to the shock, thus triggering
the explosion. Afterwards, neutrino interactions with the ejected matter affect the heavy element
production. While propagating inside the exploding star, neutrino oscillations will change the
neutrino spectra. After leaving the SN, neutrinos will undergo vacuum oscillations on their way to
the Earth, and, possibly, matter oscillations inside the Earth, depending on the detector position.
Matter effects on SN neutrinos have been widely studied to predict the energy spectra, taking into
account the shock-wave evolution and stochastic matter fluctuations induced by turbulence (see

Figure (5.1) : Example of SN neutrino fluxes (from arXiv:1702.08825).
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Figure (5.2) : Matter effects for SN neutrinos in NO. The evolution starts on the right. (ν ′µ, ν
′
τ )

are linear combinations of (νµ, ντ ) which diagonalise the 2− 3 part of theHamiltonian

for instance [9] for a review). Neutrino streaming through the outer SN layers undergo ordinary
MSW transitions, with two resonances, one governed by the atmospheric squared-mass difference
(H) and the second by the solar squared-mass difference (L), when the distance from the center is
larger than about ∼ 1000 km. The dynamics can be approximately factorised into two generation
neutrino oscillations with relevant parameters (∆m2, θ13) or (δm2, θ12). Let us recall that

sin 2θm =
sin 2θ√

(cos 2θ12 − ACC/∆m2)2 + sin2 2θ12

,

cos 2θm =
cos 2θ − ACC/∆m

2√
(cos 2θ12 − ACC/∆m2)2 + sin2 2θ12

.

(5.1)

In the limit ACC → ∞, at the production point the density is extremely large (∼ 1012 gr/cm3),
one has θm → (0, π), depending on the squared mass difference considered. For antineutrinos, the
potential changes its sign and we have

NormalOrdering InvertedOrdering
ν (θm13, θm12) = (π/2, π/2) (θm13, θm12) = (0, π/2)
ν (θm13, θm12) = (0, 0) (θm13, θm12) = (π/2, 0)

because δm2 > 0 and the sign of∆m2 is +1 (-1) in NO (IO). For NO one has (νe ≡ νm1, νe ≡ νm3)
and for IO (νe ≡ νm2, νe ≡ νm3), at the production point. Afterwards, given the small value of
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Figure (5.3) : Radial profiles of the neutrino self-interaction parameter µ(r) and of the matter-
interaction parameter λ(r). The approximative ranges where self-interaction effects are expected
to produce mainly synchronization, bipolar oscillations and spectral split are also shown.

θ13, the evolution for NO is adiabatic, as schematically shown for in Figure 5.2, with decreasing
electron density from right to left. In this plot ν ′µ and ν ′τ are linear combination of νµ and ντ that
diagonalize the 2 − 3 sector of the hamiltonian. The fluxes for the mass eigenstates at the SN
surface (F ) can be calculated as a function of the initial fluxes (F 0) and the transition probabilities
at the resonances (rescaled by the distance−2). For instance, one has

Fν1 = PHPLF
0
νm3

+ (1− PL)F
0
νm1

+ PL(1− PH)F
0
νm2

, (5.2)

where PL and PH are the transition probabilities, that are equal to zero for adiabatic propagation.
If we denote with E, the neutrino energy, Ne(r) the electron number density at a distance r

Neutrino-sphere 

R�

q

p

�pq

�q

p

�0

t

r

Figure (5.4) : Spherical simplified SN geometry: the bulb model. The single angle approximation
is equivalent to consider θ0 = π/4 for all neutrinos.



Neutrino Physics and Astrophysics 65

from the SN center, than the two quantities

ω =
∆m2

2E
, λ(r) =

√
2GF Ne(r) , (5.3)

are of the same order, ω ∼ λ(r), when matter effects are important, (note that also λ is a frequency).
The parameter λ is the interaction energy difference between νe and νµ,τ (see equation (2.36)).
The radius r, for which ω ∼ λ(r), is typically of the order of hundreds or thousands of kilome-
ters. However, there is another interaction that must be considered, the neutrino interaction on the
neutrino background itself. When the parameter µ, defined aas

µ(r) =
√
2GF [N(r) +N(r)] (5.4)

where N(r) and N(r) are the total neutrino and antineutrino number density, is larger or of the
order of ω, we can expect the neutrino self-interactions to be important. Self-interactions can
induce “collective” flavor transition in which neutrinos of different energies can oscillate together.
In this context, it is convenient to use the formalism of the density matrix to describe neutrino
oscillations. The density matrix ρ is defined as

ρ =

(
ρee ρex
ρxe ρxx

)
=

(
|νe|2 νeν

∗
x

ν∗eνx |νx|2
)

, (5.5)

The diagonal entries of ρ are the occupation numbers for the corresponding flavor and diagonal
terms are related to te oscillations. Actually ρ = ρ(p⃗, r⃗, t) = ρp⃗,r⃗,t and depends on the radius, the
momentum and changes with time. With ρp⃗,r⃗,t we denote the density matrix for antineutrinos. The
differential equation governing the evolution of ρ is

∂tρp⃗,r⃗,t + v⃗p⃗ · ∇r⃗ρp⃗,r⃗,t = −i[Ωp⃗,r⃗,t, ρp⃗,r⃗,t] , (5.6)

where Ω = Ωvac +ΩMSW +Ωνν contains three terms depending, respectively, on ω, λ and µ:

Ωvac =
1

2E
UMdiagU

†,

ΩMSW =
√
2GF Ne(r)diag(1, 0, 0) ,

Ωνν =
√
2GF

∫
d3q

(2π)3
(ρp⃗,r⃗,t − ρq⃗,r⃗,t)(1− v⃗q⃗ · v⃗p⃗) .

(5.7)

The last term makes the differential equation nonlinear and contains a term dependent on the
neutrino-neutrino scattering angle. The angular term averages to zero for an isotropic neutrino
distribution. In the case of a SN, instead, this cannot be true and neutrinos propagating in different
directions feel different interactions. As a first step to tackle the problem, one can use a simplified
model, the so-called bulb model, depicted in Figure (5.4). If we average out the angle between
p⃗ and q⃗ in the third term of (5.7), or we fix the angle between p⃗ and q⃗ to be π/4, then we obtain
the “single-angle” approximation. The effect of the collective oscillations is to create spectral
splits and swaps in the original spectra. An example is shown in Figure (5.5): the spectral split
effect on the neutrino spectrum (left panel) and the corresponding swap of νe and νx fluxes above
Ec ≃ 7 MeV. In the right panel, the antineutrino spectra are nearly completely swapped with
respect to the initial ones. The multi-angle calculation, see Figure (5.6), shows the same qualitative
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Figure (5.5) : Single-angle simulation in inverted hierarchy: Final fluxes (at r = 200 km, in
arbitrary units) for different neutrino species as a function of energy. Initial fluxes are shown as
dotted lines to guide the eye.

behavior with respect to the splits and swaps of the spectra, but less pronounced. The spectra of
Figures (5.5) and (5.6) are computed for inverted mass ordering and, for the particular set of input
parameters for the calculation, are absent in normal ordering. Actually, the spectral splits form in
the last part of the collective oscillation regime, as shown in Figure (5.3), after the synchronization
and bipolar regimes. The synchronization and bipolar oscillations owe their name to the fact that
neutrinos of all energies oscillate synchronously, and that there is an analogy with the motion of
a spherical pendulum. For some time, it was believed that these effects could be a clear signature
for the inverted ordering of the neutrino mass spectrum, although nonspherical symmetry, more
realistic anisotropic initial neutrino spectra and inhomogeneities of the neutrinosphere could have
complicated the outcome of the simulations. It was soon realized, however, that for the three-
neutrino case, depending on the relative luminosities of the different flavors, multiple spectral splits
can arise, both for neutrinos and antineutrinos, also for normal ordering. Finally, very recently, it
has been realized that there is another kind of self-induced oscillations, called fast oscillations, in
opposition to the collective “slow” oscillations we have talked about until now. When neutrinos are
emitted half isotropically, like in the bulb model, it is impossible to have an angular crossing of the
spectra. An angular crossings of the neutrino spectra can lead to new instabilities, on extremely
short time scales, even without neutrino mixing. These fast oscillations can develop on a scale
length of 1 m or so, due to conversions of the kind νe(p⃗) + νx(q⃗) → νx(p⃗) + νe(q⃗) and νe(p⃗) +
νe(q⃗) → νx(p⃗) + νx(q⃗) and equalize the neutrino spectra, so that the subsequent oscillations are
ineffective. At the moment, a complete understanding of all these oscillation regimes is far from
been achieved, and an intense theoretical effort is underway.
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6 Neutrinos in Cosmology
Neutrino physics if of fundamental importance to understand the evolution of the early Universe, in
particular with respect to the contribution to the total energy density, to the CNB, to the Big Bang
Nucleosynthesis and to formation and evolution of large scale structures (LSS). In turn, cosmolog-
ical observations can aid in studying the properties of neutrinos. The isotropy and homogeneity of
the early Universe implies that, on large scales, the metric is gµν = diag(1,−a(t),−a(t),−a(t)),
the Friedmann- Robertson-Walker (FRW) metric. Here a(t) is the scale factor, an adimensional
parameter depending on the Hubble constant H:

H =
ȧ(t)

a(t)
. (6.1)

The scale factor a(t) determines the physical distance D(t) in term s of the comoving coordinate
r: D(t) = ra(t). As a function of the redshift z, we have a(t) = a(t0)/(1 + z0) or z = (a(t0) −
a(t))/a(t). The Universe evolution can be studied by solving the Einstein equations in the FRW
metric:

H2 =

(
ȧ

a

)2

=
8

3
πGρ − k

a2
+
Λ

3
,

H2 + Ḣ =
ä

a
=

4

3
πG(ρ+ 3p) +

Λ

3
,

(6.2)

where k is the curvature, Λ the cosmological constant, ρ the energy density and p is the pressure.
In the following, we will neglect the k and Λ terms, since we will discuss very early times, when
the Universe is radiation dominated. By combining the two equations (6.2) with the definition of
H , one obtains

ρ̇ = −3H(ρ+ p) . (6.3)

If we assume that pressure and density are related by an equation of state p = ρw, with constant
w, then we obtain

ρ ∝ a−3(1+w) . (6.4)

If we separate the total density energy in the contributions from matter, vacuum and radiation,
ρ = ρm + ρv + ρr, with Λ = 8πGρv, from the first equation (6.2) one obtains

p = ρ/3 ρr ∝ a−4 ∝ t−2 a ∝ t1/2 radiation era
p = 0 ρr ∝ a−3 ∝ t−2 a ∝ t2/3 matter era

p = −ρ ρv = constant a ∝ e
√

Λ/3t vacuum era .

(6.5)

It is reasonable to expect that the matter density scales with the volume (ρm ∝ a−3), while the
extra a−1 for radiation comes from the redshift. ρv ∝ a−4 is true not only for photons but for all
relativistic particles. For a radiation dominated Universe, the first equation of (6.2) gives

ρr =
3

32πG t2
. (6.6)

The energy density for relativistic neutrinos can be calculated from the Fermi-Dirac distribution

fν(p⃗) =
1

e(E−µ)/T + 1
, (6.7)
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where E is the neutrino energy, T its temperature and µ the chemical potential. In the relativistic
limit, E ∼ p and T ≫ mν , one obtains

nν =
gν

(2π)2

∫
fν(p⃗)d

3p =
3ζ(3)

4π2
gνT

3 ,

ρν =
gν

(2π)2

∫
Efν(p⃗)d

3p =
7π2

240
gνT

4 ,

pν =
gν

(2π)2

∫
fν(p⃗)d

3p ∼ ρν
3
,

(6.8)

where gν is the number of spin states (only one for strictly massless neutrinos). By performing an
analogous calculation for bosons, one finds in the end

ρbos. + ferm. =
g∗π

2

30
T 4 , (6.9)

where the effective number of degrees of freedom g∗ is

g∗ =
∑
bos.

gb +
7

8

∑
ferm.

gf , (6.10)

in the radiation dominated epoch. By combining (6.9) and (6.6) one finds

t =

√
45

16g∗Gπ3

1

T 2
∼ 0.301√

g∗

MPlanck

T 2
∼ 2.42g−1/2

∗

(
T

MeV

)−2

sec , (6.11)

where MPlank = 1/
√
G ∼ 1.2 × 1019 GeV is the Plank mass. From the evolution equations (6.2)

one has for the Hubble constant

H =
ȧ

a
=

1

2t
∼ 1.66

√
g∗

T 2

MPlanck

. (6.12)

The effective number of degrees of freedom is a decreasing function of the time and so decreases
when temperature drops. A particle decouples from the thermal bath when its interaction rate Γ
becomes smaller than the rate of change of temperature, |Ṫγ|/Tγ . When this condition is satisfied,
the interactions are not so fast to maintain the particle in equilibrium with the plasma: the particle
decouples. For an instantaneous decoupling Tγ ∼ a−1 and Ṫγ/Tγ ∼ −H . Therefore, at the
decoupling Γ ∼ H . This condition means also that the mean free path (∼ Γ−1) is of the same order
as the horizon (∼ H−1). After the decoupling, the number of decoupled particles in the comoving
volume stays constant, so that the number density scales as a−3. It can be demonstrated that if the
particle is relativistic at the decoupling, then the momentum distribution retains its initial form (a
Fermi-Dirac for neutrinos), with the temperature scaling with a−1. At high temperature, T larger
that all the SM masses, all particles are in thermal equilibrium and g∗ ∼ 106.75 = 28 + 7/8× 90.
When T ∼ ΛQCD ∼ 200 MeV, and t ∼ 7 × 10−6 sec, g∗ ∼ 18 + 7/8 × 50 ∼ 61.75, because
only photons, gluons, the quarks u, d, s, electrons, muons, neutrinos and their antiparticles remain.
When the expansion cools the Universe down to a few MeV, only photons, electrons positrons,
neutrinos and antineutrinos are in thermal equilibrium, so that g∗ = 2 + 7/8 × 10 = 10.75. The
reactions that keep neutrinos in equilibrium are ν+ν ↔ e++e− and elastic scattering on electrons.
We have

Γ = nν ⟨σv⟩ ∼ a−3G2
FT

2
γ ∼ G2

FT
5
γ , (6.13)



Neutrino Physics and Astrophysics 70

where v ∼ 1 and we used that a ∼ t1/2, t ∼ T−2 and therefore a ∼ T−1. The equation (6.13) in
combination with (6.11) gives for neutrinos

Tdecoupling ∼ (MPlanckG
2
F )

−1/3 ∼ 1MeV . (6.14)

Below T 0 ∼ 1 MeV neutrinos are decoupled from the plasma (T is the photon temperature) and
their temperature falls as Tν = T 0(1 + z). However, at a temperature of about me/3 ∼ 0.2 MeV,
electrons and positrons too become nonrelativistic and annihilate. Their entropy is transferred to
the photons, the only remaining relativistic particles. Entropy conservation (g3∗Tγ ∼ const) implies
that the number of relativistic interacting particles in a comoving volume is constant when g∗ is
constant, and that

Tγ = T 0
γ

(
2

g∗

)1/3

(1 + z) . (6.15)

At T ∼ 0.2 MeV, g∗ goes from 2+7/8×4 = 11/2 to 2, since 4 d.o.f. for e± are lost. Consequently,
the ratio between photon and neutrino temperatures at T ∼ 0.2 MeV is

T 0
ν

T 0
γ

=

(
2

g∗

)1/3

=

(
2

11/2

)1/3

=

(
4

11

)1/3

∼ 0.714 . (6.16)

Therefore, the neutrino temperature today is

T 0
ν =

(
4

11

)1/3

T 0
γ =

(
4

11

)1/3

2.725 K = 1.945 K . (6.17)

Given the neutrino temperature today, their density, see the first of (6.8), is

nν =
3ζ(3)

4π2
gνT

3 ∼ 1.34 K3 ∼ 1.34
K3

cm−3
cm−3 ∼ 1.34× 4.3673 cm−3 ∼ 112 , (6.18)

neutrinos and antineutrinos for each species, as we already knew (section 3.2).
Massive neutrinos can significantly contribute to the energy density of the Universe. This

contribution can be evaluated by adding up the mass times the number density, for each neutrino
and antineutrino. Plugging in the value of the critical density (ρc ∼ 5× 103 eV cm−3) one finds

Ωνh
2 =

∑
mν

93.14
, (6.19)

where Ων is the neutrino energy density and h = H0/(100 km s−1 Mpc−1).
Cosmological data, and in particular the cosmic wave background, the BBN, and the formation

of the LSS, are sensitive to the number of relativistic degrees of freedom, since the Universe
evolution is influenced by the relativistic number of degrees of freedom that determines the value
of g∗ as a function of the temperature. If we assume that the only relativistic degrees of freedom,
besides photons, are neutrinos, then the “effective number of neutrino species” is 3. The precise
value is 3.046, where the small deviation from 3 comes from the fact that the neutrino decoupling
is not instantaneous, and that they are not completely decoupled when the temperature falls to 0.2
MeV. The present measurements give the constraint N ∼ 3± 0.2, depending on the cosmological
model and on the data that are combined. A summary is shown in Figure (6.1). As we have seen,
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Credit: M. Gerbino

Figure (6.1) : Solar neutrinos

neutrino contribute to the overall energy density of the universe. They also play a relevant role
in large scale structure formation. Neutrinos suppress the growth of fluctuations on scales below
the horizon when they become nonrelativistic. Massive neutrinos with masses ≲ 1 eV produce
a significant suppression in the clustering on small cosmological scales. The relevant parameter
constrained by cosmological data is the sum of neutrino masses Σ = m1 + m2 + m3. Current
experimental precision gives very poor sensitivity to the details of the mass spectrum and on the
mass ordering. Current limits on Σ depends on the details of the cosmological model, because of
the many degeneracies among the cosmological parameters. Interesting information and synergies
arise when cosmological data constraints are combined with results from neutrinoless double beta
decay and beta decay, also sensitive to absolute masses, and when, finally, they are combined with
the analysis of oscillation data.

6.1 Combination of oscillation and nonoscillation experiments
As we have seen, beta decay and neutrinoless beta decay experiments are sensitive to the neutrino
absolute masses, through the observables mβ and mββ , that we rewrite here for clarity

mβ =
[
c213c

2
12m

2
1 + c213s

2
12m

2
2 + s213m

2
3

] 1
2 ,

mββ =
∣∣c213c212m1 + c213s

2
12m2e

iϕ2 + s213m3e
iϕ3
∣∣ , (6.20)

while cosmological and astrophysical data constrain the sum of neutrino masses Σ. However,
these three observables contain the mixing angles and, implicitly the mass squared differences,
that are constrained by the oscillation experiments and so they are not independent of each other.
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Figure (6.2) : Oscillation bounds on the nonoscillation observables (Σ, mβ , mββ), in each of the three planes
charted by a pair of such observables. Bounds are shown as contours at 2σ (solid) and 3σ (dotted) for NO (blue) and
IO (red) taken separately. Majorana phases are marginalized away. Note that we take ∆χ2

IO−NO = 0 in this figure.

For instance, in NO, one can write the three equations

m2 =
√
m2

1 + δm2 ,

m3 =
√
m2

1 + δm2/2 +∆m2 ,

Σ = m1 +m2 +m3 = m1 +
√
m2

1 + δm2 +
√
m2

1 + δm2/2 +∆m2 .

(6.21)

By fixing a value for Σ, and solving the third equation of (6.21), one can derive m2 and m3 as a
function of Σ. Moreover, experimental errors on the squared mass differences can be propagated
to Σ. We prefer to use the sum of neutrino mass, as an independent variable, since m1 is unob-
servable and cosmological data directly constrain Σ. The two parameters mβ and mββ depend on
the neutrino masses and so are correlated to Σ.

The correlations between the three absolute-mass-related observables (Σ,mβ,mββ) are shown
in Figure (6.2), where all the experimental measurements on neutrino oscillation parameters have
been used. The blue (red) contours show the allowed region at 2σ for NO (IO), in each of the three
projected planes of the space (Σ, mβ , mββ). The spread of the bands onmββ bounds comes mostly
from the unknown majorana phases. You will immediately notice two things:
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Figure (6.3) : Example of a combined 3ν analysis of oscillation and nonoscillation data, with
different cosmological datasets (from [10]).
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Figure (6.4) : Constraints at 2σ placed by current oscillation data and nonoscillation data
from [11]. The dots mark the best fits.

• The minimum allowed value for Σ is different in the two orderings, and is smaller in NO
than in IO;

• The minimum allowed value for mββ is zero in NO and larger than zero in IO.

The first thing is a consequence of the fact that in IO there are two massive and one light neu-
trino states, so that when m3 → 0 (see Figure (3.1)), Σ →

√
∆m2 − δm2 +

√
∆m2 − δm2 ∼

2
√
∆m2 ∼ 2 × 0.05 eV. In NO, instead, when m1 → 0, Σ →

√
δm2 +

√
∆m2 + δm2 ∼√

∆m2 ∼ 0.05 eV. It is worthwhile to note that when, in the future, cosmological data will be
sensitive to values of Σ in the 0.05− 0.1 eV range, strong constraints will be derived on the mass
ordering. About the second point, this is a consequence of the cancellations than can take place
between the two complex addenda in (6.20): in IO, m1 refers to a neutrino state of the massive
doublet, while in NO is the lightest state that can also be massless. Figure (6.3) shows two exam-
ples of the combined analysis. Depending on the cosmological data used, the bound on Σ can be
so strong to begin to test the ∼ 0.1 eV region. The latest analysis is shown in Figure (6.4), with a
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Figure (6.5) : Breakdown of contributions to the IO-NO χ2 difference from oscillation and
nonoscillation data (from [10]).

linear scale on all parameters, since we are starting to probe the region where the two mass order-
ings can be discriminated. In the default case, on the left, the cosmological bounds on Σ dominate
the constraints on mβ and mββ , because Σ < 0.15 at 2σ from cosmology alone. In the alternative
case, the minimum for Σ is not at the smallest allowed value, but is reached for Σ ∼ 0.5 from
cosmology alone, and there is an interplay between cosmological and 0νββ data. In the default
case, the KATRIN experiment (probing mβ > 0.2 eV) is not expected to find any signal, while
planned 0νββ experiments are expected to probe at least the region covered by both NO and IO
(mββ > 0.02 eV). In the less constraining case, on the right, β decay and 0νββ decay searches
could be able to find some interesting signal.

Finally, Figure (6.5) shows the present information on the mass ordering, by merging the in-
formation coming from the analysis of oscillation and nonoscillation The histogram displays how
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each class of experiments contributes to the ∆χ2
IO−NO. On the left, the contributions from oscilla-

tion data, LBL accelerator, solar and KamLAND, SBL reactor and atmospheric data are reported.
The second bin shows the range spanned by all the cosmological datasets considered in [10], from
the fit to cosmological data only. The third bin shows the slight change induced by adding current
constraints on mβ and mββ . The last bin on the right shows the global combination that results in
a preference for NO in the range ∼ 2.5–3.2σ.
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Appendices
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A Dirac matrices
Dirac’s matrices are four-dimensional matrices that satisfy

{γµ, γν} = 2gµν and γ0γµ†γ0 = γµ . (A.1)

The anticommutation relations imply γ02 = −γi2 = 14×4. It is also easy to verify that γ0 is real
and γ0† = γ0, and so it is also symmetric. The other Dirac matrices satisfy γi† = −γi. By defining
γµ = gµνγ

ν , for the four matrices we can write γµ† = γµ. The chirality matrix γ5 is defined by

γ5 = γ5 ≡ iγ0γ1γ2γ3 , (A.2)

and it anticommutes with all γ‘s and its square is 1:

{γ5, γµ} = 0 γ5
2 = 1 (A.3)

The Dirac matrices are not uniquely determined, but there are an infinity of possible choices
connected by a similarity transformation by means of a unitary matrix.

A.1 The standard Pauli-Dirac representation
The standard representation of the Dirac matrices in 2× 2 block diagonal form is the following

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
γ5 =,

(
0 1

1 0

)
, (A.4)

where σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A.5)

Note that in the standard representation the γ0 matrix is diagonal while γ5 is not. In particular,
writing the Dirac spinor ψ as ψ = (ϕ, χ)T

γ5

(
ϕ
χ

)
=

(
χ
ϕ

)
. (A.6)

A.2 The Weyl representation
In the Wey representation, the Dirac matrices are

γ0 =

(
0 −1
−1 0

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
1 0
0 −1

)
, (A.7)

so that, with respect to the standard representation, γ0 and γ5 are switched and there is a minus
sign in the definition of the γ0 while the γi are unchanged.10 Now we have that

γ5

(
ϕ
χ

)
=

(
ϕ
−χ

)
(A.8)

10There is also another convention in which γ0 and γ5 are switched and the γi change sign: this amounts to invert
the role of ϕ and χ in (A.8) and (A.9).



Neutrino Physics and Astrophysics 79

and

1 + γ5
2

(
ϕ
χ

)
=

(
1 0
0 0

)(
ϕ
χ

)
=

(
ϕ
0

)
,

1− γ5
2

(
ϕ
χ

)
=

(
0 0
0 1

)(
ϕ
χ

)
=

(
0
χ

)
.

B Chirality
The Weyl representation is particularly useful for the discussion of the Chirality, which is the quan-
tum number associated to the eigenvalues and eigenvectors of γ5. Since γ25 = 1, the eigenvalues
are ±1. This is trivial in the Weyl representation where γ5 = diag(1, 1 − 1 − 1). The properties
that we will illustrate here are valid in every representation, but they are self-evident in the Weyl
representation. Let call ψR and ψL the eigenvalues of γ5 corresponding to the the eigenvalues +1
and −1 respectively

γ5ψR = +1ψR γ5ψL = −1ψL . (B.1)

ψR and ψL are the chirality eigenstates and they can be projected from the projectors PR and PL

defined by the relations

ψR = PRψ =
1 + γ5

2
ψ ψL = PLψ =

1− γ5
2

ψ . (B.2)

They satisfy the relations:

P 2
L = PL P 2

R = PR PLPR = PRPL = 0 PL + PR = 1 , (B.3)

and are indeed well defined projectors. Since γ5 is real and symmetric, the chirality projectors are
hermitian. Moreover, the anticommutation relation {γµ, γ5} implies

PLγ0 = γ0PR PRγ0 = γ0PL . (B.4)

These properties are useful to demonstrate that

ψR = PRψ = (PRψ)
†γ0 = ψ†P †

Rγ0 = ψ†PRγ0 = ψ†γ0PL = ψPL ,

ψL = PLψ = (PLψ)
†γ0 = ψ†P †

Lγ0 = ψ†PLγ0 = ψ†γ0PR = ψPR .
(B.5)

We see that ψR is left–handed and ψL is right–handed. This fact is self evident if we use the Weyl
representation of the Dirac matrices where we explicitly have

ψR = (PRψ)
†γ0 = ψ†

(
1 0
0 0

)(
0 −1
−1 0

)
=
(
ϕ† χ†)(1 0

0 0

)(
0 −1
−1 0

)
=

(
ϕ† 0

)( 0 −1
−1 0

)
=
(
0 −ϕ†) , (B.6)

so that ψR has lower (left) components. Analogously, for ψR we have

ψL = (PLψ)
†γ0 = ψ†

(
0 0
0 1

)(
0 −1
−1 0

)
=
(
ϕ† χ†)(0 0

0 1

)(
0 −1
−1 0

)
=

(
0 χ†)( 0 −1

−1 0

)
=
(
−χ† 0

)
,

(B.7)
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that has upper (right) components. The two fields ψL and ψR are called Weyl spinors. To be more
explicit, we define a four–component Dirac spinor in term of two two–component spinors

ψ =

(
χR

χL

)
, (B.8)

so that in the Weyl representation

PRψ =

(
1 0
0 0

)(
χR

χL

)
=

(
χR

0

)
PLψ =

(
0 0
0 1

)(
χR

χL

)
=

(
0
χL

)
.

(B.9)

Therefore, the upper components correspond to a right–handed particle, while the lower compo-
nents correspond to a left–handed one.11 It is easy now to prove, or to convince ourselves just
from (B.7) and (B.6), that the all the terms of the kind ψLψL and ψL/∂ψR are equal to zero, and the
Lagrangian for a free massless Dirac field, in terms of their chiral components, can be written as

L = ψLi/∂ψL + ψRi/∂ψR −m(ψLψR + ψRψL) . (B.10)

From (B.10), we can obtain the Euler–Lagrange equations in terms of the chiral fields

i∂ψL = mψR ,

i∂ψR = mψL .
(B.11)

Therefore, for massless particles the equations for the chiral fields decouple. Once again, it is
worthwhile to stress that the Weyl representation is particularly useful because, in this represen-
tation, the Weyl spinors are simply the upper and the lower two–component parts of the four–
dimensional Dirac spinor.

11With an abuse of notation, sometimes ψR (ψL) is written instead of χR (χL). The dimension of the spinor, four
or two, shoud be clear from the context.
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C Mixing matrix

C.1 Biunitary transformation
A general N ×N complex matrix M can be diagonalized through a biunitary transformation If M
is nondegenerate, detM ̸= 0, the matrix A = MM † is Hermitian, and its eigenvalues are strictly
positive. In fact

A† = (MM †)† =M ††M † = A , (C.1)

and

∀xT = (x1, x2, · · · , xN) ∈ R , x ̸= 0 : xTAx = xTMM †x =
∑
ij

xiMij(M
†)jixi =

=
∑
ij

M∗
ijMijx

2
i =

∑
ij

|Mij|x2i > 0 . (C.2)

A hermitian matrix A can be diagonalized through a unitary transformation U

U †AU = Adiag with UU † = U †U = I , (C.3)

Now A have strictly positive eigenvalues, since it is positive definite, and therefore we can define a
new diagonal matrixmD with all positive elementsmi on the diagonal, so thatA = m2

D. Therefore

U †AU = U †MM †U = Adiag = m2
D ⇒MM † = Um2

DU
† →M(M †Um−1

D ) =

= UmD →MV = UmD ⇒M = UmDV
−1 , (C.4)

with V =M †Um−1
D . We can verify that V is unitary:

V V † =M †Um−1
D m−1

D U †M =M †U(U †AU)−1U †M =M †(M †)−1M−1M = I . (C.5)

We have thus demonstrated that a generic nonsingular complex matrix M can be written as M =
UmDV

†, by means of two unitary matrices, with mD a diagonal nonsingular matrix with positive
eigenvalues.

C.2 The unitary mixing matrix

Consider two unitary matrices WU
L and WD

L . The product U = WU
L

†
WD

L is unitary (U(N) is a
group). An unitary N×N matrix U has N2 free parameters. In fact, N of the 2N2 real parameters
of U can be eliminated by imposing the normalization of the N rows or columns to 1, while
2×N(N − 1) parameters can be eliminated by imposing the orthogonality of all pairs of rows or
columns, giving 2N2 −N − 2 ∗N(N − 1)/2 = N2 real independent parameters. There are many
possible general parametrizations for U , and, most commonly, the N2 parameters are divided into
N(N − 1)/2 angles (corresponding to rotations of SO(N), which is a subgroup of U(N)) and
N(N + 1)/2 phases. In the case of a three–dimensional mixing matrix there are three mixing
angles and six phases.
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D Lorentz group and spinors
The group SL(2,C), the group of complex two–dimensional matrices with determinant 1, is iso-
morphic to the Lorentz group L ≡ (1, 3). The Weyl spinors transform under Lorentz transforma-
tions according to particular two–dimensional non–equivalent irreducible representations of the
group SL(2,C). The action of these two representations on the Weyl spinors encodes the way that
the spin state of a particle transforms under a Lorentz transformation.

D.1 The Lorentz group
The elements of the Lorentz group are real four–dimensional matrices that satisfy the condition

ΛTηΛ = η , (D.1)

which is a direct consequence of the relativistic interval conservation. The Λ matrices satisfy the
conditions

detΛ = ±1 , |Λ0
0| ⩾ 1 . (D.2)

We will focus on a subgroup of the full Lorentz group, L↑
+ ≡ SO(1, 3), the proper orthochronous

Lorentz group, for which the determinant is equal to 1 and Λ0
0 ⩾ 1.

A generic Λ ∈ L↑
+ can be written as

Λµ
ν =

[
e−

i
2
ωρσMρσ

]µ
ν
, (D.3)

where the 6 matrices Mρσ form a basis of the so(1, 3) the algebra of SO(1, 3). The factor i makes
the M matrices hermitian. It can be verified that the explicit expression for the Mρσ matrices is the
following

(Mρσ)
µ
ν = i(ησνδ

µ
ρ − ηρνδ

µ
σ) . (D.4)

If we suitably define the matrices M in the following way

M =


0 −K1 −K2 −K3

K1 0 J3 −J2
K2 −J3 0 J1
K3 J2 −J1 0

 , (D.5)

then we obtain (with a somewhat tedious calculation) the following commutation relations which
define the algebra

[Ji, Jj] = iϵijkJk

[Ki, Jj] = iϵijkKk

[Ki, Kj] = −iϵijkJk .

The first of the (D.6) implies that SO(3) is a subgroup of L↑
+ and that similarly the algebra so(3) is

a subalgebra of so(1, 3), while the second of the (D.6) implies that K⃗ behaves like a vector under
rotations. In order to classify the irreducible non-unitary finite-dimensional representations of L↑

+

we change the basis of the algebra by introducing the generators Si and Ti defined as:

Si =
1

2
(Ji + iKi)

Ti =
1

2
(Ji − iKi) ,

(D.6)
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for which the commutation relations become

[Si, Sj] = iϵijkSk

[Ti, Tj] = iϵijkTk

[Si, Tj] = 0 .

(D.7)

We thus discover that the so(1, 3) algebra is the direct sum of two identical commuting su(2)
algebras. Note, however, that the algebra has been complexified:

so(1, 3)C = su(2)⊕ su(2) . (D.8)

On the other side, it can be proven that there is a two–to–one homomorphism between SL(2,C)
and the SO(1, 3) and that their algebras are isomorphic so(1, 3)R ≃ so(1, 3)C. The homomor-
phism of SL(2,C) onto SO(1, 3)+ can be expressed through the relations algebra is homomorphic
and not isomorphic to as can be explicitly shown by

Λµ
ν(M) =

1

2
Tr [σµMσνM

+] , (D.9)

where σµ = (1, σ⃗) = (σ0, σ⃗) and σµ = (σ0,−σ⃗), and

M(Λ) = ± 1

[det{Λµ
νσµσ

ν}] 12
Λµ

νσµσ
ν . (D.10)

The meaning of the sign ± in the (D.10) is that the correspondence Λ↔ ±M defines a two-valued
representation of the restricted Lorentz group and leads to the identification

L↑
+ ≃ SL(2,C)/Z2 , (D.11)

so that SL(2,C) is L↑
+ universal covering group.

The representations of SO(1, 3) can be classified by means of two numbers n andm, integers or
semi-integers, indicating the representation with (n,m), identifying the total spin (third projection)
with J3 = S3 + T3 and the size of the representation with (2n + 1)(2m + 1). Parity acts on
the generators as follows Ji → Ji and Ki → −Ki. Consequently, the two su(2) algebras are
exchanged under parity, ie Si → Ti and Ti → Si. If we consider the two fundamental su(2)⊕su(2)
representations (1/2, 0) and (0, 1/2), called respectively the left-handed and right-handed spinor
representation, they have no definite parity, since they go into each other under parity. To have
a representation that has definite parity, it will be necessary to introduce the Dirac spinor that
transforms with (1/2, 0) ⊕ (0, 1/2). The left– and right handed representations, from the point
of view of the group SL(2,C), correspond to the self–representation D(M) = M and to the
conjugate one, D(M) =M∗.

Looking back at the definition (D.5) we can summarize the transformation properties of le to
the right–handed spinors:

ψL = e
1
2
(iθ·σ−β·σ)ψL

ψR = e
1
2
(iθ·σ+β·σ)ψR ,

(D.12)

since ψL transforms with (1/2, 0) and the corresponding generators are Si = 1/2(Ji + iK) so that
there is a -1 in front of β in (D.12) from the i2 factor, while ψR transforms with (0, 1/2) and the
corresponding generators are Ti = 1/2(Ji − iK) and there is a +1 in front of β.
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E Neutrino Oscillation Formulas
Here some useful formulas for neutrino oscillations are collected.

• Vacuum oscillation probability for one mass scale dominance, when ∆m2 ≫ δm2 and
∆m2/4E ∼ 1:

P (να → να) = 1− 4|Uα3|2(1− |Uα3|2) sin2

(
∆m2L

4E

)
,

Pνα→νβ = 4|Uα3|2|Uβ3|2 sin2

(
∆m2L

4E

)
,

(E.1)

– same for neutrinos and antineutrinos

– it does not depend on solar (12) parameters

– independent on δ and on the mass ordering

• ∆m2 vacuum averaged νe survival probability:

P (νe → νe) = sin4 θ13 + cos4 θ13

(
1− sin2 θ12 sin

2
(

δm2L
4E

))
, (E.2)

– same for neutrinos and antineutrinos

– it does not depend on the mass ordering

– independent on δ

• P (νµ → νe) in constant matter (NO):

P (νµ → νe) = A sin2 θ13 +B sin 2θ12 sin 2θ13 cos

(
δ + cos

(
δm2L

4E

))
+ C ,

with

A =

(
∆m2

∆m2 − ACC

)2

sin2 θ23 sin
2

(
ACC −∆m2

4E
L

)
,

B =

(
∆m2

∆m2 − ACC

)
δm2

ACC

sin θ23 sin 2θ12 sin

(
ACCL

4E

)
sin

(
ACC −∆m2

4E
L

)
,

C =

(
δm2

ACC

)2

cos2 θ23 sin
2 2θ12 sin

2

(
ACCL

4E

)
.

(E.3)

It can be proven that

– P (νµ → νe) = P (νe → νµ|δ → −δ)
– NO→ when ∆m2 → −∆m2

– P (νµ → νe) = P (νµ → νe|δ → −δ, ACC → −ACC).
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