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GOAL

• Analytical description of non-linear structure formation

credit: https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB
NASA/2MASS, T.H. JARRETT (IPAC/CALTECH)/SCIENCE PHOTO LIBRARY
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GOAL

• Analytical description of non-linear structure formation

Non-linear power spectrum from Smith et al., Stable clustering, the halo model and nonlinear
cosmological power spectra, 2002
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WHY ANALYTICAL METHODS?

• Can yield a proper understanding of physical mechanisms,
leading to e. g.

• universality of cosmic structures
• halo density profiles

• Can cover large theory spaces at low computational cost
• Investigate different models of dark energy and dark matter
• Probe alternative gravity models
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STANDARD PERTURBATION THEORY
(SPT) - OVERVIEW



IDEA

• Model the content of the universe as a fluid

• Initial conditions are set by inflation and are assumed to be
Gaussian

• The evolution of the cosmic fluid is governed by the equations
of (ideal) hydrodynamics
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STANDARD PERTURBATION THEORY

𝜕𝜏𝛿 + ∇ ⋅ [(1 + 𝛿)𝑢] = 0 (continuity)
𝜕𝜏𝑢 + 1

2𝑢 + (𝑢 ⋅ ∇)𝑢 + ∇Φ = 0 (Euler)
∇2Φ = 3

2𝛿 (Poisson)

• Expand around linear solution for 𝛿𝑘 and 𝜃𝑘 (LHS)

• Include RHS perturbatively for higher order solutions (loop
corrections)

• Average over initial conditions to get spectra, e.g. the dark
matter power spectrum

𝑃𝛿(𝑘, 𝜏) = ∫𝑘′ ⟨𝛿𝑘(𝜏)𝛿𝑘′(𝜏)⟩

• But: no access to fully non-linear scales (single stream
approximation)
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KINETIC FIELD THEORY (KFT)



IDEA

• Treat content of universe as classical point particles
• Particles follow classical phase-space trajectories
• Initial phase-space positions are sampled from initial density
and velocity field

q

t

p

Time evolution:

�̇� = 𝜕ℋ
𝜕𝑝

�̇� = −𝜕ℋ
𝜕𝑞
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FIELD THEORY FORMULATION - THE GENERATING FUNCTIONAL

• Probability distribution in phase-space

𝒫(x) = ∫ dx(i)𝒫(x(i)) 𝒫(x ∣ x(i)), x = (q, p)T

• Split x(cl) = x(cl, free) + x(cl, int.)

• Resulting generating functional:

𝑍[J] = ei�̂�𝐼𝑍0[J]

• Calculate density correlations, e. g. a two-point function:

⟨𝜌(𝑘, 𝜏)𝜌(𝑘′, 𝜏)⟩ = �̂�(𝑘, 𝜏)�̂�(𝑘′, 𝜏)𝑍[J] ∣J=0

6/12



FIELD THEORY FORMULATION - THE GENERATING FUNCTIONAL

• Probability distribution in phase-space

𝒫(x) = ∫ dx(i)𝒫(x(i)) 𝛿𝐷(x − x(cl)(𝜏; x(i))), x = (q, p)T

• Split x(cl) = x(cl, free) + x(cl, int.)

• Resulting generating functional:

𝑍[J] = ei�̂�𝐼𝑍0[J]

• Calculate density correlations, e. g. a two-point function:

⟨𝜌(𝑘, 𝜏)𝜌(𝑘′, 𝜏)⟩ = �̂�(𝑘, 𝜏)�̂�(𝑘′, 𝜏)𝑍[J] ∣J=0

6/12



FIELD THEORY FORMULATION - THE GENERATING FUNCTIONAL

• Probability distribution in phase-space

𝒫(x) = ∫ dx(i)𝒫(x(i)) 𝛿𝐷(x − x(cl)(𝜏; x(i))), x = (q, p)T

• Split x(cl) = x(cl, free) + x(cl, int.)

• Resulting generating functional:

𝑍[J] = ei�̂�𝐼𝑍0[J]

• Calculate density correlations, e. g. a two-point function:

⟨𝜌(𝑘, 𝜏)𝜌(𝑘′, 𝜏)⟩ = �̂�(𝑘, 𝜏)�̂�(𝑘′, 𝜏)𝑍[J] ∣J=0

6/12



FIELD THEORY FORMULATION - THE GENERATING FUNCTIONAL

• Probability distribution in phase-space

𝒫(x) = ∫ dx(i)𝒫(x(i)) 𝛿𝐷(x − x(cl)(𝜏; x(i))), x = (q, p)T

• Split x(cl) = x(cl, free) + x(cl, int.)

• Resulting generating functional:

𝑍[J] = ei�̂�𝐼𝑍0[J]

• Calculate density correlations, e. g. a two-point function:

⟨𝜌(𝑘, 𝜏)𝜌(𝑘′, 𝜏)⟩ = �̂�(𝑘, 𝜏)�̂�(𝑘′, 𝜏)𝑍[J] ∣J=0

6/12



FIELD THEORY FORMULATION - THE GENERATING FUNCTIONAL

• Probability distribution in phase-space

𝒫(x) = ∫ dx(i)𝒫(x(i)) 𝛿𝐷(x − x(cl)(𝜏; x(i))), x = (q, p)T

• Split x(cl) = x(cl, free) + x(cl, int.)

• Resulting generating functional:

𝑍[J] = ei�̂�𝐼𝑍0[J]

• Calculate density correlations, e. g. a two-point function:

⟨𝜌(𝑘, 𝜏)𝜌(𝑘′, 𝜏)⟩ = �̂�(𝑘, 𝜏)�̂�(𝑘′, 𝜏)𝑍[J] ∣J=0

6/12



KFT PERTURBATION THEORY



EXPANSION OF THE INTERACTION OPERATOR

• Interaction operator can’t be evaluated in the full exponential
form

• Series expansion:

𝑍[J] = ei�̂�𝐼𝑍0[J]

= (1 + i�̂�𝐼 + 1
2(i�̂�𝐼)2 + … )𝑍0[J]

• Two-point function in perturbation theory:

⟨𝜌(𝑘)𝜌(𝑘′)⟩ = (1 + i�̂�𝐼 + 1
2(i�̂�𝐼)2 + … )�̂��̂�𝑍0[J]
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KFT PERTURBATION THEORY - ILLUSTRATION

q

t

p

�̂��̂�𝑍0[J]
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SYSTEMATICS OF PERTURBATION THEORY

• Effect of the interaction operator can be represented in terms of
diagrams

• Number of diagrams increases with each order

• Number of terms per diagram increases with each order

⇒ Calculations by hand become unfeasible for orders 𝑛 > 2

• But: logic can be translated into a symbolic code

• At present this allows to go up to 7th order in the interaction
operator
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INITIAL CONDITIONS

eiŜI Z0[J]

1 + iŜI +
1
2

(
iŜI

)2
+ . . .

up to 7th order

expand in powers of P
(i)
δ

up to second order

(linear and quadratic (mode coupling) in P
(i)
δ )
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eiŜI Z0[J]

1 + iŜI +
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RESULTS



LINEAR AND MODE COUPLING RESULTS
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CONCLUSION & OUTLOOK



CONCLUSION & OUTLOOK

• KFT allows for analytical calculations of correlation functions of
cosmic structures from first principles

• Perturbation theory in KFT is conceptually very different from
SPT

• Higher order perturbations are needed to calculate the
non-linear dark matter power spectrum

• Alternatively, choose a different splitting between free and
interacting theory
⇒ improve convergence of perturbation theory

12/12



THANK YOU!
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DENSITY OPERATORS

Density in real and Fourier space, and as an operator

𝜌(𝑞1, 𝑡1) =
𝑁
∑

𝑠=1
𝛿𝐷(𝑞1 − 𝑞𝑠(𝑡1))

𝜌(𝑘1, 𝑡1) =
𝑁
∑

𝑠=1
exp ( − i𝑘1 ⋅ 𝑞𝑠(𝑡1))

�̂�(𝑘1, 𝑡1) =
𝑁
∑

𝑠=1
exp ( − i𝑘1 ⋅ 𝛿

i𝛿𝐽𝑞𝑠(𝑡1))

Effect of density operators on the generating functional

�̂�(𝑘1, 𝑡1)𝑍0[J] =
𝑁
∑

𝑠=1
𝑍0[J + L] with 𝐿𝑠(𝑡) = − (𝑘1

0 ) 𝛿𝐷(𝑡 − 𝑡1).



FREE GENERATING FUNCTIONAL - INITIAL MOMENTUM CORRELATIONS

𝑍0[L] = 𝑉−𝑛(2𝜋)3𝛿𝐷(
𝑛

∑
𝑗=1

𝐿𝑞𝑗)e−𝑄𝐷
𝑛

∏
2≤𝑏<𝑎

∫𝑘𝑎𝑏

𝑛
∏

1≤𝑖<𝑗
(𝒫𝑖𝑗(𝑘𝑖𝑗) + (2𝜋)3𝛿𝐷(𝑘𝑖𝑗))

The factors of the generating functional 𝒫𝑖𝑗 and the damping factor
𝑄𝐷 are defined by

𝒫𝑖𝑗(𝑘𝑖𝑗) = ∫𝑞 (𝑒
−𝐿 T

𝑝𝑖𝐶𝑝𝑝(𝑞)𝐿𝑝𝑗 − 1) 𝑒i𝑘𝑖𝑗⋅𝑞

𝑄𝐷 =
𝜎2

𝑝
2

𝑛
∑

𝑗=1
𝐿2

𝑝𝑗 .
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