

FPGA-based Hadron Fluence Sensors

R. Giordano^{1,2}, G. Tortone², D. Vincenzi^{1,2}, F. Loffredo^{1,2}, M. Quarto^{1,2}, R. Pestonik³, A. Lozar³, A. Seljak³

¹University of Naples "Federico II", I-80126, Italy ²INFN Sezione di Napoli and ³Jozef Stefan Institute, Ljubljana, Slovenia

Presenter email: rgiordano@na.infn.it

Outline

- Motivation
- SRAM-based Field Programmable Gate Arrays
- Sensor and Interface Boards
- Use Case at Belle II
- Conclusion

Motivation

- Hadrons with energy>few MeV may indirectly induce SEUs in SRAMs
 - thermal neutrons (~25 meV) can also be detected if the fabrication includes Boron (¹⁰B + n $\rightarrow \alpha$ + ⁷Li)

- $\sigma = \sigma$ (device, V_{DD}, hadron, E)
- device must be latch-up free and TDtolerant
- State-of-art solutions [1,2,3]: sensor SRAM + readout FPGA

[1] S. Danzeca et al., 2014, doi: 10.1109/TNS.2014.2365042

[2] K. S. Ytre-Hauge et al., 2019, doi: 10.1016/j.radmeas.2019.01.001

[3] E. Blackmore et al., 2019, doi: 10.1109/TNS.2018.2884148_{R. Giordano - Jennifer2 GM, Nov. 2022}

SRAM Cypress CY62157EV30 8Mb (90nm) [1]

SRAM-based Field Programmable Gate Arrays

- FPGAs embed programmable fabric and configuration SRAM (CRAM)
- Programmable fabric can access CRAM via dedicated internal port (ICAP for Xilinx)
- Many devices are TD-tolerant
 (>few kGy) and latch-up free
- FPGA as compact hadron fluence counter
 - CRAM as sensitive element + fabric programmed as readout
- PHI R&D funded by INFN CSNV (2021-2022)

Upsets Vs Configuration

 Challenge: upsets (what we want to measure) may disrupt the readout logic (our transducer)

- Readout logic main features
 - detect and correct upsets in CRAM => self-correct functionality
 - self-contained (no external memories for reference bitstream)
 - provide details about upsets (timestamp, memory address, bit offset, polarity)
- Radiation Hardening By Design

 PCB, firmware, redundant CRAM content

Sensor Board

- Compact board (6.3cm x 6.5cm)
 - Only COTS components, radiation tolerance studies in [1,2]
 - Dual power input mode: direct or via-regulators
 - Low power consumption (~0.7 W)
- Xilinx Artix-7 200T
 - 28nm CMOS
 - 59 Mb CRAM + 18 Mb BRAM
 - Expected proton-SEU σ = 9.4·10⁻¹⁵ cm^2 , sensitivity = 1.4 10⁶ pp/cm²

[1] T. Higuchi et al., 2012, doi: 10.1088/1748-0221/7/02/C02022 [2] Y. Yu Nakazawa et al., 2020, doi: 10.1016/j.nima.2019.163247. Giordano - Jennifer2 GM, Nov. 2022

Sensor Board (2)

- Components: FPGA, power regulators, oscillator, buffers, passives, connectors
- Triple traces for clock, UART, JTAG selfscrubbing (loopback)
- Dual clock input support
 - external and local oscillator (100 MHz)

Readout Logic

- Minimize single point of failures
 - Triple modular redundancy, triple IOs
 - Multiple configuration access ports: onthe-fly switch between ICAP and JTAG
 - Multiple clock sources
 - Majority voting of redundant configuration for firmware self-repair

Majority Voting Configuration for Self-Repair

- 1. Generate FPGA bitstream and identify used configuration memory locations (i.e. frames)
- 2. Replicate used frames and keep track of redundant and remaining empty frames
- 3. During FPGA operation, **majority vote** redundant frames for error detection and correction and **check** empty frames
- Can correct all the bits in a frame
 - Assuming no errors in homologous redundant bits (physical separation of redundant copies)
- Based on ICAP, portable on several FPGA families
- No additional power dissipation related to redundant configuration

[1] R. Giordano et al. "Configuration Self-repair in Xilinx FPGAs," in IEEE Trans. on Nucl. Sci., vol. 65, no. 10, pp. 2691-2698, Sept. 2017. Open Access https://ieeexplore.ieee.org/document/8456573

Layout and Configuration View

- Redundant modules placed and routed in distinct areas "pblocks"
- Minimal resource utilization (2.5% slices and BRAMs)
- Fully triple redundant configuration [1], CRAM utilization 22.0%
- Full CRAM readout time 1.5s

Logic Resources	Used	Available	%
Slices: FFs	1813	267600	0.7
Slices: LUTs	2174	133800	1.6
Slices: overall	823	33450	2.5
BRAM 36k	9	365	2.5
BUFG	4	32	12.5
BSCAN	1	4	25.0
ICAP	1	2	50.0

Original CRAM frames 1354 (7.4%)

R. Giordano - Jennifer2 GM, Nov. 2022

Interface Board

- Interface board for configuration and serial readout
 - Digilent Cora z7-10 based on Zynq-7000 (FPGA+ARM uP) + custom plug-in board
- Plug-in board (custom)
 - Provides JTAG, clock, UART to the sensor board
 - Hosts two DC-DC converters for supplying power to the sensor
- Automatic Cable Delay Compensation for fast JTAG over distances up to 40 m

R. Giordano - Jennifer2 GM, Nov. 2022

Radiation Tests Status

- Radiation tolerance tests at the TRIGA reactor of Jožef Stefan Institute (Ljubljana, Slovenia)
 - Dry chamber for irradiation w/ flux ~ 107 $n_{eq}/(cm^2 \cdot s)$ at full power
 - HEP-experiment-like radiation environment (Belle II spectrometer)
 - Results: neutron fluence tolerance > 10¹² n_{eq}/cm², readout logic failure cross section 5.1·10⁻¹² cm² (thermal n)
- Measurement of σ(E) at Trento Institute for Fundamental Physics and Applications (Trento, Italy)
 - monoenergetic protons from 70MeV to 226 MeV
 - fluxes from $3 \cdot 10^6$ to $2 \cdot 10^8$ p/(cm²·s)
 - Testing in progress, will be completed in Nov-Dec 2022
- Interest of Belle II background community for single-event upset monitoring in on-detector FPGAs [1] and neutron-related background in general

[1]Talk at biweekly beam background meetingdano - Jennifer2 GM, Nov. 2022

Hadron Fluence Monitoring at Belle II

- To be installed in 2023 x2
- Overall 4 sensors + 4 readout boards
 - Two at forward (e+/e-) and two at backward (e+/e-)
 - Will replace present FPGA test boards
- EPICS support for integration with other Belle II monitors
- Back-end server at INFN NA for data collection and web publication (Grafana)
- Overall system modularity makes it possible to add more measurement points over time

Conclusions and...

- Designed a compact, FPGA-based hadron fluence sensor
 - RHBD at PCB and firmware level exportable to other applications of FPGAs in radiation areas
- Interface board
 - Ethernet-enabled JTAG programmer and more!
- Promising results from radiation testing of two sensors
 - Tolerated neutron fluence better than requirements (>10¹² n_{eq}/cm²)
 - $-\sigma(E)$ characterization with proton beams in progress
- Outlook on foreseen readout system at Belle II

...Acknowledgments

- This research has been funded by INFN in the framework of the PHI experiment (CSNV)
- We wish to thank
 - A. Boiano, A. Vanzanella, A. Pandalone, E. Masone from SER (Electronics and Detectors Service) of INFN Napoli for their technical support to this activity

– JSI TRIGA staff for their technical support during the irradiation test

