Particle identification (PID) and precision τ physics at Belle II

P. Feichtinger G. Inguglia, P. Rados, **G. Räuber**, Z. Gruberová, A. Martini, A. Rostomyan, M. H. Villanueva

> Jennifer2 General Meeting November 18, 2022

Established by the European Commission

Belle II experiment

SuperKEKB accelerator

- Located at KEK in Tsukuba, Japan
- e^+ (4GeV) e^- (7GeV) collider with $E_{CM} = \sqrt{s} = 10.58$ GeV
 - Asymmetric beam energy \Rightarrow boosted collision products
 - E_{CM} corresponds to mass of $\Upsilon(4S)$ resonance: $e^+e^- \to \Upsilon(4S) \to B\bar{B}$

Belle II detector

- Composed of 7 major subdetectors
- Decay vertices reconstruction: Pixelated silicon sensors (PXD) and silicon strip sensors (SVD)
- Tracking: Central drift chamber (CDC)
- h identification: Time of propagation system (TOP) and ring-imaging Cherenkov detector (ARICH)
- Energy of γ and e: Electromagnetic calorimeter (ECL)
- K_L^0 and μ identification: Chambers of the KLM
- \Rightarrow All subdetectors contribute to the particle identification (PID)

Particle identification (PID) variables

From likelihoods to PID variables for charged particles

- In each subdetector $d \in \{$ svd, cdc, top, arich, ecl, klm $\} \equiv D$, a likelihood $\mathscr{L}_{x,d}$ is defined for each charged stable particle hypothesis $x \in \{e, \mu, \pi, K, p, d\} \equiv X$ with a probability density function (PDF)
- Assuming independent measurements:

$$\mathscr{L}_x \equiv \prod_{d \in D} \mathscr{L}_{x,d}$$

- Likelihood ratios are used to identify candidates as a particle p
 - There exist several ways to construct ratios (i.e. denominators):
 - Global pID: take as denominator all possible outcomes of identification
 - **Reweighted** and **MVA** *p***ID**: improve with MVA techniques the already available likelihoods by adding weights or other parameters

Particle identification (PID) variables

- From probability to PID variable
- 1. Global *p*ID:

2. **Reweighted** *p***ID**: Introduction of weights $w_{x,d}$ computed with a Neural Network (NN) trained on a dataset of simulated single particles to counterbalance possible poorly calibrated detectors

> klm 2.464 $0.434 \quad 0.595$ 0.1581.9580.429 0.611 1.9620.4831.4332.0180.1830.426 0.598 w =0.422 0.605 1.6630.219 $1.866 \quad 0.414 \quad 0.646 \quad 1.963 \quad 0.221$ 2.026 0.381 0.693 4.085 0.1491.265 0.5 $p\mathsf{ID} = \frac{\exp(\sum_{d\in D} w_{p,d} \log \mathscr{L}_{p,d})}{\sum_{x\in X} \exp(\sum_{d\in D} w_{x,d} \log \mathscr{L}_{x,d})}$

Géraldine Räuber

 $p\mathsf{ID} = \frac{\exp(\sum_{d\in D} \log \mathscr{L}_{p,d})}{\sum_{x\in X} \exp(\sum_{d\in D} \log \mathscr{L}_{x,d})}$

- 3. **MVA** *p***ID**: New method of ℓ identification based on a combination of several ECL measurements with the other subdetector likelihoods in a Boosted Decision Tree (BDT)
 - ECL PDF normally relies on E/p
 - Globally, good $e \pi$, μ separation
 - But reduced separation power for low momentum *e*
 - Add shower and pulse shapes variables and define new likelihoods to compensate this reduction

$$p\mathsf{ID} = \frac{\exp(\sum_{d \in D} \log \mathscr{L}'_{p,d})}{\sum_{x \in X} \exp(\sum_{d \in D} \log \mathscr{L}'_{x,d})}$$

Performance study

Configuration

- 3x1 prong τ decay topology with on the signal side $\tau^+ \to \pi^+ \pi^- \bar{\nu}_{\tau}$ and on the tag side $\tau^- \to X^- \nu_{\tau}$
- Use tag and probe approach on the signal side
 - Apply a tight PID cut on the tag tracks: Global $\pi ID > 0.9$
 - No PID cut on probe track: defines sample
 - Truth-match the probe track as a π to evaluate purity / efficiency

Motivation

- Use the fact that $\tau^+ \to \pi^+ \pi^+ K^- \nu_{\tau}$ is highly suppressed
 - Forbidden at tree level
 - Low background due to misidentification of the probe track

Selection

- Apply a cut-based selection optimised with a FOM to select signal
- Obtained a purity of 98.23% with an efficiency of 4.04%

BELLE2-NOTE-PH-2022-049

Results

Performance

• π ID efficiency computed for simulation and data on the whole spectrum of p and $\cos \theta$ as

 $N^{<\pi ID}$ **N**tot

- Reweighted π ID shows the best performance
 - Outperforms Global π ID and MVA π ID
- Small discrepancies between simulation and data
 - Results in smaller correction factors \Rightarrow smaller systematics

- Get correction factors in bins of $p \in [0.5, 4.5]$ GeV and $\cos \theta \in [-0.886, 0.956] \ (\equiv [17, 150]^{\circ})$
 - Compute associated
 - statistical uncertainties
 - systematics uncertainties
 - Provide analysts with correction tables

Belle II activities and τ physics

Géraldine Räuber

Lepton flavour universality (LFU)

LFU

 Couplings of leptons to W boson is flavour independent, i.e. $g_e = g_\mu = g_\tau$

- $R(D) R(D^*)$ plane ~ 3.9σ
- $R(K) \sim 3.1\sigma$
- $P5' \text{ in } B \rightarrow K^* \mu \mu \sim 3.4\sigma$

LFU in τ decays

• Test of $\mu - e$ universality:

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} = \frac{\mathscr{B}(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{\mathscr{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}$$

• If LFU holds: $g_e = g_\mu \Rightarrow R_\mu = 0.972564$

Anomalies in quark sector

Anomalies in lepton sector

•
$$(g-2)_{\mu} \sim 4.2\sigma$$

• $(g-2)_{\rho} \sim 2.5\sigma$

and more...

 \Rightarrow Hint of new fundamental interaction that violates LFU?

where $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \log(x)$ Phys. Rev. D 13, 771 (1976)

• <u>HFLAV 2022</u>: $(g_{\mu}/g_{e})_{\tau} = 1.0019 \pm 0.0014$

Lepton flavour universality (LFU)

Best measurements

- <u>BaBar</u>, 2010 (3x1 prong, 467fb⁻¹)
 - $R_{\mu} = 0.9796 \pm 0.0016$ (stat.) ± 0.0036 (syst.) $= 0.9796 \pm 0.0040$
- <u>CLEO</u>, 1997 (1x1 prong, 3.6fb⁻¹)
 - $R_{\mu} = 0.9777 \pm 0.0063$ (stat.) ± 0.0087 (syst.) $= 0.9777 \pm 0.0110$
- Systematically limited measurements

BaBar		CLEO	
	μ	Source	
Particle ID	0.32		
Detector response	0.08	Acceptance (\mathcal{A})	
Backgrounds	0.08	Trigger (\mathcal{T}) Background (f) Particle Id (\mathcal{P})	
Trigger	0.10		
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.01		
Radiation	0.04		
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05		
$\mathcal{L}\sigma_{e^+e^- \rightarrow \tau^+\tau^-}$	0.02		

 $\mathcal{L}_{e^+e^- \to \tau^+ \tau^-}$

Measurement at Belle II

• Use both 3x1 and 1x1 prong τ decay topologies

- Fixed selection of events targeting a high purity p_{ℓ}
 - 1x1: p_e = 98%, p_{μ} = 96% with 10% signal efficiency
 - 3x1: p_e = 99.5%, p_{μ} = 96% with 19% signal efficiency
- Evaluation of the systematics is ongoing
 - Preliminary results showed in October during B2GM
- \Rightarrow Stay tuned!

Summary

Particle identification (PID)

- All subdetectors contribute to the particle identification (PID)
 - Performance of the detector will influence the quality of the particle identification
- Ratios of (log-)likelihoods \mathscr{L}_x are used to identify candidates as a long lived charged particle p
 - Several ratios can be defined and lead to different performances
- Necessary to aim at the best performance in terms of efficiency but not only that
 - Smaller discrepancy yields smaller systematics which could represent a key element in a precision measurement

Lepton flavour universality (LFU) in τ decays

- Over the past few years, several results in the quark sector, e.g. $b \to s\ell\ell$ (loop-level) or $b \to c\ell\nu_{\ell}$ (tree-level) and in the lepton sector seem to point to a coherent pattern of anomalies Could be a hint of new fundamental interaction that violates LFU
- Performing a μe universality test is one to test the LFU prediction
- Belle II aims at providing a result using both 3x1 and 1x1 prong decay topologies
 - Finishing the evaluation of systematics for the 1x1, and starting it for the 3x1

YOU:

Backup Slides

PID and precision τ physics at Belle II November 18, 2022, Jennifer2 General Meeting

Event selection

Preselection

- Trigger: Iml (0, 1, 2, 4, 6, 7, 8, 9, 10)
- Tag track hID: pionID > 0.9 and nCDCHits > 20 Signal and background events
- Sig: $\tau \rightarrow \pi \pi \pi \nu_{\tau} \Leftrightarrow$ truth-matching probe track in $\tau \tau$ sample as π
- Bkg: all other events Definitions

FOM =
$$\frac{s}{\sqrt{s+xb}}$$
, pur = $\frac{s}{s+b}$, eff = $\frac{1}{2 \cdot N}$

• $N^{gen} = 91'900'000$ and $\mathscr{B}_{3p} = 9.31 \cdot 10^{-2}$

Cuts

- Applied one after the other, defined by maximizing FOM (pur)
- First assessed "by eye", x = 100
- Tuned by finding best FOM in the range neighbourhood, x = 200Result
- Purity of 98.23%, efficiency of 4.04% (MVA selection: Purity of 98.03%, efficiency of 5.65%)

*h*ID performance in τ decays 10 October 2022, 43^{*rd*} B2GM

Event selection

Principle

- Refine cuts by looking at FOM in the neighbourhood of both sides iteratively
 - Compute 9 possibilities of an initial range, using a width set manually
 - Select the range that yields the best FOM
 - Define two cases depending on the initial and new FOM:
 - if the new FOM is lower than the one obtained initially, go back to first step, but try with a smaller width.
 - if the new FOM is higher than the one obtained initially, replace the initial range by this new range, and go back to the first step.
 - Stop the iterative process once a certain width is reached

Event selection

Cuts without optimisation

	Feature	Cut
1	1 prong p_t	$\in [0.3, 5.4]$
2	E_{vis}^{CMS}	$\in [2.3, 9.2]$
3	$ heta_{p_{miss}^{CMS}}$	$\in [0.44, 2.7]$
4	3 prong E	$\in [2.48, 6.4]$
5	3 prong p^{CMS}	$\in [2.48, 5.1]$
6	$\cos heta_{\hat{t}}$	$\in [-0.46, 0.88]$
7	FoxWolfram R_3	$\in [0, 0.9]$
8	FoxWolfram R_4	$\in [0.32, 0.97]$
9	M_{miss}^2	$\in [-46.8, 52]$
10	1 prong μ_{max}^2	$\in [0, 10]$
11	1 prong $n\pi^0$	= 0
12	1 prong $n\gamma$	≤ 1
13	$3 \text{prong } n \pi^0$	= 0
14	$3 \mathrm{prong} \ n \gamma$	≤ 1
15	3 prong M	$\in [0, 1.7]$
16	$3 \text{prong } \chi_{prob}$	$\in [0,1]$
17	thrust	$\in [0.9, 1]$

Cuts with optimisation

	Feature	Cut
1	1 prong p_t	$\in [0.3101, 5.31]$
2	E_{vis}^{CMS}	$\in [2.4101, 8.3001]$
3	$ heta_{p_{miss}^{CMS}}$	$\in [0.55101, 2.6]$
4	3 prong E	$\in [2.481, 6.511]$
5	$3 prong \ p^{CMS}$	$\in [2.489, 5.101]$
6	$\cos heta_{\hat{t}}$	$\in [-0.47, 0.881001]$
7	FoxWolfram R_3	$\in [0, 0.9]$
8	FoxWolfram R_4	$\in [0.308999, 0.98]$
9	M_{miss}^2	$\in [-47.8, 53.0]$
10	1prong μ_{max}^2	$\in [0.00999, 10]$
11	1 prong $n\pi^0$	≤ 1
12	1 prong $n\gamma$	= 0
13	3 prong $n\pi^0$	≤ 1
14	$3 \mathrm{prong} \ n \gamma$	≤ 2
15	3 prong M	$\in [0, 1.5901]$
16	$3 prong \ \chi_{prob}$	$\in [0.00999, 0.99999]$
17	thrust	$\in [0.90901, 1]$