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Outlook

• QCD exotics, huge amount of data coming from experiments

Motivation

• Standard approach, Pc(4312) example

Linesahape analysis

• ML/AI, classifiers

Neural networks

• Benchmark example: Pc(4312)

Neural networks applied to hadron spectroscopy

• Explainability

Takeaways
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Motivation



Charmonia(-like)
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Just LHC
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Understand resonances
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𝑱/𝝍
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Theory is trying to catch-up with experiments
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Lineshape analysis



Resonances (aka poles in unphysical Riemann sheets)
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Dalitz plot
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Fig from: LHCb, 1507.03414
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Decay
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26000 events

LHCb, 1507.03414



Pentaquark
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Standard approach to lineshape analysis

Build a model for the amplitude and assume it is true

Fit data using 𝜒$

Extract model parameters and get pole positions and compute uncertainties

Asses the probability that those data were generated by your model

If everything is fine, you can claim that the interpretation embedded in the model is a 
possible explanation of the data

You can do this with different models with different underlying dynamics

Compare models? Compare dynamics?
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Example Pc(4312)
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Molecule
Du et al., 2102.07159

Virtual
CFR et al. (JPAC), 1904.10021

Double-triangle (w. complex 
coupl. in the Lagrangian)
Nakamura, 2103.06817

Single triangle 
(ruled out)
LHCb, 1904.03947

Data from



Internal dynamics
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Molecule

Virtual

Single triangle 
(double triangle=same idea but more complicated)



Threshold generated (residual interaction)
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Molecular state
• Generated through the opening of a new 

channel
• Residual part of the strong interaction 

bounds the system
• Finite radius

Virtual state
• Generated through the opening of a new 

channel
• Residual part of the strong interaction 

generates the signal
• Infinite radius
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𝑱/𝝍𝒑 projection data

We focus on Σ$%-𝐷&threshold region

One partial wave contributes to the Pc(4312)

The threshold is responsible for the dynamics

Other singularities are irrelevant
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Data from LHCb, 1904.03947
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Near-threshold model (two channels)

20

Inverse of the scattering length Matrix elements Mij are singularity free and can 
be Taylor expanded

Frazer, Hendry, PR134 (1964) B1307
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Riemann sheets structure (two channels)
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Virtual and bound states

• Bound state on IV RS: b|4
• Virtual state on IV RS: v|4
• Bound state on II RS: b|2
• Virtual state on II RS: v|2

Under the the scattering length approximation
the physical interpretation is given by the sign of
the m22 parameter. Four options:
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Amplitude analysis result
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M= 4319.7±1.6 MeV Γ= -0.8±2.4 MeVInterpretation obtained: Virtual state on IV RS (v|4)
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Neural networks



NN ⊃ ML ⊃ AI

Machine Learning provides methods to learn from data to perform tasks

• Improvement in algorithms and hardware

Widely used nowadays thanks to:

• Neural networks, Random forest, Genetic algorithms, … 

Examples:

• Fitters, universal interpolators, classifiers

Widely used in physics

• NNs are usually black boxes, so statistical methods have been developed to study them

Explainability
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ML/NNs in hadron physics

• Particle ID, A(I)DAPT

Experiments

• NNPDF

Universal interpolators

• Lattice QCD

Regression

• Hadron spectroscopy (this talk)

Classifiers
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Neural networks as classifiers
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Dog

Pig

Cat

Rat
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Training
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Neural networks as classifiers
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Training
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Neural networks as classifiers
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Training
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Neural networks as classifiers

30

Dog

Pig

Cat

Rat

30

Training
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Neural networks as classifiers

Dog

Pig

Cat

Rat

96.8%

0.1%

0.1%

3%

New picture
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Disclaimer: Made up percentages
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Neural networks as classifiers / lineshape analyzers
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𝑱/𝝍
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Neural networks as classifiers / model discriminator
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• Model 1

• Model 2

• Model 3

• Model 4
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Warning! Be aware of bias!

You get out of the NN what you put in its training

If you train your NN to identify {🐶,🐱,🐷,🐹} ,don’t expect 
it to identify 🐼!

The NN doesn’t know what a 🐼 is
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Neural networks applied to 
hadron spectroscopy



Can machine learning help us?

• Can we train a neural network to analyze a lineshape and get as a result what is the probability of each
posible dynamical explanation/model? 

The question

• Sombillo et al., 2003.10770, 2104.141782, 2105.04898

First explorations of neural networks as classifiers for hadron spectroscopy

• What other information can we gain by using machine learning techniques?

If posible…

• The Pc(4312) lineshape: Ng et al. (JPAC) 2110.13742

Benchmark case

Still far away from answering this question but we are advancing
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Dictionary

AM
PL

IT
U

D
E 

AN
AL

YS
IS a. Datapoints (lineshape)

b. Model convoluted
with experimental 

resolution
c. Experimental uncertainties
d. Physical interpretation
e. Objective (minimization)

function
M

AC
H

IN
E 

LE
AR

N
IN

G a. Features
b. Training set with noise

and convolution
c. Bootstrap
d. Classes
e. Optimize the NN (weights)
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Building the training set

• Generated by randomly setting parameter values
in a wide range

• Curves are computed at the experimental 
energies

105 training curves

• The lineshapes are convoluted with the
experimental resolution

Convolution

• Included to mimic uncertainties
• Compare “blurry” to “blurry”

Gaussian noise
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Neural network architecture

Input layer (B,65)

Dense (B,65) (B,400)

Dropout (B,400) 20% (B,400)

ReLu (B,400) f x = max 0, x (B,400)

Dense (B,400) (B,200)

Dropout (B,200) 50% (B,200)

ReLu (B,200) f x = max 0, x (B,200)

Dense (B,200) (B,4)

Output layer (B,4) p(x!) = e"!/5e"" (B,4)
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Optimizing (training) the neural network: fitting weights

40

Training set
Input

Network 
(weights)

Optimized NN

Feedforward

𝐿 -𝑦, 𝑦 = −1
6

7

𝑦(6) log -𝑦(6)

Backpropagation

Loss function

Multi-class 
cross entropy

Adam algorithm

1 Epoch = Feedforward + BackpropagationModel

Convolute

Noise
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Training
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Experimental uncertainties: bootstrap

• Typically a Gaussian with mean and 
sigma from experiment

Associate a distribution to each
experimental datapoint

• Generate pseudodata according to the
chosen distribution

Monte Carlo

• Compute distributions, mean, standard 
deviation, quantiles, …

Run statisitcs on the
pseudadtasets
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Applying the NN to LHCb data

• Full, cut in mKp and weighted LHCb datasets 
through the NN to obtain an answer. 

• Note that we pass them through the same 
NN

We pass the data through the NN

• Bootstrap and dropout

Uncertainties

• We (unsurprisingly) recover the same result 
as with the standard approach: v|4

Obtain proability distributions
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Three datasets analyzed with the same NN
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Takeaways



What we get from the NN

The NN targets specific regions of the parameter space (which yield stable solutions) 
that might be difficult to reach during optimization or might require high-resolution data 

Standard 𝜒"fit can be indeed unstable, and a small change in the input data can induce 
large changes in the parameter values and therefore in the physics interpretation

Rather than testing a single model hypothesis as a 𝜒8 fit would, the NN determines the probability 
of each of the classes of interest, given the experimental uncertainties. The latter is possible, 
since the NN learns the subtle classification boundary between the different classes

But, there’s more…
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Explainability

• SHapley Additive exPlanations

SHAP values

Inherited from game theory

• Allows to determine how a given 
feature in the input layer (in our case 
an experimental datapoint) impacts 
the decision made by the NN in the 
output layer (the classes) 

Application
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Takeaways

Neural networks open new possibilities to answer the question on the underlying nature of
a given resonance

Possibility to gain physics insight on how the data impact the obtained interpretation

NN does NOT substitute the standard approach. They are complementary (we still want the
amplitude and the pole position)

NN allows a true comparison among interpretations

The BIG objective: Be able to train the DNN with every amplitude possibility we can devise 
with our twisted minds and throw the data to it, returning probabilities for each class

Uncharted territory so we are taking baby steps: Ng et al. (JPAC), 2110.13742

We are (hopefully) just in the begining… 
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Grazie! Domande?


