

Model agnostic probes of Dark Sectors at ν experiments

Marco Costa (Scuola Normale Superiore, INFN Pisa)

based on 2211.13253

In collaboration with Rashmish K. Mishra and Sonali Verma

Which Dark Sector?

We know DM interacts feebly with SM

1) DM charged under the SM forces:

WIMPs, Minimal DM

Fornengo, Cirelli, Strumia, 0512090 and many more!

Which Dark Sector?

We know DM interacts feebly with SM

DM charged under the SM forces: Fornengo, Cirelli, Strumia, 0512090 WIMPs, Minimal DM and many more! Portal models DM is a SM singlet Gravity only

Renormalizable Portal models

 $\mathcal{O}_{\mathrm{DS}}\mathcal{O}_{\mathrm{SM}}$

"Hidden Valleys"

Strassler, Zurek 0604261

Renormalizable portals

MeV-GeV DM

 $SH^{\dagger}H$

Higgs portal

Kinetic mixing portal

Neutrino portal

Light, feebly coupled: High Intensity experiments

Batell, Pospelov, Ritz 0906.5614 deNiverville, McKeen, Ritz 1205.3499 deNiverville, Chen, Pospelov, Ritz 1609.01770 Buonocuore, Frugiuele, deNiverville 1912.09346 and many many more!

Non-renormalizable Portal models

Contino, Max, Mishra 2012.08537 Darme, Ellis, You 2001.01490 Cheng, Li Salvioni 2110.10691

"Hidden Valleys"
Strassler, Zurek 0604261

Non-Renormalizable portals

In some models are leading terms in EFT

Non-renormalizable Portal models

Contino, Max, Mishra 2012.08537 Darme, Ellis, You 2001.01490 Cheng, Li Salvioni 2110.10691

"Hidden Valleys"

Strassler, Zurek 0604261

Non-Renormalizable portals

In some models are leading terms in EFT

generalized Higgs portal

NP scale, elusive

No need to specify DS fields

Z portal

generic DS conserved current

Current-Current

$$\frac{k}{\Lambda_{\rm UV}^2} J_{\mu}^{\rm SM} \mathcal{J}_{\rm DS}^{\mu}$$

Examples

Contino, Max, Mishra 2012.08537 Darme, Ellis, You 2001.01490 Cheng, Li Salvioni 2110.10691	Model	$\mathcal{O}_{ ext{DS}}\mathcal{O}_{ ext{SM}}$	Mediated by
Strongly coupled	Dark QCD Ψ^a	$ar{\Psi}\gamma^{\mu}\Psi H^{\dagger}\overleftrightarrow{D}_{\mu}H$ $ar{\Psi}\Psi H^{\dagger}H$	Q^a charged under both gauge groups
Weakly coupled	v below EWSB	$ar{ u}\gamma^{\mu}P_{L} u J_{\mu}^{Z,\mathrm{SM}}$	Z,W

Anatomy of non-renormalizable portal model

Anatomy of non-renormalizable portal model

M.Costa (SNS and INFN Pisa)

v experiments as beam dumps

v experiments as beam dumps

Production modes at v experiments

"Direct" production

$$\frac{k}{\Lambda_{\rm UV}^2} H^{\dagger} \overleftrightarrow{D_{\mu}} H J_{\rm DS}^{\mu}$$

Bremsstrahlung

$$p_{\rm DS}^2 \gtrsim \Lambda_{
m QCD}^2$$

Drell-Yan like

$$p_{\rm DS}^2 \gtrsim \Lambda_{\rm QCD}^2$$

Production modes at v experiments

Meson decays

$$\frac{k}{\Lambda_{\rm UV}^2} H^{\dagger} \overleftrightarrow{D_{\mu}} H J_{\rm DS}^{\mu}$$

"Radiative"

$$K \to \pi + \mathrm{DS}$$

 $\eta \to \gamma + \mathrm{DS}$

Annihilation

$$\phi \to DS$$

Model-independent production computation

Conformal regime does not care about details

Contino, Max, Mishra 2012.08537

Inclusive Production

DS "internal phase space" at fixed p_{DS}

Model-independent production computation

Conformal regime does not care about details

Contino, Max, Mishra 2012.08537

Inclusive Production

Model independent

DS "internal phase space" at fixed p_{DS}

Rest: fixed by $\mathcal{O}_{\mathrm{SM}}$:

 $c_{\mathcal{O}}p_{\mathrm{DS}}^{2\Delta}$

Conformality

Integrate p_{DS}

Z Portal production results

Detection: depends on $\,\psi\,$ properties

Scatter

$$\langle \psi_j(p_f) | \mathcal{O}_{\mathrm{DS}} | \psi_i(q_i) \rangle$$

Contino, Max, Mishra 2012.08537

Scattering depend on splittings, extra form factors,...

(how v NC were discovered)

Detection: depends on ψ properties

Scatter

$$\langle \psi_j(p_f) | \mathcal{O}_{\mathrm{DS}} | \psi_i(q_i) \rangle$$

Contino, Max, Mishra 2012.08537

Scattering depend on splittings, extra form factors,...

(how v NC were discovered)

Decay to SM

$$\langle \psi | \mathcal{O}_{\mathrm{DS}} | \Omega \rangle \sim f \Lambda_{\mathrm{IR}}^{\Delta - 2}$$

 $f \sim c_{\mathcal{O}} \Lambda_{\mathrm{IR}} / 4\pi$

BR inherited by $\mathcal{O}_{\mathrm{SM}}$:

Signature:

two separated e+e- showers (or other allowed charged particles)

(Reducible) backgrounds from v scattering:

NCQE pi0-> misreconstructed photons

or

CC events

under control!

Batell, Berger, Ismail 1909.11670 Foroughi-Abari, Ritz 2004.14515 Berryman, de Gouvea, Fox, Kayser, Kelly, Raaf 1912.07622 and others

Results

$$\frac{k}{\Lambda_{\rm LIV}^2} H^\dagger \overleftrightarrow{D_\mu} H J_{\rm DS}^\mu \qquad {\bf Strongly \ coupled}$$

10 events line

$$S \simeq \frac{N_{\mathrm{POT}}}{\sigma_{pN}} \times \sigma_{\mathrm{DS}} \times n_{\mathrm{DS}} P_{\mathrm{dec}} \times \epsilon_{\mathrm{geo}}$$

$$P_{1, ext{dec}} = \exp\left(-rac{l}{c au(\gamma\,eta)_{ ext{LDSP}}}
ight) - \exp\left(-rac{l+d}{c au(\gamma\,eta)_{ ext{LDSP}}}
ight) ~_{10^2}$$

$$\langle n \rangle = A \left(\frac{1}{\log(\langle E \rangle^2/\bar{\Lambda}^2)} \right)^B \exp\left(\frac{C}{\sqrt{\log(\langle E \rangle^2/\bar{\Lambda}^2)}} \right)$$

Conclusions

- Many possible portal models
- Can we study them in a model independent way at v exp.?

Conclusions

- Many possible portal models
- Can we study them in a model independent way at v exp.?
- Production: Yes for non-renormalizable portal models
- Decay signal: depends on single form factor, high S/N ratio

Conclusions

- Many possible portal models
- Can we study them in a model independent way at v exp.?
- Production: Yes for non-renormalizable portal models
- Decay signal: depends on single form factor, high S/N ratio
- Z portal/JJ portal can be probed at v exp. (assuming bkg under control)
- Interesting region for masses in 0.1-1 GeV range, cutoffs at TeV.

Thanks for the attention!

Backup

Cosmology

Redi, Tesi 2107.14801

Hong, Kurup, Perelstein 1910.10160

From Redi, Tesi 2107.14801

Freeze-in is a possibility (although for very high cutoffs in model indep. scenario)

$$f_L H f_R \to CFT$$

Production through non-renormalizable portals

A v perspective on neutral currents

A v perspective on neutral currents

Strongly coupled benchmark

$$\langle n \rangle = A \left(\frac{1}{\log(\langle E \rangle^2/\bar{\Lambda}^2)} \right)^B \exp\left(\frac{C}{\sqrt{\log(\langle E \rangle^2/\bar{\Lambda}^2)}} \right), \quad A = 0.06 \quad C = 1.8$$

$$B = 0.5 \quad \bar{\Lambda} = 0.1 \Lambda_{\rm IR}$$

From Webber, Phys.Lett.B 143(1984) 501-504

Other terrestrial bounds on the models

Experimental parameters

Experiment	$N_{ m POT}$ (total)	E_{beam} (GeV)	l (m)	d (m)	Off-axis angle, $\theta_{\rm det}$ (rad)	$\theta_{ m acc} \; ({ m rad})$
CHARM [78, 85, 86]	2.4×10^{18}	400	480	35	0.01	0.003
$NO\nu A-ND$ [47, 84]	3×10^{20}	120	990	14.3	0.015	0.002
MicroBooNE (KDAR) [81]	1.93×10^{20}	120	100	10.4	-	0.013
ICARUS-NuMI [11, 16]	3×10^{21}	120	803	19.6	0.097	0.005
DUNE-MPD[14, 87]	1.47×10^{22}	120	579	5	0	0.004
SHiP [65, 77]	2×10^{20}	400	64	50	0	0.078

Strongly coupled: mesons

Strongly coupled: brem

Strongly coupled: DY

Weakly coupled results

$$S \simeq \frac{N_{\mathrm{POT}}}{\sigma_{pN}} \times \sigma_{\mathrm{DS}} \times n_{\mathrm{DS}} P_{\mathrm{dec}} \times \epsilon_{\mathrm{geo}}$$

$$n_{\mathrm{DS}} = 2$$

Long lifetime regime

$$S \propto \Lambda_{\rm IR}^6/\Lambda_{\rm UV}^8$$

Decay through Higgs portal

Full vs Factorized computation

EWPT

For D>6 virtual effects dominated by **UV-dependent counterterms**

Astrophysical bounds

SN cooling

$$\Lambda_{
m UV}\gtrsim 400\,{
m GeV}$$

for masses <<100 MeV

Bounds from LESNe

Improve > 1 order of magnitude wrt colliders, for masses <<100 MeV

Caputo, Janka, Raffelt, Vitagliano 2201.09890