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Problem 1: The free Boltzmann equation

1. Plugging in gives

∂f(t, p)

∂p
= p a(t)

dg(p a(t))

d(p a(t))
, (1)

∂f(t, p)

∂t
= p ȧ(t)

dg(p a(t))

d(p a(t))
= pH(t)

∂f(t, p)

∂p
. (2)

2. The Fermi-Dirac or Bose-Einstein distribution function are given by

f(t, p) =
1

exp([E − µ]/T )± 1
, (3)

where neither µ nor T are functions of p and may only be functions of t. As we have
shown above, for these distributions to be a solution of the free Boltzmann equation, there
must be a function g such that f(t, p) = g(p a(t)). This is equivalent to the existence of a
function h such that

E − µ
T

= h(p a(t)) . (4)

(a) Ultra-relativistic limit:

E ' p⇒ p

T
− µ

T
= h(p a(t)) (5)

This can only be fulfilled if

T ∝ 1/a(t) and µ ∝ T ∝ 1/a(t) . (6)

Taking into account the next order in the expansion of E we find

E ' p+
m2

2p
⇒ p

T
+

m2

2pT
− µ

T
= h(p a(t)) . (7)

Here, it is not possible to find a t-dependence of T and µ such that the first two terms
only depend on p a(t) and otherwise have no p- or t-dependence.

(b) Non-relativistic limit:

E ' m+
p2

2m
⇒ p2

2mT
+
m− µ
T

= h(p a(t)) (8)

This can only be fulfilled if

T ∝ 1/a2(t) and m− µ ∝ T ∝ 1/a2(t) . (9)

Taking into account the next order in the expansion of E we find

E ' m+
p2

2m
− p4

8m3
⇒ p2

2mT
− p4

8m3T
+
m− µ
T

= h(p a(t)) (10)

Again, it is not possible to find a t-dependence of T and µ such that the first two
terms only depend on p a(t) and otherwise have no p- or t-dependence.
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Clearly, without finding a possible t-dependence of T and µ when going from ultra- to non-
relativistic, the Fermi-Dirac and Bose-Einstein distribution functions are only solutions of
the free Boltzmann equation in the fully ultra- or non-relativistic limit.

Problem 2: Boltzmann equation in equilibrium

This is a short solution of the exercise. If you are interested in more details you can take a look
in Sec. 2.2.4 of my PhD thesis Link.

1. After division of

|Mr|2
∏
i∈Ir

fi
∏
j∈Fr

(1± fj)− |Mrinv |2
∏

j∈Irinv

fj
∏

i∈Frinv

(1± fi) = 0 . (11)

by |Mr|2 = |Mrinv |2 and due to Irinv = Fr, Frinv = Ir we have∏
i∈Ir

fi
∏
j∈Fr

(1± fj) =
∏
j∈Fr

fj
∏
i∈Ir

(1± fi) (12)

and therefore ∑
i∈Ir

ln

(
fi

1± fi

)
=
∑
j∈Fr

ln

(
fj

1± fj

)
. (13)

2. There can be no dependence on the three-momentum as the phase-space distributions in
equilibrium cannot depend on the direction of the three-momentum. Note that the abso-
lute value of the three-momentum is not additively conserved, i.e. in general

∑
i∈Ir pi 6=∑

k∈Fr pj .

3. The linear combination is given by

ln

(
fk

1± fk

)
= αk − βkEk (14)

for all k ∈ (Ir ∪ Fr) where the first term corresponds to the term from particle number
and the second term is from energy.

4. Inversion of the linear combination gives

fk =
1

exp(−αk + βkEk)∓ 1
(15)

such that we can identify the chemical potential µk and temperature Tk

αk = µk and βk = 1/Tk . (16)

As Eq. (13) applies to all Ek, we find

Tk = T ∀ k ∈ (Ir ∪ Fr) , (17)∑
i∈Ir

µi =
∑
j∈Fr

µj . (18)

5. Here, we find

Tk = T ∀ k ∈ (Ir ∪ Fr) , (19)∑
i∈Ir

µi = ln(1 + εr) +
∑
j∈Fr

µj . (20)

6. When going from an ultra- to a non-relativistic phase in equilibrium particles need to
constantly re-distribute in phase-space to maintain detailed balance. This is typically
ensured by having sufficiently large interaction rates. Note that in numerical calculations
this can lead to problems as the Boltzmann equation becomes a stiff integro-differential
equation.
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Problem 3: Collision operator for the number density

1. The matrix element in the case of elastic scatterings is equal for the reaction and inverse
reaction by crossing symmetry. The contribution of elastic scatterings to the collision
operator can therefore be written as

Cn[fχ] =κ

∫
d3pχ,1

(2π)32Eχ,1

d3pχ,2
(2π)32Eχ,2

d3pψ1

(2π)32Eψ1

d3pψ2

(2π)32Eψ2

δ(pχ,1 + pψ1 − pχ,2 − pψ2)

× (2π)4|M|2(fχ1fψ1(1± fχ,2)(1± fψ,2)− fχ,2fψ,2(1± fχ,1)(1± fψ1)) . (21)

This evaluates to zero as the two terms in the brackets with phase-space distribution
functions are equal in magnitude but opposite in sign after integration.

2. Assume that χ is self-conjugate and there are annihilation reactions χχ ↔ ψ1ψ2 with
|Mχχ→ψ1ψ2 |2 = |Mψ1ψ2→χχ|2 = |M|2 into particles ψ1 and ψ2, which are part of a heat
bath with temperature T and vanishing chemical potential. Further assume that for all
relevant times, elastic scatterings are efficient enforce detailed balance,1 and that for T &
mχ with mχ the mass of χ, the annihilations are in equilibrium. Derive the Boltzmann
equation for the number density for mχ � T (an mχ > O(few)T is typically enough)
starting from

Cn[fχ] =κψ1ψ2

∫
d3pχ,1

(2π)32Eχ,1

d3pχ,2
(2π)32Eχ,2

d3pψ1

(2π)32Eψ1

d3pψ2

(2π)32Eψ2

δ(pχ,1 + pχ,2 − pψ1 − pψ2)

× (2π)4|M|2(fψ1fψ2(1± fχ,1)(1± fχ,2)− fχ,1fχ,2(1± fψ1)(1± fψ2)) , (22)

where the symmetry factor κψ1ψ2 only takes into account if ψ1 and ψ2 are identical particles
and all integrations are over the entire R3.

(a) As long as detailed balance of the annihilations holds, one has µχ = 0 since ψ1 and ψ2

have vanishing chemical potential. Since we assume that this is true for T & mχ, i.e.
annihilations only fall out of equilibrium for T � mχ, it is clear that (mχ−µχ)/T � 1.
Insertion into Bose-Einstein/Fermi-Dirac distribution functions gives

fχ =
1

exp([Eχ − µχ]/T )± 1
' exp(−[Eχ − µχ]/T ) . (23)

Note that this directly also implies fχ � 1. The number density is given by

nχ = gχ

∫
d3pχ
(2π)3

fχ ' eµχ/T
gχ
2π2

m2
χTK2(mχ/T ) (24)

with K2 the modified Bessel function of second type and second order. With nχ,eq =
exp(−µχ/T )nχ the number density assuming zero chemical potential this gives

fχ '
nχ
nχ,eq

e−Eχ/T . (25)

(b) As Eψ,1 + Eψ,2 = Eχ,1 + Eχ,2 ≥ 2mχ � T and µψ,1 = µψ,2 = 0, one has

fψ,1/2 =
1

exp(Eψ,1/2/T )± 1
' exp(−Eψ,1/2/T )� 1 (26)

1This is called kinetic equilibrium.
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inside the integral for Cn, i.e. for all Eψ,1/2 that are kinematically accessible.2 Since
this gives

fψ,1fψ,2 ' exp(−[Eψ,1 + Eψ,2]/T ) = exp(−[Eχ,1 + Eχ,2]/T ) , (27)

we arrive at

fψ1fψ2(1± fχ,1)(1± fχ,2)− fχ,1fχ,2(1± fψ1)(1± fψ2)

'
n2
χ,eq − n2

χ

n2
χ,eq

exp(−[Eχ,1 + Eχ,2]/T ) . (28)

(c) This is easily verified by entering the above approximations and the definition of the
cross-section.

(d) We start from

〈σv〉 =
g2
χ

n2
χ,eq

∫
d3pχ,1
(2π)3

d3pχ,2
(2π)3

exp(−[Eχ,1 + Eχ,2]/T )σv . (29)

and consider only the integral for now. We can choose coordinates such that pχ,1 =
pχ,1(0, 0, 1), pχ,2 = pχ,2(sin θ, 0, cos θ) and therefore∫

d3pχ,1
(2π)3

d3pχ,2
(2π)3

exp(−[Eχ,1 + Eχ,2]/T )σv

=
1

8π4

∫ ∞
0

dpχ,1

∫ ∞
0

dpχ,2

∫ 1

−1
d cos θ p2

χ,1p
2
χ,2 exp(−[Eχ,1 + Eχ,2]/T )σv

=
1

8π4

∫ ∞
mχ

dEχ,1

∫ ∞
mχ

dEχ,2

∫ 1

−1
d cos θ Eχ,1pχ,1Eχ,2pχ,2 exp(−[Eχ,1 + Eχ,2]/T )σv .

(30)

Next, we change coordinates to E+ = Eχ,1 + Eχ,2, E− = Eχ,1 − Eχ,2, and s =
2m2

χ + 2Eχ,1Eχ,2 − 2pχ,1pχ,2 cos θ. The integration measure transforms to (the “−”-
sign switches integration direction such that s is increasing)

dEχ,1 dEχ,2 d cos θ = − 1

4pχ,1pχ,2
dE+ dE− ds . (31)

The integration region goes to s ≥ 4m2
χ, E+ ≥

√
s, and |E−| ≤

√
1− 4m2

χ/s
√
E2

+ − s =

E−,max. Hence,∫
d3pχ,1
(2π)3

d3pχ,2
(2π)3

exp(−[Eχ,1 + Eχ,2]/T )σv

=
1

32π4

∫ ∞
4m2

χ

ds

∫ ∞
√
s

dE+

∫ E−,max

E−,max

dE−Eχ,1Eχ,2 exp(−E+/T )σv . (32)

Note that by the definition of the Møller velocity vEχ,1Eχ,2 =
√

(pχ,1 · pχ,2)2 −m4
χ =

(1/2)
√
s2 − 4sm2

χ. Therefore, the integration over E− becomes trivial∫
d3pχ,1
(2π)3

d3pχ,2
(2π)3

exp(−[Eχ,1 + Eχ,2]/T )σv

=
1

32π4

∫ ∞
4m2

χ

ds(s− 4m2
χ)σ

∫ ∞
√
s

dE+

√
E2

+ − s exp(−E+/T ) . (33)

2Note that momentum conservation typically does not allow for Eψ,1 � Eψ,2 (or vice versa) unless going
to very large Eχ,1 + Eχ,2, which then comes with a very large (exponential) suppression from the phase-space
distribution functions.
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The integral over E+ can be expressed by the modified Bessel function K1 of second
kind and first order∫

d3pχ,1
(2π)3

d3pχ,2
(2π)3

exp(−[Eχ,1 + Eχ,2]/T )σv

=
T

32π4

∫ ∞
4m2

χ

ds(s− 4m2
χ)
√
sK1(

√
s/T )σ . (34)

Inserting the expression for nχ,eq from above we find

〈σv〉 =
1

8m4
χTK2(mχ/T )2

∫ ∞
4m2

χ

ds(s− 4m2
χ)
√
sK1(

√
s/T )σ (35)

=
4x

K2
2 (x)

∫ ∞
1

ds̃ (s̃− 1)
√
s̃K1(2

√
s̃x)σ , (36)

where Ki the modified Bessel function of second kind and order i, s̃ = s/(4m2
χ) and

x = mχ/T .

3. In the above case, the symmetry factor κψ1ψ2 does not include the DM particle as these
would give a factor 1/2, which is cancelled by the fact that the reaction must be counted
twice, since each annihilation removes two particles χ. The calculation can then be carried
out as above,3 and with the corresponding cross-section one finds

ṅχ + 3Hnχ ' 〈σv〉(nχ,eqnχ̄,eq − nχnχ̄) . (37)

Assuming that there is no asymmetry such that nχ = nχ̄, one has for the total number
density nχ,tot = nχ + nχ̄ = 2nχ

ṅχ,tot + 3Hnχ,tot =
〈σv〉

2
(n2
χ,eq,tot − n2

χ,tot) . (38)

We can directly see that the value of 〈σv〉 needed to obtain the observed dark matter
relic density for a non-self-conjugate particle is around twice as large as the corresponding
value for a self-conjugate particle, as expected from Ωχ ∝ 1/〈σv〉 needs to be half as large.
Note that this factor is not exact as there is a logarithmic dependence of the freeze-out
temperature on 〈σv〉 and this also enters into Ωχ.

Preparation for the second exercise session

2. The program oh2 generic wimp assumes a constant value of σv and calculates the required
value to obtain the observed DM relic density for different final states νeν̄e, τ

−τ+, tt̄, and
W−W+. Finding the value of σv is done in the function findsv in this program. The
model initialization is done with the function dsgivemodel generic wimp for self-conjugate
DM (assumed in this program, cf. line 46) and dsgivemodel generic wimp aDM for non-self-
conjugate DM, followed by a call to dsmodelsetup. Relic density calculations are performed
with the function dsrdomega. The plot of σv (equalling 〈σv〉 in this model) can be found
in the left panel of Fig. 1.

3. The example program oh2 ScalarSinglet assumes that DM is a real scalar and calcu-
lates the value of the coupling λ between the DM particle S and the SM Higgs, for
L ⊃ −(λ/2)S2|H|2, required to obtain the observed DM relic density (as well as sev-
eral other quantities). Here, finding the value of λ is done directly in the main program.
Model initialization is performed with dsgivemodel silveira zee, as usual followed by a call
to dsmodelsetup, and relic density calculations are, as for any model, done with dsrdomega.
The plot of λ can be found in the right panel of Fig. 1.

3As long as there is no extremely large asymmetry such that µχ � µχ̄ or vice versa such that the approximation
of Maxwell-Boltzmann distributions is not valid anymore.
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Figure 1: Left: 〈σv〉 = σv = const. required to obtain the observed DM relic density for different
DM mass mDM and final states. Right: λ required to obtain the observed DM relic density in
the real scalar singlet model for different DM mass mS .
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