
DarkCosmoGrav: New Frontiers in Particle Physics, Gravity,
and Cosmology, Pisa, Italy

Regular black holes, universes without

singularities, and phantom-scalar field

transitions

A.Yu. Kamenshchik

University of Bologna and INFN, Bologna

January 23-25, 2023



Based on:

Leonardo Chataignier, Alexander Yu. Kamenshchik,
Alessandro Tronconi and Giovanni Venturi,

Regular black holes, universes without singularities, and
phantom-scalar field transitions,

Physical Review D 107, 023508 (2023)

arXiv:2208.02280 [gr-qc].



Content

1. Introduction and motivations

2. Friedmann universes without singularities

3. Bianchi-I universes without singularities

4. Spherically symmetric static regular geometries sustained
by a scalar field

5. Conclusions



Introduction and Motivations

I Appearance of singularities is one of the most important
phenomena in General Relativity and its generalizations
and modifications.

I The singularities were first discovered in such simple
geometries as those of Friedmann and Schwarzschild and
later their general character was established (Penrose,
Hawking).

I The investigation of the oscillatory approach to the
cosmological singularity (Belinsky, Khalatnikov, Lifshitz)
known also as Mixmaster universe (Misner) has opened
the way to the birth of a new branch of the mathematical
physics chaotic cosmology and hyperbolic Kac-Moody
algebras (Damour, Henneaux, Nicolai).



Introduction and Motivations

I One can try to study the opportunity to cross the
singularity.

I Another choice: to construct the spacetimes (static or
cosmological) free of singularities.

I Simpson and Visser, 2019 have suggested to eliminate the
singularity from the Schwarzschild black hole, by a simple
substitution

ds2 =

(
1− 2m√

u2 + b2

)
dt2 −

(
1− 2m√

u2 + b2

)−1
du2

−(u2 + b2)(dθ2 + sin2 θdϕ2),

where b is a regularising parameter. If b > 2m, the
formula above represents a wormhole with a throat at
u = 0; if b < 2m, one has a black hole with two horizons
at u = ±

√
4m2 − b2 and b = 2m, we see an extremal

black hole with the only horizon at u = 0.



I In the black hole case, the hypersurface u = 0 is not a
throat since u is a temporal coordinate there and u = 0
corresponds to a bounce in one of the two scalar factors,
of the Kantowski-Sachs universe in the inner region of the
black hole. This phenomenon was called black bounce.

I Bronnikov, 2022 has considered a static spherically
symmetric geometry in the presence of the scalar field
and of the magnetic field. An interesting phenomenon of
the transformation between the phantom scalar field and
the standard field is observed.

I A similar phenomenon arises in a simple non-singular
cosmological models.



Our goals here:

I To study non-singular cosmological models.

I To find a non-singular spherically symmetric static
black-hole like geometry sustained by a scalar field.



Flat Friedmann model with a scalar field

Let us consider a flat Friedmann universe filled with a massless
scalar field.

ds2 = dt2 − t
2
3 (dx21 + dx22 + dx23 ),

φ̇ =

√
2

3

1

t
.

Let us now construct the regularized metric:

ds2 = dt2 − (t2 + b2)
1
3 (dx21 + dx22 + dx23 ).



R0
0 =

2t2 − 3b2

3(t2 + b2)4
,

R1
1 = R2

2 = R3
3 = − b2

3(t2 + b2)2
.

R =
2t2 − 6b2

3(t2 + b2)2
.

The Friedmann equations give the expressions for the energy
density and for the isotropic pressure of matter

ρ =
t2

3(t2 + b2)2
,

p =
t2 − 2b2

3(t2 + b2)2
.



Let us suppose that the universe is filled with a spatially
homogeneous scalar field with a potential V (φ).

ρ =
1

2
φ̇2 + V (φ),

p =
1

2
φ̇2 − V (φ).

Then

φ̇ = ±
√

2

3

√
t2 − b2

t2 + b2
,

V =
b2

3(t2 + b2)2
.

What happens at |t| < b?
The kinetic energy of φ changes sign and the standard scalar
field transitions to a phantom scalar field.



We can study the behaviour of the potential V in the vicinity
of t = b.

t = b + τ,

where τ is small.
dφ

dτ
=

√
τ√

3b3
,

φ(τ) = φ0 +
2τ 3/2

3
√

3b3
.

τ = 3b

(
φ− φ0

2

) 2
3

.



In the vicinity of the critical point:

V (φ) =
1

3b2
[(

1 + 3
(
φ−φ0

2

) 2
3

)2
+ 1

]2 .
By keeping only the leading terms:

V (φ) =
1

12b2

[
1− 6

(
φ− φ0

2

) 2
3

]
.

The distinguishing feature of this expressions is the presence
of a non-analyticity of the cusp type, which is responsible for
the transition from the standard scalar field to its phantom
counterpart and vice versa.



It is interesting that a similar phenomenon of the transition
from the phantom and non-phantom phases of the scalar field
was found in another context in Andrianov, Cannata and
Kamenshchik, 2005, Smooth dynamical crossing of the
phantom divide line of a scalar field in simple cosmological
models, Phys. Rev. D 72, 043531.

The potential of the scalar field had also a cusp with the same
type of non-analyticity (φ− φ0)2/3.



A slightly more general model

ds2 = dt2 − t2α(dx21 + dx22 + dx23 ).

Such an evolution arises in a universe filled with a perfect
fluid with the equation of state parameter

w =
2− 3α

3α
.

This is a particular solution to the equations of motion for the
flat Friedmann model with a minimally coupled scalar field
with an exponential potential:

V (φ) = α(3α− 1) exp

(
−
√

2

α
(φ− φ0)

)
.



Singularity-free solution:

ds2 = dt2 − (t2 + b2)αdl2.

The expressions for the potential and the time derivative of
the scalar field realizing this evolution are

V (φ) =
α(b2 + (3α− 1)t2)

(t2 + b2)2
,

φ̇2 =
2α(t2 − b2)

(t2 + b2)2
.

Again phantom–non-phantom transformation occurs at
|t| = b. The potential at this point has a cusp.



The behaviour of the potential in the vicinity of the cusp:

V (φ) =
α

4b2

[
3α− 2 · 32/3

α1/3

(
φ− φ0

2

)2/3
]
.

This expression has the same non-analyticity (∼ (φ− φ0)2/3)
as that seen in the preceding model, and when α = 1

3
these

expressions coincide.



Bianchi-I universes without singularities

Let us consider a Bianchi-I universe with the metric

ds2 = dt2 − (a21(t)dx21 + a22(t)dx22 + a23dx
2
3 ).

It is convenient to introduce the following variables:

a1(t) = A(t)eβ1(t),

a2(t) = A(t)eβ2(t),

a3(t) = A(t)eβ3(t),

where the anisotropic factors βi satisfy the identity

β1 + β2 + β3 = 0.



The Ricci tensor components and the Ricci scalar:

R0
0 = −3

Ä

A
−

3∑
i=1

β̇2
i ,

R1
1 = −

(
Ä

A
+ 2

Ȧ2

A2
+ 3

Ȧ

A
β̇1 − β̈1

)
,

R2
2 = −

(
Ä

A
+ 2

Ȧ2

A2
+ 3

Ȧ

A
β̇2 − β̈2

)
,

R3
3 = −

(
Ä

A
+ 2

Ȧ2

A2
+ 3

Ȧ

A
β̇3 − β̈3

)
,

R = −

(
6
Ä

A
+ 6

Ȧ2

A2
+

3∑
i=1

β̇2
i

)
.

In an empty space or a space filled with matter with an
isotropic pressure, we have

R1
1 = R2

2 = R3
3 ,



and
R2
2 + R3

3 − 2R1
1 = 0.

Then,

β̈1 + 3
Ȧ

A
β̇1 = 0

and

β̇1 =
β10
A3
,

where β10 is an integration constant. Similarly,

β̇2 =
β20
A3
,

β̇3 =
β30
A3
.



R0
0 −

1

2
R = 3

Ȧ2

A2
− 1

2

β̄2

A6
,

where

β̄2 ≡
3∑

i=1

β2
i0.

In an empty universe

A(t) = A0t
1/3

and then one can find also the anisotropy factor coming to
the Kasner solution.



The regularized geometry is

A(t) = (t2 + b2)
1
6 .

The corresponding potential and kinetic term of a scalar field
are

φ̇2 =
t2(2− 3β̄2)− b2(2 + 3β̄2)

3(t2 + b2)2
.

V =
b2

3(t2 + b2)2
.

The phantom-scalar transition occurs at

|t| = b

√
2 + 3β̄2

2− 3β̄2
.

The presence of the scalar field imposes the restriction on the
value of anisotropy:

β̄2 ≤ 2

3
.



Spherically symmetric static regular geometries sustained by a
scalar field

Bronnikov,2022 considered regularized Fisher-type solutions,
where the role of matter was played by the scalar field and by
the electromagnetic field. Here we wish to construct a
spherically symmetric static spacetimes filled exclusively with
the scalar field.

We shall look for this solution in the following form:

ds2 = A(r)dt2 − B(r)dr 2 − (r 2 + b2)(dθ2 + sin2 θdϕ2).



The components of the Ricci tensor for this metric:

R0
0 =

A′′

2AB
− A′2

4A2B
− A′B ′

4AB2
+

A′r

AB(r 2 + b2)
,

R r
r =

A′′

2AB
− A′2

4A2B
− A′B ′

4AB2
− B ′r

B2(r 2 + b2)
+

2b2

B(r 2 + b2)2
,

Rθ
θ = Rϕ

ϕ =
1

B(r 2 + b2)
− B ′r

2B2(r 2 + b2)

+
A′r

2AB(r 2 + b2)
− 1

r 2 + b2
,

where the “prime” means the derivative with respect to r .



Let us suppose that our spacetime is filled with the scalar field
which depends only on the radial coordinate r . Its Lagrangian

L =
1

2
gµνφ,µφ,ν − V (φ) = − 1

2B
φ′2 − V (φ).

The components of the energy-momentum tensor are

T 0
0 =

1

2B
φ′2 + V (φ),

T r
r = − 1

2B
φ′2 + V (φ),

T θ
θ = Tϕ

ϕ =
1

2B
φ′2 + V (φ).

T 0
0 = T θ

θ = Tϕ
ϕ ,



R0
0 = Rθ

θ = Rϕ
ϕ .

It gives us a constraint

A′′

2AB
− A′2

4A2B
− A′B ′

4AB2
+

A′r

2AB(r 2 + b2)

− 1

B(r 2 + b2)
+

B ′r

2B2(r 2 + b2)
+

1

r 2 + b2
= 0,

but we still have a lot of freedom.
One of the simplest possible choices is the
“Schwarzschild-like” condition

AB = 1.



It gives the equation

A′′ − 2A

r 2 + b2
+

2

r 2 + b2
= 0.

Its general solution is

A = 1 + c1(r 2 + b2) +
c2

2b3

[
(r 2 + b2)arctan

r

b
+ br

]
,

where c1 and c2 are arbitrary constants. It is reasonable to
require that the general solution would have a well-defined
limit at b → 0. To find it, we shall use the expansion of the
arctan function when its argument tends to infinity:

arctan
r

b
=
π

2
− b

r
+

b3

3r 3
− b5

5r 5
+ · · · .

The condition for the regularity at b → 0 is

c1 = −c2π

4b3
.



At r →∞:

A = 1− c2
3r

+
c2b

2

15r 3
+ · · · .

It is convenient to introduce r0 = c2
3

when at r →∞ this
expression has a “Schwarzschild-like” form

A = 1− r0
r

+
b2r0
5r 3

+ · · · .

Finally,

A = 1− 3πr0
4b3

(r 2 + b2) +
3r0
2b3

[
(r 2 + b2)arctan

r

b
+ br

]
.

This geometry does not have any singularity at r = 0.



One can show that at

b ≥ 3πr0
4

one has a wormhole. In the opposite case we have a regular
black hole with a black bounce.

We can connect the obtained geometry of the spacetime with
a scalar field, living in it, using the Einstein equations.

φ′2 = − b2

(r 2 + b2)2
.

The negative definiteness of the right-hand side of this
equation indicates that the scalar field should be phantom and
that we should change the sign at the kinetic term of scalar
field Lagrangian. Then



φ′2 =
b2

(r 2 + b2)2
,

and

φ′ = ± b

r 2 + b2

Then
φ = arctan

r

b
,

r = b tanφ.



The potential of this field is

V = −3πr0
4b3

+
3r0
2b3

φ +
9r0 sin 2φ

4b3

−3πr0 sin2 φ

2b3
+

3r0φ sin2 φ

b3
.

Here the domain of the function is

0 ≤ φ <
π

2

and the potential is an analytic function without any
irregularities of the cusp type. It is in agreement with the fact
that the scalar field does not undergo in this solution the
phantom - non-phantom transition.



The same solution was found earlier in

K.A. Bronnikov and J.C. Fabris, Regular phantom black holes,
Phys. Rev. Lett. 96 (2006) 251101.



Conclusions

I Consideration of rather simple cosmological or static
(black-hole type) models with a naive modification of the
solutions aimed to exclude singularities can imply the
appearance of interesting physical effects such as
transformations between different kinds of matter.

I Phantom scalar fields can be of interest from
phenomenological point of view. In recent paper A. S. de
Jesus, N. Pinto-Neto, F. S. Queiroz, J. Silk and D. R. da
Silva, The Hubble Rate Trouble: An Effective Field
Theory of Dark Matter, arXiv:2212.13272 [hep-ph] the
authors combining a phantom-like cosmology with
modification of the Standard Model of particle physics
(adding non-renormalizable interactions) manage to
suggest a solution of the Hubble tension puzzle.


