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Problem 1: Including spin-statistical factors for 2-to-2 processes

Consider the collision operator for the number density from a process 12→ 34

Cn,12→34

κ12→34
=

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ(p1 + p2 − p3 − p4)|M12→34|2

× f1f2(1± f3)(1± f4) . (1)

The integrations here are over the whole R3 for all momenta; possible overcounting of physically
identical regions is compensated with the symmetry factor κ12→34. We aim to derive the most
simplified expression for a general matrix element |M12→34|2 and keeping the spin-statistical
factors 1± f3,4. Rotational invariance can be used to go to a coordinate system where

p1 = p1(0, 0, 1)T , p2 = p2(sinβ, 0, cosβ)T , p3 = p3(sin θ cosφ, sin θ sinφ, cos θ)T . (2)

1. We find

Cn,12→34

κ12→34
= 2(2π)2

∫ ∞
0

dp1 p
2
1

(2π)32E1

∫ 1

−1
d cosβ

∫ ∞
0

dp2 p
2
2

(2π)32E2

∫ 2π

0
dφ

∫ 1

−1
d cos θ

×
∫ ∞

0

dp3 p
2
3

(2π)32E3

∫
d3p4

(2π)32E4
(2π)4δ(p1 + p2 − p3 − p4)|M12→34|2

× f1f2(1± f3)(1± f4) . (3)

2. |M12→34|2 can be written in a form such that it only on s and t (using s + t + u =
m2

1 +m2
2 +m2

3 +m2
4).1 In the above coordinate system, we have

s = (p1 + p2)2 = m2
1 +m2

2 + 2E1E2 − 2p1p2 cosβ , (4)

t = (p1 − p3)2 = m2
1 +m2

3 − 2E1E3 + 2p1p3 cos θ . (5)

3. Integration over p4 can be performed trivially with the help of the spatial part of the
δ-distribution. Then,

E4 =
√
m2

4 + (p1 + p2 − p3)2

=
√
m2

4 + p2
1 + p2

2 + p2
3 + 2p1p2 cosβ − 2p1p3 cos θ − 2p2p3(sinβ sin θ cosφ+ cosβ cos θ) ,

(6)

which needs to be entered into the remaining δ(E1 + E2 − E3 − E4). At this point, it
is useful to note that the entire integrand only depends on φ through cosφ and we can
therefore multiply by 2 and restrict the integration in φ to the interval [0, π]. Reminding

1Note that strictly speaking, the relation between s, t, and u becomes enforced by the four-momentum con-
serving δ-distribution.
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ourselves that δ(g(x)) = δ(x−x0)/|g′(x0)|, where x0 is a zero of g(x) (in this case the only
one), we then find

δ(E1 + E2 − E3 − E4) =
E1 + E2 − E3

2p2p3 sinβ sin θ
δ(cosφ− cφ) , (7)

where

cφ =
1

2p2p3 sinβ sin θ
[m2

1 +m2
2 +m2

3 −m2
4 + 2(E1E2 − E1E3 − E2E3)− 2p1p2 cosβ

+ 2p1p3 cos θ + 2p2p3 cosβ cos θ] . (8)

For later reference, we define

Q = m2
1 +m2

2 +m2
3 −m2

4 , (9)

γ = E1E2 − E1E3 − E2E3 . (10)

4. We start by deriving the restricted integration region. As hinted, we have

c2
φ ≤ 1 (11)

(Q+ 2γ − 2p1p2 cosβ + 2p1p3 cos θ + 2p2p3 cosβ cos θ)2 ≤ 4p2
2p

2
3(1− cos2 β)(1− cos2 θ)

(12)

This is a quadratic inequality. After some simplification and rewriting terms (Mathematica
is of course highly helpful here), one arrives at the expression given in the hint

0 ≥ cos2 θ +
b

a
cos θ +

c

a
, (13)

a = −4p2
2p

2
3(1− cos2 β)− (2p1p3 + 2p2p3 cosβ)2

= −4p2
2p

2
3 − 4p2

1p
2
3 − 8p1p2p

2
3 cosβ (14)

= −4p2
3[(E1 + E2)2 − s] , (15)

b = −4(p1p3 + p2p3 cosβ)(Q+ 2γ − 2p1p2 cosβ) (16)

= −4p3

[
p1 +

m2
1 +m2

2 + 2E1E2 − s
2p1

]
[s+m2

3 −m2
4 − 2E3(E1 + E2)] (17)

=
2p3

p1
[s− 2E1(E1 + E2) +m2

1 −m2
2][s− 2E3(E1 + E2) +m2

3 −m2
4] , (18)

c = −(Q+ 2γ − 2p1p2 cosβ)2 + 4p2
2p

2
3(1− cos2 β) (19)

= −[2E3(E1 + E2)−m2
3 +m2

4 − s]2 − p2
3

[
4p2

2 −
(
m2

1 +m2
2 + 2E1E2 − s
p1

)2
]
(20)

= −[2E3(E1 + E2)−m2
3 +m2

4 − s]2 (21)

− p2
3

p2
1

[4p2
2p

2
1 − (m2

1 +m2
2 + 2E1E2)2 + 2(m2

1 +m2
2 + 2E1E2)s− s2] (22)

= −[2E3(E1 + E2)−m2
3 +m2

4 − s]2 −
p2

3

p2
1

(s− s12,−)(s− s12,+) , (23)

s12/34,± = m2
1/3 +m2

2/4 + 2E1/3E2/4 ± 2p1/3p2/4 . (24)

Note that as s = (E1 +E2)2− (p1 +p2)2 ≤ (E1 +E2)2 one has a ≤ 0. The inequality (13)
leads to

cθ,+ ≤ cos θ ≤ cθ,− , cθ,± =
−b±

√
b2 − 4ac

2a
, (25)
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which shows that the kinematics can only be fulfilled if

b2 − 4ac = 4(p2
3/p

2
1)(s− s12,−)(s− s12,+)(s− s34,−)(s− s34,+) ≥ 0 . (26)

Defining Rθ = {−1 ≤ cos θ ≤ 1 | cθ,+ ≤ cos θ ≤ cθ,−}, the integration over φ gives

Cn,12→34

κ12→34
= 2(2π)3

∫ ∞
0

dp1 p
2
1

(2π)32E1

∫ 1

−1
d cosβ

∫ ∞
0

dp2 p
2
2

(2π)32E2

∫ ∞
0

dp3 p
2
3

(2π)32E3
θ(b2 − 4ac)

× f1f2(1± f3)(1± f4)

∫
Rθ

d cos θ√
a cos2 θ + b cos θ + c

|M12→34|2 , (27)

where we used that dφ = −d cosφ/
√

1− cos2 φ (φ ∈ [0, π], cosφ ∈ [−1, 1], the “−”-sign
switches the integration direction) and

2p2p3 sinβ sin θ
√

1− c2
φ =

√
a cos2 θ + b cos θ + c . (28)

5. For the variable transformation, we first note that (i = 1, 2, 3)

ds = −2p1p2d cosβ , (29)

EidEi = pidpi . (30)

From −1 ≤ cosβ ≤ 1 and after using the “−”-sign to switch integration directions, we
have s12,− ≤ s ≤ s12,+. Due to the θ-function and with Eq. (26), the integration over s
becomes restricted to the region Rs = {s ∈ R | max(s12,−, s34,−) ≤ s ≤ min(s12,+, s34,+)}
and we find

Cn,12→34 =
κ12→34

4(2π)6

∫ ∞
m1

dE1

∫ ∞
m2

dE2

∫ ∞
m3

dE3 p3f1f2(1± f3)(1± f4)

∫
Rs

ds

×
∫
Rθ

d cos θ√
a cos2 θ + b cos θ + c

|M12→34|2 , (31)

It is already obvious that not for all E1, E2, and E3, the region Rs is not empty, e.g.
E2 ≥ m3 +m4−E1 and E3 ≤ E1 +E2−m4 must hold for sure.2 This motivates switching
integration order to s, E1, E2, E3, and cos θ (from left to right, last to first integral). To
perform these switches, we need to find the corresponding regions

s12,− ≤ s ≤ s12,+ (32)

⇒ s ≥ (m1 +m2)2 and

(s−m2
1 −m2

2 − 2E1E2)2 ≤ 4(E2
1 −m2

1)(E2
2 −m2

2) (33)

(s−m2
1 −m2

2)2 − 4(s−m2
1 −m2

2)E1E2 + 4E2
1E

2
2 ≤ 4(E2

1 −m2
1)(E2

2 −m2
2) (34)

(s−m2
1 −m2

2)2 + 4m2
2(E2

1 −m2
1)− 4(s−m2

1 −m2
2)E1E2 + 4E2

2m
2
1 ≤ 0 (35)

E2,− ≤ E2 ≤ E2,+ (36)

E2,± =
1

2m2
1

(
E1[s−m2

1 −m2
2]

±
√
E2

1 [s−m2
1 −m2

2]2 −m2
1(s−m2

1 −m2
2)2 − 4m2

1m
2
2(E2

1 −m2
1)

)
(37)

=
1

2m2
1

(
E1[s−m2

1 −m2
2]± p1

√
s2 + (m2

1 −m2
2)2 − 2s(m2

1 +m2
2)

)
(38)

R2 = {E2 ≥ m2 | E2,− ≤ E2 ≤ E2,+} , (39)

2Similarly, Rθ is not always non-empty, but the expressions here would become very complicated and it is
more useful to deal with this when performing numerical integrations in the end.
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and

s34,− ≤ s ≤ s34,+ (40)

⇒ s ≥ (m3 +m4)2 and

[s−m2
3 −m2

4 − 2E3(E1 + E2 − E3)]2 ≤ 4(E2
3 −m2

3)[(E1 + E2 − E3)2 −m2
4] (41)

(s−m2
3 −m2

4)2 − 4(s−m2
3 −m2

4)E3(E1 + E2 − E3) + 4E2
3(E1 + E2 − E3)2 ≤

4E2
3(E1 + E2 − E3)2 − 4E2

3(m2
3 +m2

4) + 8E3m
2
3(E1 + E2)− 4m2

3[(E1 + E2)2 −m2
4] (42)

(s−m2
3 −m2

4)2 + 4m2
3[(E1 + E2)2 −m2

4]− 4(s+m2
3 −m2

4)(E1 + E2)E3 + 4sE2
3 ≤ 0

(43)

E3,− ≤ E3 ≤ E3,+ (44)

E3,± =
1

2s

(
[E1 + E2][s+m2

3 −m2
4]

±
√

(s+m2
3 −m2

4)2(E1 + E2)2 − s(s−m2
3 −m2

4)2 − 4sm2
3[(E1 + E2)2 −m2

4]

)
=

1

2s

(
[E1 + E2][s+m2

3 −m2
4]±

√
[(E1 + E2)2 − s][s2 + (m2

3 −m2
4)2 − 2s(m2

3 +m2
4)]

)
(45)

R3 = {E3 ≥ m3 | E3,− ≤ E3 ≤ E3,+} . (46)

This gives

Cn,12→34 =
κ12→34

4(2π)6

∫ ∞
smin

ds

∫ ∞
m1

dE1

∫
R2

dE2

∫ ∞
R3

dE3 p3f1f2(1± f3)(1± f4)

×
∫
Rθ

d cos θ√
a cos2 θ + b cos θ + c

|M12→34|2 , (47)

where smin = max([m1 +m2]2, [m3 +m4]2).

In some cases the integration over cos θ can be performed analytically after a variable trans-
formation to x = −2 arcsin(

√
(cθ,− − cos θ)/(cθ,− − cθ,+)). We conclude with some remarks on

possible further applications. The operator Cn,34→12 easily follows by replacing

f1f2(1± f3)(1± f4)→ f3f4(1± f1)(1± f2) , (48)

|M12→34|2 → |M34→12|2 . (49)

Similarly, collision operators for the Boltzmann equation for the energy density of a particle j
with known phase-space distribution function

ρ̇j + 3H(ρj + Pj) = Cρ,j (50)

can be obtained by including a factor Ej in the integrand. Another possible application of
Eq. (47) is freeze-in. This is obvious when having the particle 1 freezing in and considering
Cn,34→12 for f1 � 1, where 1± f1 ' 1. Therefore, the integration over E1 can be removed and
the collision operator for the Boltzmann equation of the phase-space density can be recovered
including the spin-statistical factor 1± f2, which can potentially be relevant if particle 2 has a
large occupation number.
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Problem 2: Relic density calculations with DarkSUSY

You should all have a running version of DarkSUSY at this point. In case of questions about
how to use the code, remember to take a look at the tutorial at https: // darksusy. hepforge.
org/ tutorials/ TOOLS_ 2021/ DarkSUSY_ getting_ started. pdf if you haven’t done so yet.

For concreteness, we will consider a simple toy model with DM composed of Dirac fermions ψ
that couples to the standard model only via the 5D operator

L ⊃ Λ−1ψ̄ψ |H|2 , (51)

where H is the SM Higgs doublet and Λ is a parameter with mass dimension one.

1. The relevant part of the Lagrangian in the scalar singlet model is L ⊃ (λ/2)S2|H|2.
Clearly, this has the same types of diagrams as the model of fermionic DM. To simplify the
discussion, we look at the Lagrangians after electroweak symmetry breaking. Most of the
annihilation channels (e.g. l+l−, q̄q, γγ, ...) are mediated by a Higgs in the s-channel. For
these, it is enough to replace the factor corresponding to the three-point vertex SSh from
the initial state in the annihilation cross-section with the expression arising for fermionic
DM. The scalar singlet model has the three-point vertex L ⊃ (λ/2)v0S

2h with the vev v0

and the Higgs field h, which leads to a matrix element for the (inverse) decay

|MSS→h|2 = |Mh→SS |2 = λ2v2
0 . (52)

From Eq. (51) we find for the model of fermionic DM

|Mψ̄ψ→h|2 = |Mh→ψ̄ψ|2 =
v2

0

Λ2
Tr[(/pψ̄ −mψ)(/pψ +mψ)] =

2v2
0

Λ2
(s− 4m2

ψ) (53)

with the four-momenta pψ̄ and pψ of ψ̄ and ψ and the Mandelstam variable s = (pψ̄+pψ)2.
Note however that it is the spin-averaged annihilation rate, and hence matrix elements,
that enter in the Boltzmann equation for the number density. We thus need to further
divide by gψ̄gψ = 4. In summary, we need to make the replacement

λ2 → (s− 4m2
ψ)/(2Λ2) (54)

in Eq. (D.3) in the DarkSUSY paper.

For the annihilations into two Higgs bosons more diagrams are relevant. For the scalar
singlet model these are Higgs-mediated s-channel, S-mediated s-, t-, and u-channel as well
as contact terms from the four-point vertex S2h2. In the model of fermionic DM, there
are the same types of diagrams present. However, adapting the annihilation cross-section
in this case clearly requires more than an overall replacement in the prefactor. To keep
things simple in this exercise, we just assume that there is the same overall modification
as for the other annihilations.

2. Setup a folder exercise with a subfolder replacables somewhere outside the folder with the
DarkSUSY release and copy examples/aux/oh2 ScalarSinglet.f from the DarkSUSY folder
into exercise/. You also need to copy examples/aux/makefile to your new folder exercise/,
such that you can compile by simply typing

make o h 2 S c a l a r S i n g l e t

We start by discussing the replacable function needed for the annihilation rate. Copy
src models/silveira zee/an/dssigmavpartial.f from the DarkSUSY folder into exercise/repla-
cables/. In this copied function you need to change line 171 to

100 ds s i gmavpar t i a l = gev2cm3s∗ kin ∗ sv ∗0 .5 d0 ∗( s −4.∗mx2)
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NB: in order for the compiler to find functions in this replacables/ folder, you need to add it
to the oh2 ScalarSinglet block in the makefile; compare, e.g., the oh2 generic wimp threshold
with the oh2 generic wimp block for how exactly to do this (or re-check the tutorial).

To make the rest of the replacement, i.e. going from λ to 1/Λ, you need to adapt the file
oh2 ScalarSinglet.f in your folder. It is convenient to define a variable inputLambda instead
of inputlambda and initialize the models with 1/Λ

c a l l d s g i v e m o d e l s i l v e i r a z e e ( 1 . d0/inputLambda , inputmass )

in the two occurences where this turns up. Note that you should also change the starting
value for inputLambda whenever it is initialized; values around inputmass are reasonable.
Furthermore, the scaling of the relic density with respect to Λ is inverted compared to
before, so in line 145 you should change to a division by stepsize

inputLambda = inputLambda/ s t e p s i z e

According to Eq. (51), the DM particle annihilates with its anti-particle. Unlike the scalar
singlet model, DM is therefore not self-conjugate anymore and we need to also adapt the
code for this. To do so, copy src models/silveira zee/rd/dsrdparticles.f from the DarkSUSY
folder to exercise/replacables/ and change line 65 to

s e l f c o n = 2

Note that in principle, the DM fermion and anti-fermion have two internal degrees of
freedom now. For this, copy src models/silveira zee/ini/dsinit module.f from the DarkSUSY
folder to exercise/replacables/ and change line 46 to

kdof (kdm) = 2

This only has a logarithmic impact on the relic density by slightly changing the temperature
of freeze-out, see e.g. Kolb & Turner, similar to the change differing from the factor of 2
when going from a self-conjugate particle to a non-self-conjugate particle.

Before comparing the values of λ and Λ required to obtain the observed DM relic density,
we should first understand what to expect. In the scalar singlet model, the annihilations
in terms of a partial-wave decomposition are dominated by the s-wave part,3 i.e. there is
no velocity suppression and in the non-relativistic limit

(σv)scalar = λ2ascalar ' const . (55)

for some a. You can see this by considering the quantum numbers of the initial and
final states, cf. e.g. https://arxiv.org/abs/1305.1611. This is no longer the case for
the model of fermionic DM. Explicitly, the overall modification of σv introduces a factor
(s − 4m2

ψ), which becomes proportional to the Møller velocity squared v2 in the non-
relativistic limit. This directly makes it obvious that the annihilations are now p-wave.
We can write for the cross-section of fermionic DM in the non-relativistic limit

σfermion =
(σv
v

)
fermion

=
ascalar

2Λ2

s− 4m2
ψ

v
=
ascalar

2Λ2

2EψEψ̄√
s

√
s− 4m2

ψ '
ascalar

Λ2
m2
ψ

√
s̃− 1 ,

(56)

where s̃ = s/(4m2
ψ) and we introduced an additional factor of 2 compared to the scalar sin-

glet case to account for the particle not being self-conjugate. Inserting into the expression

3s here referring to the partial wave, not the Mandelstam variable.
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Figure 1: Left: Value of Λ required to obtain the observed DM relic abundance as a function
of DM mass m (blue) as well as the expected value by comparison to the scalar singlet model
(orange). Right: 〈σv〉 at freeze-out as a function of the DM mass m when the observed DM
relic abundance is obtained for the model of fermionic DM (blue) and the scalar singlet model
(orange).

for the thermal average from Gondolo-Gelmini gives

〈σv〉fermion =
4x

K2
2 (x)

∫ ∞
1

ds̃ (s̃− 1)
√
s̃K1(2

√
s̃x)σfermion

' 4x

K2
2 (x)

∫ ∞
1

ds̃ (s̃− 1)
√
s̃K1(2

√
s̃x)

a

Λ2
m2
ψ

√
s̃− 1 (57)

'
3ascalarm

2
ψ

xΛ2
. (58)

This is to be compared at freeze-out x = xf ∼ 20 with

4〈σv〉scalar = 4λ2ascalar , (59)

where there is a factor of 2 due to the fermionic DM not being self-conjugate and another
factor of 2 due to the annihilations being p-wave suppressed. The latter is discussed e.g.
in the book by Kolb & Turner, and we show the calculation in the appendix at the end of
these solutions.

Coming back to the comparison of the model for fermionic DM with the scalar singlet
model, we would expect that to obtain the observed DM relic abundance

Λ ∼ mψ

λ

√
3

120
∼ 0.16

mψ

λ
, (60)

where λ is the value for the scalar singlet to obtain the observed DM relic abundance.
We show this in Fig. 1 and find good agreement. Around m ∼ mh/2 the impact of the
s-channel resonance of the SM Higgs is clearly visible in both models.

As a final remark for this part of the exercise, note that including the factors of 2 for going
from self-conjugate to non-self-conjugate DM and s-wave to p-wave annihilations are not
exact as there are also corrections to the freeze-out temperature.

3. To find the value of 〈σv〉 at freeze-out, we can use that DarkSUSY already computes xf
when performing the calculation for the relic density, cf.
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oh2=dsrdomega (0 ,20 , xf , i e r r , iwarn , n fc )

Consequently, we only have to find the function that computes 〈σv〉. This can e.g. be done
by going through examples/aux/ScalarSinglet thermal averages.f in your DarkSUSY folder,
where this is done in line 80 with the function dsrdthav. This needs to be called with
the value of x, where 〈σv〉 should be computed, and the invariant annihilation rate. The
latter is accessible by the function dsanwx after a DarkSUSY model has been initialized.
Consequently, calling

dsrdthav ( xf , dsanwx )

gives 〈σv〉 at xf in units GeV−2. For this call to work you should also tell the compiler
about these functions by changing line 24 to

r e a l ∗8 dsrdomega , dskdmcut , dskdtkd , dsmwimp , dsrdthav , dsanwx
e x t e r n a l dsanwx

Note that conversion from GeV−2 to cm3/s can be done with the constant gev2cm3s from
src/include/dsmpconst.f, which first needs to be included

inc lude ’ dsmpconst . h ’

Having done these modifications to the code for fermionic DM as well as a copy of the
code for the scalar singlet model, we can plot the value of 〈σv〉 at freeze-out. This is done
in Fig. 1. We notice that the factor of 4 in Eq. (59) is a good approximation, but not
exact due to corrections on xf . Furthermore, around the resonance m ∼ mh/2, where an
expansion 〈σv〉 ' a+ 6b/x is no good approximation anymore and one needs to solve the
Boltzmann equation numerically. Note that this would generally also require going to a
coupled system as kinetic equilibrium is no longer guaranteed during freeze-out.

Appendix: Analytical approximation for freeze-out including velocity-suppressed
terms

In this appendix, we perform an analytical treatment for DM freeze-out to show that 〈σv〉 at
freeze-out for p-wave annihilations needs to be around twice as large as for s-wave annihilations.
The treatment follows along the corresponding section of the book by Kolb & Turner. First
going to the Boltzmann equation for the yield of DM Y = n/stot, where stot is the total entropy
density (including all SM particles) satisfying ṡtot + 3Hstot = 0, gives

dY

dt
=

ṅ

stot
− nṡtot

s2
tot

= stot〈σv〉[Y 2
eq − Y 2] , (61)

where Yeq = neq/stot. This can be rewritten in terms of x = m/T using dx = −(x2/m)dT '
(H(m)/x)dt with the Hubble rate evaluated at the DM mass m such that

dY

dx
' −xstot〈σv〉

H(m)
[Y 2

eq − Y 2] (62)

' −αx−2〈σv〉[Y 2
eq − Y 2] , (63)

where α = 2π2g∗,sm
3/(45Hm) with g∗s the effective number of degrees of freedom for the entropy

density stot. Now, we introduce ∆ = Y − Yeq such that

d∆

dx
' −dYeq

dx
− αx−2〈σv〉∆(∆ + 2Yeq) . (64)

8 of 9



Before freeze-out at xf , i.e. for x� xf , Y ' Yeq such that d∆/dx ' 0, ∆� Yeq, and therefore

∆ ' − x2

2α〈σv〉Yeq

dYeq

dx
' x2

2α〈σv〉 , (65)

where we used the fact that still x � 1, Yeq ∝ x3/2e−x and therefore dYeq/dx ' −Yeq. After
freeze-out for x > xf we can approximate ∆ ' Y � Yeq and hence

d∆

dx
' −αx−2〈σv〉∆2 . (66)

Expanding in powers of x, one has4

σv ' a+ bv2 + . . . , (67)

〈σv〉 ' a+ 6b/x+ . . . , (68)

where s-wave annihilations have non-vanishing contribution from the first term, whereas p-wave
annihilations have a = 0. Inserting into Eq. (66) yields for the final ∆∞ = ∆(x→∞)∫ ∆∞

∆(xf )

d∆

∆2
' −α

∫ ∞
xf

dx

x2

(
a+

6b

x

)
(69)

1

∆(xf )
− 1

∆∞
' − α

xf

(
a+

3b

xf

)
(70)

Y∞ ' ∆∞ '
[

2α

x2
f

(
a+

6b

xf

)
+

α

xf

(
a+

3b

xf

)]−1

. (71)

Given that typically xf ∼ 20 and either a� b/xf or a� b/xf , we can approximate

Y∞ ' ∆∞ '
xf

α(a+ 3b/xf )
. (72)

Since we moved from a prefactor of 6 for b in Eq. (68) to 3 in Eq. (72), we find the expected
factor of 2 that 〈σv〉 at freeze-out needs to be increased for p-wave annihilations compared to
s-wave annihilations.

4The factor of 6 in front of the second term of 〈σv〉 appears due to the thermal average of v, cf. Eq. (58)
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