Neutrino non-standard self-interactions and their impact on sterite neutrino dark malter production and detection

CRISTINA BENSO

Max-Planck Institut für Kernphysik

OUTLINE

* Introduction about sterile neutrinos in particle physics and cosmology
- Searches in terrestrial experiments \& sensitivity to sterile neutrinos
- Dodelson-Widrow production of sterile neutrinos in the early universe
- Neutrino non-standard self-interackions (NSSI):
* what?
* why?
* how to include them?
* which impack on sterile neutrino dark matter?

INTRODUCTION - STERILE NEUTRINOS

Definition: neubral fermions, singlets under the SM symmetries

- if neubrinos are Majorana particles: $\quad \nu_{s} \mid \quad \nu_{4}=\cos \theta \nu_{s}+\sin \theta \nu_{\alpha}$

$$
\left[\begin{array}{l}
\nu_{\alpha} \\
\nu_{s}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\nu_{1} \\
\nu_{4}
\end{array}\right]
$$

Depending on their mass, they can be involved in:

* ackive neulrino masses generalion
- baryon asymmelry problem
* dark malter puzzle
* oscillation experiments anomalies

INTRODUCTION - STERILE NEUTRINO DARK MATTER

Evidences at large scales from:

- robation curves of galaxies
- velocily dispersion in galaxies
- gravitational lensing
- Large scale structures
- CMB
- Bullet cluster

sterile neutrino as DM?

Q no em nor strong interaction, by definition

I- massive: possibly with mass o(kev)

VI depending on mixing with active neutrinos: stable over time scales comparable with t_{U}

I depending on the production mechanism: produced in the early universe with velocities compatible with L.s.s.

SEARCHES IN TERRESTRIAL EXPERIMENTS

- in the domain of direct detection
- rely on large mixing of $\nu_{s} \leftrightarrow \nu_{e}$ or $\bar{\nu}_{s} \leftrightarrow \bar{\nu}_{e}$

DODELSON-WIDROW PRODUCTION *

Assumption: $\nu_{s} \leftrightarrow \nu_{e}$ and $\bar{\nu}_{s} \leftrightarrow \bar{\nu}_{e}$ mixing
Mechanism: production through oscillation and collisions:
the neutrino fields, while propagating in the primordial plasma, oscillate belween the electron and the sterile skate when they interact with the other fields in the bath, the wave function has probabilily $\propto \sin ^{2}\left(2 \theta_{M}\right)$ to collapse in the sterile state

Evolution of the distribution function $f_{s}(p, t)$ described by the Bollzmann equation

$$
\frac{\partial}{\partial t} f_{s}(p, t)-H p \frac{\partial}{\partial p} f_{s}(p, t) \approx \frac{\Gamma_{e}}{2}\left\langle P_{m}\left(\nu_{e} \rightarrow \nu_{s} ; p, t\right)\right\rangle f_{e}(p, t)
$$

where

$$
\begin{aligned}
& \Gamma_{e}(p)=c_{e}(p, T) G_{F}^{2} p T^{4} \\
& \left\langle P_{m}\left(\nu_{e} \rightarrow \nu_{s} ; p, t\right)\right\rangle=\sin ^{2}\left(2 \theta_{M}\right) \sin ^{2}\left(\frac{v t}{L}\right) \approx \frac{1}{2} \sin ^{2}\left(2 \theta_{M}\right)
\end{aligned}
$$

* [Dodelson and Widrow, Phys. Rev. Lett. 72 (1994) 17-20]

DODELSON-WIDROW PRODUCTION

In the plasma, the mixing angle is

$$
\sin ^{2}\left(2 \theta_{M}\right)=\frac{\left(\frac{m_{s}^{2}}{2 p}\right)^{2} \sin ^{2}(2 \theta)}{\left(\frac{m_{s}^{2}}{2 p}\right)^{2} \sin ^{2}(2 \theta)+\frac{\Gamma_{e}(p)}{2}+\left[\frac{m_{s}^{2}}{2 p} \cos (2 \theta)-V_{T}(p)\right]^{2}}
$$

where interactions of neutrinos with particles in the plasma impact on:

- Interaction rate $\Gamma_{e}(p)=c_{e}(p, T) G_{F}^{2} p T^{4}$
- Thermal potential $V_{T}(p)= \pm \sqrt{2} G_{F} \frac{2 \zeta(3) T^{3}}{\pi^{2}} \frac{\eta_{B}}{4}-\frac{8 \sqrt{2} G_{F} p}{3 m_{Z}^{2}}\left(\rho_{\nu_{e}}+\rho_{\bar{\nu}_{e}}\right)-\frac{8 \sqrt{2} G_{F} p}{3 m_{W}^{2}}\left(\rho_{e^{-}}+\rho_{e^{+}}\right)$

DODELSON-WIDROW PRODUCTION

We solve the Boltzmann equation and find the distribution function

$$
f_{s}(r)=\int_{T_{\mathrm{fin}}}^{T_{\mathrm{in}}} d T\left(\frac{M_{\mathrm{Pl}}}{1.66 \sqrt{g_{*}} T^{3}}\right)\left[\frac{1}{4} \frac{\Gamma_{e}(r, T)\left(\frac{m_{s}^{2}}{2 r T}\right)^{2} \sin ^{2}(2 \theta)}{\left(\frac{m_{s}^{2}}{2 r T}\right)^{2} \sin ^{2}(2 \theta)+\left(\frac{\Gamma_{e}}{2}\right)^{2}+\left(\frac{m_{s}^{2}}{2 r T}-V\right)^{2}}\right] \frac{1}{e^{r}+1}
$$

and calculate the sterile neutrino dark matter abundance passing through sterile neutrino number density $\quad n(T)=\frac{g}{(2 \pi)^{3}} \int_{-\infty}^{+\infty} d^{3} p f(p, T)$ sterile neutrino yield $Y=\frac{n}{s}$

$$
h^{2} \Omega_{s}=\frac{s_{0} m_{s}}{\rho_{c} / h^{2}} \frac{1}{g_{* s}}\left(\frac{45}{4 \pi^{4}}\right) \int_{0}^{\infty} d r r^{2}\left[f_{\nu_{s}}(r)+f_{\bar{\nu}_{s}}(r)\right]
$$

DODELSON-WIDROW PRODUCTION - CHALLENGES FOR DETECTION

DODELSON-WIDROW PRODUCTION - CHALLENGES FOR DETECTION

[CB, V. Brdar, M. Lindner, W. Rodejohann, Phys.Rev.D 100 (2019), 115035]

DODELSON-WIDROW PRODUCTION - CHALLENGES FOR DETECTION

NEUTRINO NON-STANDARD SELF-INTERACTIONS - WHAT? WHY?

Definition: Neubrino non-standard self-interackions (NSSI) are a parameterization of new physics in the neutrino sector in the form of new interactions beyond the SM involving only neutrinos. Effective description valid for heavy mediators

$$
\begin{array}{r}
\mathcal{L}_{\mathrm{NSSI}}=-\frac{G_{F}}{\sqrt{2}} \sum_{j} \sum_{\alpha, \beta, \gamma, \delta} \varepsilon_{j}^{\alpha \beta \gamma \delta}\left(\bar{\nu}_{\alpha} \mathcal{O}_{j} \nu_{\beta}\right)\left(\bar{\nu}_{\gamma} \overline{\mathcal{O}}_{j} \nu_{\delta}\right) \\
\mathcal{O}_{j}=\left\{\mathbb{I}, \gamma^{\mu}, i \gamma^{5}, \gamma^{\mu} \gamma^{5}, \sigma^{\mu \nu}\right\}
\end{array}
$$

Why are NSSI interesting?

- we expect new physics to come from the neutrino sector
- some models describing neutrino mass generation naturally include NSSI (See [arXiv: 2203.01955 [hep-ph]]
- NSSI could have significant impact on physics of the early universe (Hubble tension etc.)

NEUTRINO NSSI - HOW TO INCLUDE THEM?

Assumptions for concreteness:

- only electron flavor-diagonal NSSI considered
- for Majorana neutrinos: only scalar, pseudoscalar and axial-vector interactions are non-zero
- to capture temperature and momentum dependence in the thermal potential:

$$
\mathcal{L}_{j}=-\frac{G_{F}}{\sqrt{2}}\left(\epsilon_{j, \nu}\right)\left(\left(\bar{\nu}_{e} \mathcal{O}_{j} \nu_{e}\right)\left(\bar{\nu}_{e} \mathcal{O}_{j}^{\prime} \nu_{e}\right)-\frac{1}{m_{\phi}^{2}}\left(\bar{\nu}_{e} \mathcal{O}_{j} \nu_{e}\right) \square\left(\bar{\nu}_{e} \mathcal{O}_{j}^{\prime} \nu_{e}\right)\right) \quad \mathcal{O}_{j}=\left\{\mathbb{I}, i \gamma^{5}, \gamma^{\mu} \gamma^{5}\right\}
$$

$$
\begin{array}{ll}
\Gamma_{e}(p) & \rightarrow \quad \Gamma_{e, \text { tot }}(p)=\Gamma_{e, \mathrm{SM}}(p)+\Gamma_{e, \mathrm{NSSI}}(p) \\
V_{T}(p) & \rightarrow \quad V_{T, \text { tot }}(p)=V_{T, \mathrm{SM}}(p)+V_{T, \mathrm{NSSI}}(p)
\end{array}
$$

NEUTRINO NSSI - HOW TO INCLUDE THEM?

- Scalar NSSI

$$
\Gamma_{e, \mathrm{NSSI}}(p)=\frac{7 \pi}{180} \epsilon_{S}^{2} G_{F}^{2} p T^{4} \quad \quad V_{T, \mathrm{NSSI}}(p)=-\frac{7 \sqrt{2} \pi^{2}}{45 m_{\phi}^{2}} \epsilon_{S} G_{F} p T^{4}
$$

- Pseudoscalar NSSI

$$
\Gamma_{e, \mathrm{NSSI}}(p)=\frac{7 \pi}{180} \epsilon_{P}^{2} G_{F}^{2} p T^{4} \quad V_{T, \mathrm{NSSI}}(p)=-\frac{7 \sqrt{2} \pi^{2}}{45 m_{\phi}^{2}} \epsilon_{P} G_{F} p T^{4}
$$

- Axial vector NSSI

$$
\Gamma_{e, \mathrm{NSSI}}(p)=\frac{7 \pi}{135} \epsilon_{A}^{2} G_{F}^{2} p T^{4} \quad V_{T, \mathrm{NSSI}}(p)=-\frac{14 \sqrt{2} \pi^{2}}{45 m_{\phi}^{2}} \epsilon_{A} G_{F} p T^{4}
$$

following [M. Paraskevas, 1802.02657] [P. B. Pal, AJP 79 (2011), 485498] [J. C. D'Olivo et al., PRD 46 (1992) 1172]

NEUTRINO NSSI - IMPACT ON STERILE NEUTRINOS

Sterile neutrino distribution function

[CB, W. Rodejohann, M. Sen, A. Ujjayini Ramachandran, PRD 105 (2022) 5, 055016]

NEUTRINO NSSI - IMPACT ON STERILE NEUTRINOS

Sterile neutrino production evolution

[CB, W. Rodejohann, M. Sen, A. Ujjayini Ramachandran, PRD 105 (2022) 5, 055016]

NEUTRINO NSSI - IMPACT ON STERILE NEUTRINOS

Sterile neutrino parameter space: 100\% DM constituted by sterile neutrinos

[CB, W. Rodejohann, M. Sen, A. Ujjayini Ramachandran, PRD 105 (2022) 5, 055016]

[CB, W. Rodejohann, M. Sen, A. Ujjayini Ramachandran, PRD 105 (2022) 5, 055016]

CONCLUSIONS

- Sterile neutrinos that mix with active neutrinos are good dark matter candidates.
- They can have been produced in the early universe via oscillation and collisions through Dodelson-Widrow mechanism.
- This vanilla scenario is hardly detectable in terrestrial experiments in the near future.
- Active neutrino non-standard self-interactions (NSSI) are well mokivated extension of the SM.
- Scalar, pseudoscalar and axial-vector NSSI modify the production of sterile neutrino dark matter in the early universe.
- The parameter space region in which $\Omega_{\mathrm{DM}}=\Omega_{s}$ is enlarged by such NSSI and they enhance the possibility to detect sterile neutrino dark matter in HUNTER phase 3.

