The Axion Flavour connection

L.Darmé, E.Nardi, C.Smarra *arXiv:2211.05796*

Speaker: Clemente Smarra DarkCosmoGrav, Pisa, Italy, 25/01/2023

Istituto Nazionale di Fisica Nucleare

Outline

- Strong CP problem;
- Axion solution and benchmark axion models;
 - Focus on the *origin* and *quality* issues

- The Axion-Flavour connection
 - Cook our recipe: a simple (simplistic?) realisation

Strong CP Problem

• The QCD Lagrangian contains a CP-violating term:

$$\mathcal{L}_{QCD} = \sum_{f} \bar{\psi}_{f} (i \not D - m_{f}) \psi_{f} - \frac{1}{4} (G_{\mu\nu}, G^{\mu\nu}) + \theta \frac{1}{32\pi^{2}} (G_{\mu\nu}, \tilde{G}^{\mu\nu})$$

However, experimental bounds indicate that, in strong interactions,

$$\theta \! \lesssim \! 10^{-10}$$

• How can we explain this? Anthropic reasoning? No...

 \rightarrow mechanism that constrains $\theta \preceq 10^{-10}$ or drives it to 0.

Axion Solution

 In 1977, Peccei and Quinn devised a mechanism to dispose of CP violation in strong interactions. Introducing a new anomalous, SB, global U(1) invariance at the Lagrangian level and imposing that at least one quark flavour acquires its mass by coupling to a scalar with non-vanishing VEV, they managed to preserve CP in strong interactions.

• We will now focus on the benchmark axion models, explaining the *origin* and *quality* issues of the PQ symmetry.

Steal a glance on the axion mass

Keep in mind!

$$m_a^2 = \frac{m_u m_d}{\left(m_u + m_d\right)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2} \Longrightarrow m_a \approx 5.7 \left(\frac{10^{12} \text{GeV}}{f_a}\right) \mu \text{eV}$$

Benchmark Axion Models

 Different ways of implementing the PQ mechanism can be organised in three large classes:

- The Peccei-Quinn-Weinberg-Wilczek (PQWW) model;
- ² The Dine-Fishler-Srednicki-Zhitnitsky (DFSZ) model;
- ³ The Kim-Shifman-Vainshtein-Zakharov (KSVZ) model.

PQWW Model

 In the PQWW model, the SM is extended by adding a new complex scalar, namely a second Higgs doublet. The Lagrangian contains:

$$\mathcal{L} \supset -y_u \bar{q}_L H_u u_R - y_d \bar{q}_L H_d d_R - V(H_u, H_d) + \text{h.c.}$$

$$V = \frac{\lambda_u}{4} \left(|H_u|^2 - \frac{v_u^2}{2} \right)^2 + \frac{\lambda_d}{4} \left(|H_d|^2 - \frac{v_d^2}{2} \right)^2 + \lambda_{ud} \left(H_u^{\dagger} H_d \right) \left(H_d^{\dagger} H_u \right) + \dots$$

• One could naively say that, since there are two Higgs fields, there are two independent symmetries, which can be redefined to obtain the hypercharge and an orthogonal *accidental* Peccei-Quinn symmetry. Is it true? NO!

PQWW Model

 The general two Higgs doublet model potential, in fact, can be written as

$$\begin{split} V(H_u, H_d) &= m_u^2 H_u^{\dagger} H_u + m_d^2 H_d^{\dagger} H_d - \left[m_{ud}^2 H_u^{\dagger} H_d + \text{h.c.} \right] + \frac{1}{2} \lambda_1 \left(H_u^{\dagger} H_u \right)^2 + \\ &+ \frac{1}{2} \lambda_2 \left(H_d^{\dagger} H_d \right)^2 + \lambda_3 \left(H_u^{\dagger} H_u \right) \left(H_d^{\dagger} H_d \right) + \lambda_4 \left(H_u^{\dagger} H_d \right) \left(H_d^{\dagger} H_u \right) + \\ &+ \left[\frac{1}{2} \lambda_5 \left(H_u^{\dagger} H_d \right)^2 + \lambda_6 \left(H_u^{\dagger} H_u \right) \left(H_u^{\dagger} H_d \right) + \lambda_7 \left(H_d^{\dagger} H_d \right) \left(H_u^{\dagger} H_d \right) + \text{h.c.} \right], \end{split}$$

 Therefore, if we want a PQ symmetry, we must *impose* that some terms are absent. <u>No accidental PQ symmetry</u>

ACHTUNG!

- In general, all the aforementioned axion models **DO NOT** feature an accidental PQ symmetry.
- "But, Clemente, why did we focus on the fact that the PQ symmetry was not accidental?"

For two reasons:

- Global symmetries are widely believed not to be fundamental in QFT;
- Being anomalous, U(1)_{PQ} is not a symmetry of the quantum world.

Origin and quality of the PQ symmetry

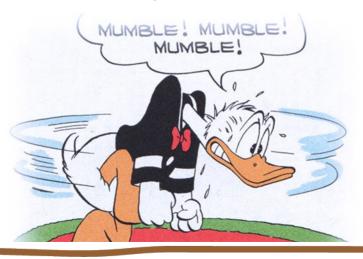
- Therefore, we should account for the *origin* of the PQ symmetry. It would be desirable that it came accidentally, as a result of imposing "sacred" principles: Lorentz and gauge invariance
- Moreover, experimental bounds constrain $\theta \leq 10^{-10}$, so our symmetry must be highly protected. This is commonly referred to as the PQ quality issue.

Origin and quality of the PQ symmetry

 Various constructions that enforce a *high quality*, *accidental* PQ symmetry have been proposed, but they all rely on imposing the dimension of the first PQ breaking operator by hand

Not satisfying...

 Thus, we need a mechanism that enforces a *high quality*, *accidental* PQ symmetry without imposing any condition by hand.



The Flavour Puzzle

• On a completely different note, the fermion mass hierarchy problem represents one among the most puzzling features of the Standard Model. In two lines, there is a 5 order of magnitude difference between the Yukawa couplings of the top quark and of the up quark.

The Axion Flavour connection: a top-down approach

- We will assume that the SM flavour pattern is generated by a SB flavour symmetry, which will be identified requiring that
 - It must automatically enforce an *accidental* global anomalous PQ symmetry;
 - It must protect $U(1)_{PQ}$ up to a sufficiently large operator dimension.
- Then, we will analyse whether it reproduces, upon SSB, the observed pattern of quark mass hierarchies.

The Axion Flavour Connection: Rectangular Symmetries

- Let us consider the following examples of flavour symmetries:
 - $SU(N)_L \times SU(N)_R$: Y in the bifundamental, *det(Y)* is PQ-violating;
 - $SU(M)_L \times SU(N)_R M \neq N$: Y in the bifundamental, we cannot write det(Y)

 Therefore, rectangular symmetries are more effective, as for the *quality* issue.

The Axion Flavour Connection: Model Building

- In order to construct a sensible model, our *modus operandi* will be oriented by the following pillars and requirements:
 - Simplicity: simplest consistent gauge group and smallest number of fermions;
 - Phenomenology:
 - *Masses*: top mass at tree level from renormalizable coupling to Higgs. Up and charm from effective operators
 - Mixings: field content sufficiently rich to generate all the masses and mixings of the quarks
 - Gauge anomalies: gauge symmetries must be anomaly free
 - *PQ origin and quality*: accidental and highly protected PQ symmetry.

Cook our recipe: a simple realisation

- The "simplest" model complying with all these requirements is a 2HDM containing 6 scalars (X, Y, Z, K, H_u, H_d) and a 7x7 fermion mass matrix, transforming under the (G_{SM} x) G_F x U(1)_F gauge group, where G_F = SU(3)xSU(2)
- Set of fermions:

 $q_L \sim (\mathbf{3}, \mathbf{1}), \ u_R \sim (\mathbf{1}, \mathbf{2}), \ t_R \sim (\mathbf{1}, \mathbf{1}), \ Q_L \sim (\mathbf{1}, \mathbf{1}), \ U_R \sim (\mathbf{3}, \mathbf{1}), \ U_L \sim (\mathbf{1}, \mathbf{2}), \ T_L \sim (\mathbf{1}, \mathbf{1}), \ Q_R \sim (\mathbf{1}, \mathbf{1}).$

Cook our recipe: a simple realisation

• The terms we should allow for in the Lagrangian should be chosen according to the aforementioned pillars. Among them: $H_u \bar{q}_L^{\alpha} U_{R,\alpha}, \ \Lambda_u \bar{U}_L^i u_{R,i} \rightarrow$ necessary to ensure nonzero determinant; $H_u \bar{Q}_L t_R \rightarrow$ necessary to ensure nonzero determinant and gives rise to a mass term of order O(v) at tree level;

 $\bar{q}_L^{\alpha} Z_{\alpha} Q_R \rightarrow$ Only three up type quarks present below the EW scale.

Cook our recipe: a simple realisation

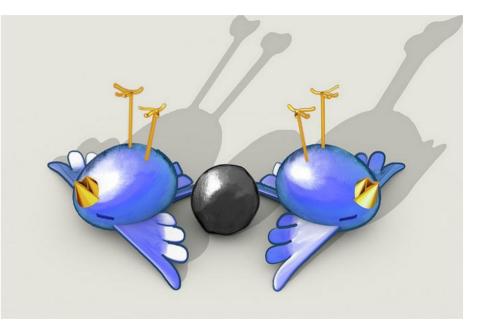
 In the models analysed, we were able to retrieve compatible quark mass hierarchies from nonhierarchical (or mildly hierarchical) input parameters without imposing any number by hand.

	model	experimental
$m_b({ m GeV})$	1.5	1.5
$m_c(\text{GeV})$	0.5	0.4
$m_s({\rm MeV})$	20	30
$m_d({\rm MeV})$	0.5	1.5
$m_u({\rm MeV})$	0.3	0.7

Numerical values of the quark masses and their experimental values evolved at the scale of 10^8 GeV. mt = 102.5GeV

The Axion Flavour connection: conclusion and prospects

- As we have shown, the axion-flavour connection is a sensible ansatz to tackle the SM flavour puzzle and the strong CP problem in one fell swoop.
- Moreover, the QCD-axion could also be a good CDM candidate



The Axion Flavour connection: conclusions and prospects

- I have a dream! Flavour + Strong CP problem + CDM
- Research strategies
 - Implement powerful minimisation routines (any suggestion accepted!!!) and try to obtain CKM + Hierarchies simultaneously
 - Extend the gauge symmetry (trade off with simplicity though)
 - Extend to the lepton sector
 - Dream! (and pray...)

Thanks For your attention

BACKUP SLIDES

Hierarchical structure of the VEVs

 The minimisation of the scalar potential of the theory under examination yields hierarchical entries in the VEVs of the scalar fields, namely:

 $|x_1|, |y_{1,2}|, |z_3|, |k_2| \sim O(\Lambda), |x_2|, |z_{1,2}| \sim O(10^{-5}\Lambda), |k_{1,3}| \sim O(10^{-6}\Lambda)$ $\Lambda = 10^{11} \,\text{GeV}$

• This intuitively explains how we can get hierarchies starting from non-hierarchical (or mildly hierarchical) input parameters

PQ quality: the role of higher-dim operators

• In general, a PQ-breaking operator can be written as:

$$\eta \frac{\Phi^D}{M_P^{D-4}} + \text{h.c.} \approx \left(\frac{f_a}{M_P}\right)^{D-4} f_a^4 \cos\left(\frac{a}{f_a} + \xi_\eta\right)$$

- The total potential (QCD + PQ-break) would then be $V \supset -m_{\pi}^2 f_{\pi}^2 \cos\left(\frac{a}{f_a}\right) + \left(\frac{f_a}{M_P}\right)^{D-4} f_a^4 \cos\left(\frac{a}{f_a} + \xi_{\eta}\right)$
- To comply with $\theta \leq 10^{-10}$, then

$$\left(\frac{f_a}{M_P}\right)^{D-4} f_a^4 \lesssim 10^{-10} m_\pi^2 f_\pi^2 \to D \gtrsim 8\,(13) \Leftrightarrow f_a \lesssim 10^8\,(10^{13})$$

You cannot have your cake and eat it too: a no-go theorem

• The Yukawa Lagrangian can be written as

$$\mathcal{L}_Y = \sum_{i,j} \lambda_{ij} \, \bar{Q}_{m_i} Y_{m_i n_j} q_{n_j}$$

for which the mass matrix is

	$(\lambda_{m_1n_1}Y_{m_1n_1})$	$\lambda_{m_1n_2}Y_{m_1n_2}$)
			$\lambda_{m_2n_3}Y_{m_2n_3}$		
$\mathcal{M} =$					
				$\lambda_{m_i n_j} Y_{m_i n_j}$	
)

You cannot have your cake and eat it too: a no-go theorem

• In order to have massive quarks, we need to require

$$Det (\mathcal{M}) = \varepsilon_{\alpha_1 \alpha_2 \dots \alpha_N} \mathcal{M}_{1 \alpha_1} \mathcal{M}_{2 \alpha_2} \dots \mathcal{M}_{N \alpha_N} \neq 0$$

• Such an operator has a charge proportional to the anomaly

$$\mathcal{A}_{PQ} \propto \sum_{i} m_i \chi_{Q_{m_i}} - \sum_{j} n_j \chi_{q_{n_j}} \neq 0$$

and thus breaks PQ at dimension N. Thus, if we want massive quarks and a PQ colour anomaly, we cannot help but break PQ at dimension N.

Axion Dark Matter

• The axion is an excellent candidate for CDM. It is mainly produced through the *misaligment mechanism*. Here we give some equations

$$\ddot{a} + 3H\dot{a} - \frac{1}{R^{2}(t)}\nabla^{2}a + V'(a,T) = 0$$

$$\rho_{a} = \frac{1}{2}\dot{a}^{2} + \frac{1}{2}m^{2}(T)a^{2}$$

$$\dot{\rho_{a}} = \dot{a}\ddot{a} + m\dot{m}a^{2} + m^{2}a\dot{a}$$

$$\langle \dot{\rho_{a}} \rangle = \left\langle m^{2}a^{2} \right\rangle \left(-3H + \frac{\dot{m}}{m} \right)$$

$$\left(\frac{\langle \rho_{a} \rangle R^{3}}{m} = const \Rightarrow \langle n \rangle = \frac{\langle \rho_{a} \rangle}{m} \propto \frac{1}{R^{3}} \right)$$

Axion Dark Matter

• For reference, the resulting dark matter abundance is

$$\Omega_a h^2 \approx 0.12 \left(\frac{28\mu \text{eV}}{m_a}\right)^{7/6} = 0.12 \left(\frac{f_a}{2 \times 10^{11} \text{GeV}}\right)^{7/6}$$

• Thermal production is negligible, as it gives

$$\Omega_a \approx 10^{-8} \left(\frac{10^{12} \text{GeV}}{f_a} \right)$$