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- They could extend the region of the inflationary potential we can probe 

- They provide a place to look for quantum effects  (such as quantum diffusion) 
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Inflation

Sϕ = ∫ d4x −g ( 1
2

gμν ∂μϕ∂νϕ − V(ϕ))
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ϵ = −
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V,ϕ
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=
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8 π G (
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 formalismδN

tin

tfin

ψ = 0

δρ = 0

flat 

flat 

ψ = 0

N̄(t)

δN(x, t)

N(x, t)
ζ(t, x) = N(t, x) − N̄(t) ≡ δN

Lifshitz, Khalatnikov [1960]

Starobinsky [1983]

Wands, Malik, Lyth, Liddle [2000]
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Statistics of  from the statistics of ζ 𝒩

ζcg(x) = 𝒩(x) − ⟨𝒩⟩

Distribution function for the duration of inflation ( first passage time )

∂
∂𝒩

P(𝒩, ϕ) = ℒ†
FP(ϕ) ⋅ P(𝒩, ϕ)

1
M2

Pl
ℒ†

FP(ϕ) = −
v′ (ϕ)
v(ϕ)

∂
∂ϕ

+ v(ϕ)
∂2

∂ϕ2
v =

V
24π2M4

Pl
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Characteristic function ( includes all moments ) Obeys differential equation Full PDF given by inverse Fourier transform
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This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fNL expansion) !
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Additional regimes:

If  small ): 
 large deviations from flat-well, still shallow-well domain;

μ2 ≪ a ≪ 1 ( μ

non-trivial imprint of the false-vacuum profile

If  : large PBH productiona ∼ 𝒪(1)

False vacuum: implications for Primordial Black Holes

Linear model
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PBHs are interesting objects to learn more about inflation beyond the CMB probed regime

PBHs may be produced by large fluctuations during inflation: quantum diffusion cannot be neglected;   
it can be incorporated by the stochastic  formalism: non gaussian tailsδN

False vacuum state during inflation:  
quantum diffusion may enable the inflaton to escape from the false vacuum via stochastic tunnelling

PBHs may be produced by these large fluctuations:  
false vacua may be shallow ( flat-well limit applies ), mild (PBHs abundance retains specific features of false vacuum profile)  
deep (PBHs abundantly (over-) produced)

Generalisation beyond slow roll

Impact of non-gaussian tails on different properties of PBHs, and in different scenarios, 
even at CMB and LSS scales

More realistic realisation ( quadratic potential ) : only shallow vacuum possible,  
otherwise slow-roll violation or PBHs overproduction 
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False vacuum: preserving slow roll

Slow roll requires: | ··ϕ | ≪ 3H | ·ϕ | , |V,ϕ | What happens if  ?|V,ϕ | = 0

··ϕ + 3 H(ϕ, ·ϕ) ·ϕ + V,ϕ = 0 H2(ϕ, ·ϕ) =
1

3M2
Pl (V(ϕ) +

·ϕ2

2 )
ϕ

·ϕ

minimum  (ϕ = 0, ·ϕ = 0)
V(ϕ) ≃ V0 + m2ϕ2/2H2

0 =
V0

3 M2
Pl

Linearised Klein-Gordon equation

ϕ = A exp −
3
2

1 + 1 −
4 m2

9 H2
0

H0 t + B exp −
3
2

−1 − 1 −
4 m2

9 H2
0

H0 t

m ≫ 3H0/2 : damped oscillations, friction term  subdominant: far from slow-roll regime3H ·ϕ

3H ·ϕ ≃ − m2ϕ = − V,ϕ(ϕ) ··ϕ ≃
m4

9 H2
0

ϕ =
m2

9 H2
0

V,ϕ ≪ V,ϕ(ϕ)

··ϕ + 3H0
·ϕ + m2ϕ = 0

m ≪ 3H0/2 ϕ ≃ A exp (− 3H0t) + B exp (−
1
3

m2

H2
0

H0t) ≃ B exp (−
m2t
3H0 )

slow-roll regime: acceleration term subdominant  
 (  - suppressed) m2/H2

0



Primordial black holes: observational constraints
Depends on the mass at which PBHs form

109g < MPBH < 1016g from  to β < 10−24 β < 10−17 PBH Hawking evaporation on Big Bang Nucleosynthesis  
and on the extragalactic photon background

1016g < MPBH < 1050g from  to β < 10−11 β < 10−5

MPBH < 109g Not yet evaporated: 
no direct observational constraints

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021] 
Constraints on Primordial Black Holes

Gravitational and astrophysical effects 
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