PARTICLE INTERACTIONS IN KINETIC FIELD THEORY

APPLICATION TO COSMIC STRUCTURE FORMATION

Christophe Pixius

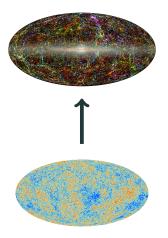
23 January 2023

Institute for Theoretical Physics Heidelberg University

Luxembourg National Research Fund

GOAL

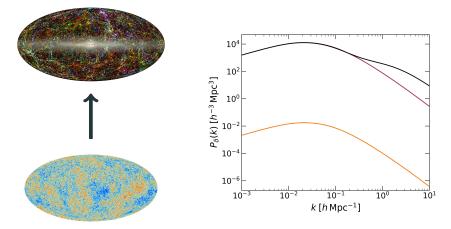
Analytical description of non-linear structure formation



credit: https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB NASA/2MASS, T.H. JARRETT (IPAC/CALTECH)/SCIENCE PHOTO LIBRARY

GOAL

· Analytical description of non-linear structure formation



Non-linear power spectrum from Smith et al., Stable clustering, the halo model and nonlinear cosmological power spectra, 2002

- Can yield a proper understanding of physical mechanisms, leading to e.g.
 - universality of cosmic structures
 - \cdot halo density profiles

- Can yield a proper understanding of physical mechanisms, leading to e.g.
 - universality of cosmic structures
 - \cdot halo density profiles
- Can cover large theory spaces at low computational cost
 - Investigate different models of dark energy and dark matter
 - Probe alternative gravity models

STANDARD PERTURBATION THEORY (SPT) - OVERVIEW

- Model the content of the universe as a fluid
- Initial conditions are set by inflation and are assumed to be Gaussian
- The evolution of the cosmic fluid is governed by the equations of (ideal) hydrodynamics

$$\begin{split} \partial_{\tau}\delta + \nabla \cdot \left[(1+\delta)u\right] &= 0 \qquad (\text{continuity}) \\ \partial_{\tau}u + \frac{1}{2}u + (u \cdot \nabla)u + \nabla \Phi &= 0 \qquad (\text{Euler}) \\ \nabla^2 \Phi &= \frac{3}{2}\delta \qquad (\text{Poisson}) \end{split}$$

$$\begin{split} \partial_{\tau}\delta_{k} + \theta_{k} &= -\int_{k_{1}}\alpha(k_{1}, k - k_{1})\theta_{k_{1}}\delta_{k-k_{1}}\\ \partial_{\tau}\theta_{k} + \frac{1}{2}\theta_{k} + \frac{3}{2}\delta_{k} &= -\int_{k_{1}}\beta(k_{1}, k - k_{1})\theta_{k_{1}}\theta_{k-k_{1}} \end{split}$$

$$\begin{split} \partial_{\tau}\delta_{k} + \theta_{k} &= -\int_{k_{1}}\alpha(k_{1}, k - k_{1})\theta_{k_{1}}\delta_{k-k_{1}}\\ \partial_{\tau}\theta_{k} + \frac{1}{2}\theta_{k} + \frac{3}{2}\delta_{k} &= -\int_{k_{1}}\beta(k_{1}, k - k_{1})\theta_{k_{1}}\theta_{k-k_{1}} \end{split}$$

- \cdot Expand around linear solution for δ_k and $heta_k$ (LHS)
- Include RHS perturbatively for higher order solutions (loop corrections)

$$\begin{split} \partial_{\tau}\delta_{k} + \theta_{k} &= -\int_{k_{1}}\alpha(k_{1}, k - k_{1})\theta_{k_{1}}\delta_{k-k_{1}}\\ \partial_{\tau}\theta_{k} + \frac{1}{2}\theta_{k} + \frac{3}{2}\delta_{k} &= -\int_{k_{1}}\beta(k_{1}, k - k_{1})\theta_{k_{1}}\theta_{k-k_{1}} \end{split}$$

- \cdot Expand around linear solution for δ_k and $heta_k$ (LHS)
- Include RHS perturbatively for higher order solutions (loop corrections)
- Average over initial conditions to get spectra, e.g. the dark matter power spectrum

$$P_{\delta}(k,\tau) = \int_{k'} \left< \delta_k(\tau) \delta_{k'}(\tau) \right>$$

$$\begin{split} \partial_{\tau}\delta_{k} + \theta_{k} &= -\int_{k_{1}}\alpha(k_{1}, k - k_{1})\theta_{k_{1}}\delta_{k-k_{1}}\\ \partial_{\tau}\theta_{k} + \frac{1}{2}\theta_{k} + \frac{3}{2}\delta_{k} &= -\int_{k_{1}}\beta(k_{1}, k - k_{1})\theta_{k_{1}}\theta_{k-k_{1}} \end{split}$$

- \cdot Expand around linear solution for δ_k and $heta_k$ (LHS)
- Include RHS perturbatively for higher order solutions (loop corrections)
- Average over initial conditions to get spectra, e.g. the dark matter power spectrum

$$P_{\delta}(k,\tau) = \int_{k'} \left< \delta_k(\tau) \delta_{k'}(\tau) \right>$$

• But: no access to fully non-linear scales (single stream approximation)

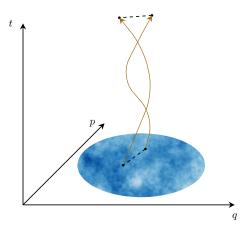
KINETIC FIELD THEORY (KFT)

IDEA

- Treat content of universe as classical point particles
- Particles follow classical phase-space trajectories
- Initial phase-space positions are sampled from initial density and velocity field

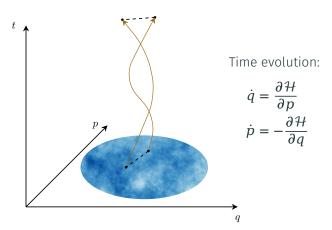
IDEA

- Treat content of universe as classical point particles
- Particles follow classical phase-space trajectories
- Initial phase-space positions are sampled from initial density and velocity field



IDEA

- $\cdot\,$ Treat content of universe as classical point particles
- Particles follow classical phase-space trajectories
- Initial phase-space positions are sampled from initial density and velocity field



• Probability distribution in phase-space

$$\mathcal{P}(\mathbf{x}) = \int d\mathbf{x}^{(i)} \mathcal{P}(\mathbf{x}^{(i)}) \ \mathcal{P}(\mathbf{x} \,|\, \mathbf{x}^{(i)}), \qquad \mathbf{x} = (\mathbf{q}, \mathbf{p})^{\mathrm{T}}$$

• Probability distribution in phase-space

$$\mathcal{P}(\mathbf{x}) = \int \mathrm{d} \mathbf{x}^{(\mathrm{i})} \mathcal{P}(\mathbf{x}^{(\mathrm{i})}) \, \delta_D \Big(\mathbf{x} - \mathbf{x}^{(\mathrm{cl})}(\tau; \mathbf{x}^{(\mathrm{i})}) \Big), \qquad \mathbf{x} = (\mathbf{q}, \mathbf{p})^\mathrm{T}$$

• Probability distribution in phase-space

$$\mathcal{P}(\mathbf{x}) = \int \mathrm{d} \mathbf{x}^{(\mathrm{i})} \mathcal{P}(\mathbf{x}^{(\mathrm{i})}) \, \delta_D \Big(\mathbf{x} - \mathbf{x}^{(\mathrm{cl})}(\tau; \mathbf{x}^{(\mathrm{i})}) \Big), \qquad \mathbf{x} = (\mathbf{q}, \mathbf{p})^\mathrm{T}$$

• Split
$$\mathbf{x}^{(cl)} = \mathbf{x}^{(cl, \text{ free})} + \mathbf{x}^{(cl, \text{ int.})}$$

• Probability distribution in phase-space

$$\mathcal{P}(\mathbf{x}) = \int \mathrm{d} \mathbf{x}^{(\mathrm{i})} \mathcal{P}(\mathbf{x}^{(\mathrm{i})}) \, \delta_D \Big(\mathbf{x} - \mathbf{x}^{(\mathrm{cl})}(\tau; \mathbf{x}^{(\mathrm{i})}) \Big), \qquad \mathbf{x} = (\mathbf{q}, \mathbf{p})^\mathrm{T}$$

- Split $\mathbf{x}^{(cl)} = \mathbf{x}^{(cl, \text{ free})} + \mathbf{x}^{(cl, \text{ int.})}$
- Resulting generating functional:

 $Z[\mathbf{J}] = e^{i\hat{S}_I} Z_0[\mathbf{J}]$

• Probability distribution in phase-space

$$\mathcal{P}(\mathbf{x}) = \int \mathrm{d} \mathbf{x}^{(\mathrm{i})} \mathcal{P}(\mathbf{x}^{(\mathrm{i})}) \, \delta_D \Big(\mathbf{x} - \mathbf{x}^{(\mathrm{cl})}(\tau; \mathbf{x}^{(\mathrm{i})}) \Big), \qquad \mathbf{x} = (\mathbf{q}, \mathbf{p})^\mathrm{T}$$

- Split $\mathbf{x}^{(cl)} = \mathbf{x}^{(cl, \text{ free})} + \mathbf{x}^{(cl, \text{ int.})}$
- Resulting generating functional:

$$Z[\mathbf{J}] = e^{i\hat{S}_I} Z_0[\mathbf{J}]$$

• Calculate density correlations, e.g. a two-point function:

 $\left\langle \rho(k,\tau)\rho(k',\tau)\right\rangle = \hat{\rho}(k,\tau)\hat{\rho}(k',\tau)Z[\mathbf{J}]\big|_{\mathbf{J}=0}$

KFT PERTURBATION THEORY

EXPANSION OF THE INTERACTION OPERATOR

- Interaction operator can't be evaluated in the full exponential form
- Series expansion:

$$Z[\mathbf{J}] = e^{i\hat{S}_I} Z_0[\mathbf{J}]$$

EXPANSION OF THE INTERACTION OPERATOR

- Interaction operator can't be evaluated in the full exponential form
- Series expansion:

$$\begin{split} Z[\mathbf{J}] &= \mathrm{e}^{\mathrm{i}\hat{S}_I} Z_0[\mathbf{J}] \\ &= \left(1 + \mathrm{i}\hat{S}_I + \frac{1}{2} (\mathrm{i}\hat{S}_I)^2 + \dots \right) Z_0[\mathbf{J}] \end{split}$$

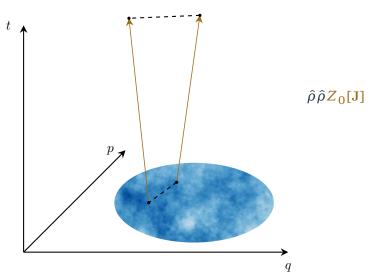
EXPANSION OF THE INTERACTION OPERATOR

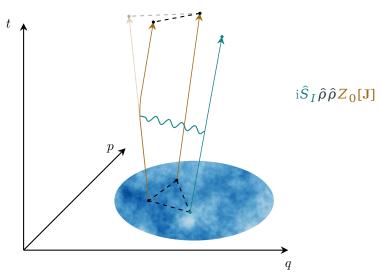
- Interaction operator can't be evaluated in the full exponential form
- Series expansion:

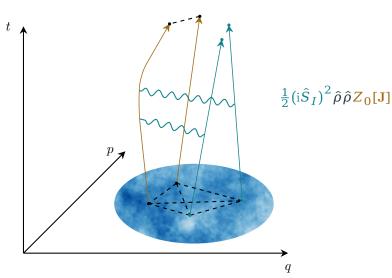
$$\begin{split} \boldsymbol{Z}[\mathbf{J}] &= \mathrm{e}^{\mathrm{i}\hat{\boldsymbol{S}}_I} \boldsymbol{Z}_0[\mathbf{J}] \\ &= \left(1 + \mathrm{i}\hat{\boldsymbol{S}}_I + \frac{1}{2} (\mathrm{i}\hat{\boldsymbol{S}}_I)^2 + \dots \right) \boldsymbol{Z}_0[\mathbf{J}] \end{split}$$

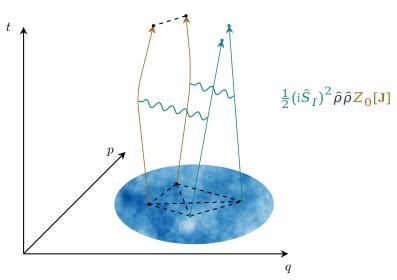
• Two-point function in perturbation theory:

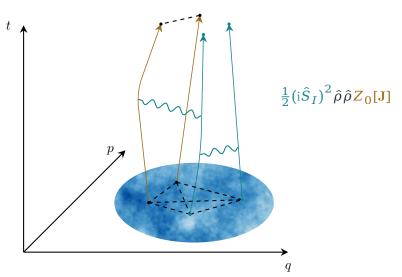
$$\left< \rho(k)\rho(k') \right> = \left(1 + \mathrm{i}\hat{S}_I + \frac{1}{2}(\mathrm{i}\hat{S}_I)^2 + \dots\right)\hat{\rho}\hat{\rho}Z_0[\mathbf{J}]$$











Systematics of perturbation theory

- Effect of the interaction operator can be represented in terms of **diagrams**
- Number of diagrams increases with each order
- Number of terms per diagram increases with each order

SYSTEMATICS OF PERTURBATION THEORY

- Effect of the interaction operator can be represented in terms of **diagrams**
- Number of diagrams increases with each order
- Number of terms per diagram increases with each order
- \Rightarrow Calculations by hand become unfeasible for orders n > 2

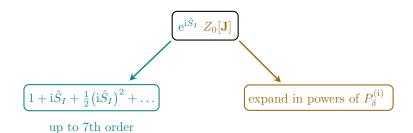
Systematics of perturbation theory

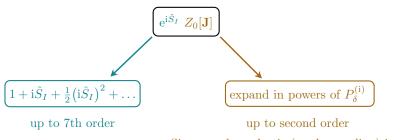
- Effect of the interaction operator can be represented in terms of **diagrams**
- Number of diagrams increases with each order
- Number of terms per diagram increases with each order
- \Rightarrow Calculations by hand become unfeasible for orders n > 2
 - But: logic can be translated into a symbolic code

- Effect of the interaction operator can be represented in terms of **diagrams**
- Number of diagrams increases with each order
- Number of terms per diagram increases with each order
- \Rightarrow Calculations by hand become unfeasible for orders n > 2
 - But: logic can be translated into a symbolic code
 - At present this allows to go up to **7th order** in the interaction operator

$$\underbrace{\mathbf{e}^{\mathbf{i}\hat{S}_{I}} \ \mathbf{Z}_{0}[\mathbf{J}]}_{\mathbf{1}+\mathbf{i}\hat{S}_{I}+\frac{1}{2}\left(\mathbf{i}\hat{S}_{I}\right)^{2}+\ldots}$$

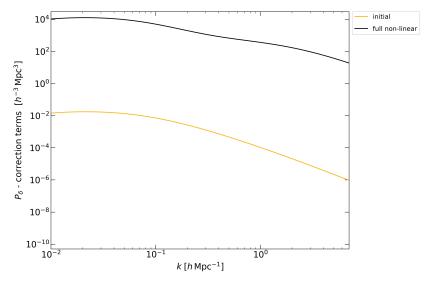
up to 7th order

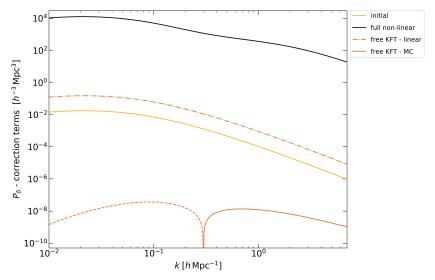


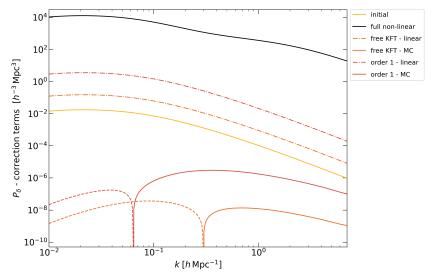


(linear and quadratic (mode coupling) in $P_{\delta}^{(i)}$)

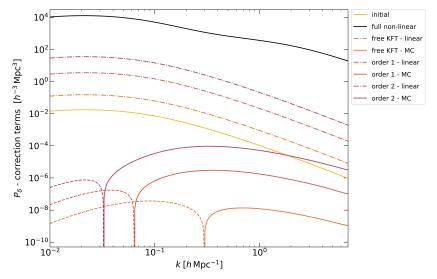
RESULTS

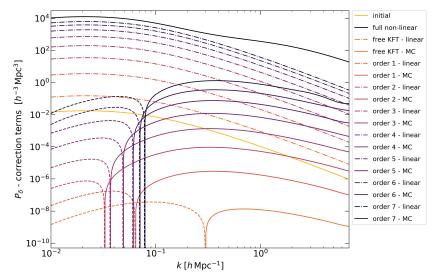






LINEAR AND MODE COUPLING RESULTS





CONCLUSION & OUTLOOK

- KFT allows for **analytical calculations of correlation functions** of cosmic structures **from first principles**
- Perturbation theory in KFT is conceptually very different from SPT
- **Higher order perturbations are needed** to calculate the non-linear dark matter power spectrum
- Alternatively, choose a **different splitting between free and interacting theory**
 - \Rightarrow improve convergence of perturbation theory

THANK YOU!

DENSITY OPERATORS

Density in real and Fourier space, and as an operator

$$\rho(q_1, t_1) = \sum_{s=1}^N \delta_D(q_1 - q_s(t_1))$$

$$\rho(k_1,t_1) = \sum_{s=1}^N \exp\left(-\mathrm{i} k_1 \cdot q_s(t_1)\right)$$

$$\hat{\rho}(k_1,t_1) = \sum_{s=1}^N \exp\left(-\mathrm{i} k_1 \cdot \frac{\delta}{\mathrm{i} \delta J_{q_s}(t_1)}\right)$$

Effect of density operators on the generating functional

$$\hat{\rho}(k_1,t_1)Z_0[\mathbf{J}] = \sum_{s=1}^N Z_0[\mathbf{J} + \mathbf{L}] \quad \text{with} \quad L_s(t) = -\binom{k_1}{0}\delta_D(t-t_1)$$

$$Z_0[\mathbf{L}] = V^{-n} (2\pi)^3 \delta_D \Big(\sum_{j=1}^n L_{q_j} \Big) e^{-Q_D} \prod_{2 \le b < a}^n \int_{k_{ab}} \prod_{1 \le i < j}^n \Big(\mathcal{P}_{ij}(k_{ij}) + \sum_{j < b < a}^n \sum_{j < b < a}^n \Big) e^{-Q_D} \sum_{j < b < a}^n \sum_{j < a}^n \sum_{j < b < a}^n \sum_{j < a}^n$$

The factors of the generating functional \mathcal{P}_{ij} and the damping factor Q_D are defined by

$$\begin{aligned} \mathcal{P}_{ij}(k_{ij}) &= \int_q \left(e^{-L_{p_i}^{\mathrm{T}} C_{pp}(q) L_{p_j}} - 1 \right) e^{\mathrm{i}k_{ij} \cdot q} \\ Q_D &= \frac{\sigma_p^2}{2} \sum_{j=1}^n L_{p_j}^2. \end{aligned}$$