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There are many variations on the basic idea, some employing stronger mathematical
assumptions than others.[8] Significantly, Bell-type theorems do not refer to any particular
theory of local hidden variables, but instead show that quantum physics violates general
assumptions behind classical pictures of nature. The original theorem proved by Bell in 1964 is
not the most amenable to experiment, and it is convenient to introduce the genre of Bell-type
inequalities with a later example.[9]

Hypothetical characters Alice and Bob stand in widely separated locations. Their colleague
Victor prepares a pair of particles and sends one to Alice and the other to Bob. When Alice
receives her particle, she chooses to perform one of two possible measurements (perhaps by
flipping a coin to decide which). Denote these measurements by  and . Both  and 
are binary measurements: the result of  is either  or , and likewise for . When Bob
receives his particle, he chooses one of two measurements,  and , which are also both
binary.

Suppose that each measurement reveals a property that the particle already possessed. For
instance, if Alice chooses to measure  and obtains the result , then the particle she
received carried a value of  for a property .[note 1] Consider the following combination:

Because both  and  take the values , then either  or . In the former
case, , while in the latter case, . So, one of the terms on the
right-hand side of the above expression will vanish, and the other will equal . Consequently,
if the experiment is repeated over many trials, with Victor preparing new pairs of particles, the
average value of the combination  across all the trials will be less
than or equal to 2. No single trial can measure this quantity, because Alice and Bob can only
choose one measurement each, but on the assumption that the underlying properties exist, the
average value of the sum is just the sum of the averages for each term. Using angle brackets to
denote averages,

This is a Bell inequality, specifically, the CHSH inequality.[9]: 115  Its derivation here depends
upon two assumptions: first, that the underlying physical properties  and  exist
independently of being observed or measured (sometimes called the assumption of realism);
and second, that Alice's choice of action cannot influence Bob's result or vice versa (often called
the assumption of locality).[9]: 117 

Quantum mechanics can violate the CHSH inequality, as follows. Victor prepares a pair of
qubits which he describes by the Bell state
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state of the encoding system represents a state in
the information source.

4. Local distinguishability: if two states of a compos-
ite system are different, then we can distinguish
between them from the statistics of local measure-
ments on the component systems.

5. Pure conditioning: if a pure state of system AB
undergoes an atomic measurement on system A,
then each outcome of the measurement induces a
pure state on system B. (Here atomic measurement
means a measurement that cannot be obtained as
a coarse-graining of another measurement).

All these axioms are satisfied by classical information the-
ory. Axiom 5 is even trivial for classical theory, because
the only pure states of a composite system AB are the
product of pure states of the component systems A and
B, and hence the state of system B will be pure irrespec-
tively of what we do on system A.
A stronger version of axiom 5, introduced in Ref. [20],

is the following:

5’ Atomicity of composition: the sequential compo-
sition of two atomic operations is atomic. (Here
atomic transformation means a transformation
that cannot be obtained from coarse-graining).

However, it turns out that Axiom 5 is enough for our
derivation: thanks to the purification postulate we will
be able to show the non-trivial implication: Axiom 5 ⇒
Axiom 5’ (see lemma 16).
The paper is organized as follows. In Sec. II we review

the framework of operational-probabilistic theories intro-
duced in Ref. [21]. This framework will provide the basic
notions needed for the formulation of our principles. In
Sec. III we introduce the principles from which we will
derive Quantum Theory. In Sec. IV we prove some direct
consequences of the principles that will be used later in
the paper. In Sec. V we discuss the properties of per-
fectly distinguishable states, while in Sec. VI we prove
the existence of a duality between pure states and atomic
effects.
The results about distinguishability and duality of pure

states and atomic effects allow us to show in Sec. VII that
every system has a well defined informational dimen-
sion—the operational counterpart of the Hilbert space
dimension. Sec. VIII contains the proof that every state
can be decomposed as a convex combination of perfectly
distinguishable pure states. Similarly, any element of the
vector space spanned by the states can be written as a lin-
ear combination of perfectly distinguishable states. This
result corresponds to the spectral theorem for self-adjoint
operators on complex Hilbert spaces. In Sec. IX we prove
some results about the maximum teleportation probabil-
ity, which allow us to derive a functional relation between
the dimension of the state space and the number of per-
fectly distinguishable states of the system. The mathe-
matical representation of systems with two perfectly dis-
tinguishable states is derived in Sec. X, where we prove

that such systems are indeed two-dimensional quantum
systems—a.k.a. qubits. In Sec. XI we construct projec-
tions on the faces of the state space of any system and
prove their main properties. These results lead to the
derivation of the operational analogue of the superposi-
tion principle in Sec. XII which allows to prove that sys-
tems with the same number of perfectly distinguishable
states are operationally equivalent (Subsec. XII B). The
properties of the projections and the superposition prin-
ciple are then exploited in Sec. XIII—where we extend
the density matrix representation from qubits to higher-
dimensional systems, thus proving that a system with d
perfectly distinguishable states is indeed a quantum sys-
tem with d-dimensional Hilbert space. We conclude the
paper with Sec. XIV, where we review our results, dis-
cussing future directions for this research.

II. THE FRAMEWORK

This Section provides a brief summary of the frame-
work of operational-probabilistic theories, which was for-
mulated in Ref. [21]. We refer to Ref. [21] for an exhaus-
tive presentation of the details of the framework and of
the ideas behind it. The operational-probabilistic frame-
work combines the operational language of circuits with
the toolbox of probability theory: on the one hand, ex-
periments are described by circuits resulting from the
connection of physical devices, on the other hand each
device in the circuit can have classical outcomes and the
theory provides the probability distribution of outcomes
when the devices are connected to form closed circuits
(that is, circuits that start with a preparation and end
with a measurement).
The notions discussed in this section will allow us to

draw a precise distinction between principles with an op-
erational content and exclusively mathematical princi-
ples: with the expression ”operational principle” we will
mean a principle that can be expressed using only the
basic notions of the the operational-probabilistic frame-
work.

A. Circuits with outcomes

A test represents one use of a physical device, like
a Stern-Gerlach magnet, a beamsplitter, or a photon
counter. The device will have an input system and an
output system, labelled by capital letters. The corre-
sponding test can have different classical outcomes, rep-
resented by different values of an index i ∈ X:

A {Ci}i∈X
B

Each outcome i ∈ X corresponds to a possible event,
represented as

A Ci
B

5

We denote by Transf(A,B) the set of all events from A to
B. The reason for this notation is that in the next sub-
section the elements of Transf(A,B) will be interpreted
as transformations with input system A and output sys-
tem B. If A = B we simply write Transf(A) in place of
Transf(A,A).
A test with a single outcome will be called determin-

istic. This name is justified by the fact that, if there is
a single possible outcome, then this outcome will occur
with certainty (cf. the probabilistic structure introduced
in the next subsection).
Two devices can be composed in a sequence, as long

as the input system of the second device is equal to the
output system of the first. The events in the composite
test are represented as

A Ci
B Dj

C

and are written in formulas as DjCi.
For every system A one can perform the identity-test

(or simply, the identity), that is, a test {IA} with a single
outcome, with the property

A IA
A Ci

B = A Ci
B ∀Ci ∈ Transf(A,B)

B Dj
A IA

A = B Dj
A ∀Dj ∈ Transf(B,A)

The subindex A will be dropped from IA where there is
no ambiguity.
The letter I will be reserved for the trivial system,

which simply means “nothing” [28]. A device with in-
put (resp. output) system I is a device with no input
(resp. no output). The corresponding tests will be called
preparation-tests (resp. observation-tests). In this case
we replace the input (resp. output) wire with a round
portion:

!"#$ρi B
(
resp. A %&'(aj

)
. (1)

In formulas we will write |ρi)B (resp. (aj |A). The sets
Transf(I,A) and Transf(A, I) will be denoted as St(A) and
Eff(A), respectively. The reason for this special notation
is that in the next subsection the elements of St(A) (resp.
Eff(A)) will be interpreted as the states (resp. effects) of
system A.
From every pair of systems A and B one can form a

composite system, denoted by AB. Clearly, composing
system A with nothing still gives system A, in formula
AI = IA = A. Two devices can be composed in parallel,
thus obtaining a new device with composite input and
composite output systems. The events in composite test
are represented as

A Ci
B

C Dj
D

and are written in formulas as Ci ⊗ Dj . In the special
case of states we will often write |ρi) |σj) in place of ρi ⊗

σj . Similarly, for effects we will write (ai| (bj | in place of
ai ⊗ bj.
Sequential and parallel composition commute: one

has (Ai ⊗ Bj)(Ck ⊗ Dl) = AiCk ⊗ BjDl for every
Ai,Bj ,Ck,Dl such that the output of Ai (resp. Bj)
coincides with the input of Ck (resp. Dl).
When one of the two tests is the identity, we will omit

the box and draw only a straight line, as in

A Ci
B

C

The rules summarized in this section define the op-
erational language of circuits, which has been discussed
in detail in a series of inspiring works by Coecke (see in
particular Refs. [29, 30]). The language of circuits allows
one to represent the schematic of an experiment, like e.g.

{ρi}i∈X

)*
+,

A {Cj}j∈Y
B

{Bk}k∈Z

-.
/0C

and also to represent a particular outcome of the exper-
iment

ρi
)*
+,

A Cj
B

Bk

-.
/0C

In formula, the above circuit is given by

(Bk|BC (Cj ⊗ IC) |ρi)AC .

B. Probabilistic structure: states, effects and
transformations

On top of the language of circuits, we put a proba-
bilistic structure [21]: we declare that the composition
of a preparation-test {ρi}i∈X with an observation-test
{aj}j∈Y gives rise to a joint probability distribution:

!"#$ρi A %&'(aj = p(i, j), (2)

with p(i, j) ≥ 0 and
∑

i∈X

∑
j∈Y p(i, j) = 1. In formula

we write p(i, j) = (aj |ρi). Moreover, if two experiments
are run in parallel, we assume that the joint probability
distribution is given by the product:

!"#$ρi A 1234ak

5678σj B %&'(bl
= p(i, k)q(j, l) (3)

where p(i, k) := (ak|ρi) , q(j, l) := (bl|σj).
The probabilistic structure defined by Eq. (2) turns

every event ρi ∈ St(A) into a function ρ̂i : Eff(A) → R,
given by ρ̂i(aj) := (aj|ρi). If two events ρi, ρ′i ∈ St(A)
induce the same function, then it is impossible to dis-
tinguish between them from the statistics of the exper-
iments allowed by our theory. This means that for our
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Here  is the Hamiltonian describing the quantum mechanical dynamics,  is a reference

mass taken equal to that of a nucleon, , and the noise field 
 has zero average and correlation equal to

where  denotes the stochastic average over the noise. Finally, we write

where  is the mass density operator, which reads

where  and  are, respectively, the second quantized creation and annihilation
operators of a particle of type  with spin  at the point  of mass . The use of these operators
satisfies the conservation of the symmetry properties of identical particles. Moreover, the mass
proportionality implements automatically the amplification mechanism. The choice of the form
of  ensures the collapse in the position basis.

The action of the CSL model is quantified by the values of the two phenomenological parameters
 and . Originally, the Ghirardi-Rimini-Weber model[4] proposed s  at 

m, while later Adler considered larger values:[5] s  for m,
and s  for m. Eventually, these values have to be bounded by
experiments.

From the dynamics of the wave function one can obtain the corresponding master equation for
the statistical operator :

Once the master equation is represented in the position basis, it becomes clear that its direct
action is to diagonalize the density matrix in position. For a single point-like particle of mass ,
it reads

Adler

GRW
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Quantum Zeno subspaces

P. Facchi and S. Pascazio
Dipartimento di Fisica, Università di Bari I-70126 Bari, Italy and

Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
(Dated: October 23, 2018)

The quantum Zeno effect is recast in terms of an adiabatic theorem when the measurement is
described as the dynamical coupling to another quantum system that plays the role of apparatus.
A few significant examples are proposed and their practical relevance discussed. We also focus on
decoherence-free subspaces.

PACS numbers: 03.65.Xp, 03.67.Lx

If very frequent measurements are performed on a
quantum system, in order to ascertain whether it is still
in its initial state, transitions to other states are hindered
and the quantum Zeno effect takes place [1, 2]. This phe-
nomenon stems from general features of the Schrödinger
equation that yield quadratic behavior of the survival
probability at short times [3, 4]. The first realistic test of
the quantum Zeno effect (QZE) for oscillating (two-level)
systems was proposed about 15 years ago [5]. This led
to experiments, discussions and new proposals [6]. A few
years ago, the presence of a short-time quadratic region
was experimentally confirmed also for a bona fide unsta-
ble system [7]. The same experimental setup has been
used very recently [8] in order to prove the existence of
the Zeno effect (as well as its inverse [9, 10]) for an un-
stable quantum mechanical system, leading to new ideas
[11, 12].

It is important to stress that the quantum Zeno effect
does not necessarily freeze everything. On the contrary,
for frequent projections onto a multi-dimensional sub-
space, the system can evolve away from its initial state,
although it remains in the subspace defined by the mea-
surement. This continuing time evolution within the pro-
jected subspace (“quantum Zeno dynamics”) has been
recently investigated [13]. It has peculiar physical and
mathematical features and sheds light on some subtle
mathematical issues [2, 14, 15].

All the above-mentioned investigations deal with what
can be called “pulsed” measurements, according to von
Neumann’s projection postulate [16]. However, from a
physical point of view, a “measurement” is nothing but
an interaction with an external system (another quantum
object, or a field, or simply another degree of freedom of
the very system investigated), playing the role of appa-
ratus. In this respect, if one is not too demanding in
philosophical terms, von Neumann’s postulate can be re-
garded as a useful shorthand notation, summarizing the
final effect of the quantum measurement. This simple
observation enables one to reformulate the QZE in terms
of a (strong) coupling to an external agent. We empha-
size that in such a case the QZE is a consequence of the
dynamical features (i.e. the form factors) of the coupling
between the system investigated and the external sys-

tem, and no use is made of projection operators (and
non-unitary dynamics). The idea of “continuous” mea-
surement in a QZE context has been proposed several
times during the last two decades [18, 19], although the
first quantitative comparison with the “pulsed” situation
is rather recent [20].
The purpose of the present article is to cast the quan-

tum Zeno evolution in terms of an adiabatic theorem and
study possible applications. We will see that the evolu-
tion of a quantum system is profoundly modified (and
can be tailored in an interesting way) by a continuous
measurement process: the system is forced to evolve in
a set of orthogonal subspaces of the total Hilbert space
and a dynamical superselection rule arises in the strong
coupling limit. These general ideas will be corroborated
by some simple examples.
We start by considering the case of “pulsed” obser-

vation. We first extend Misra and Sudarshan’s the-
orem [2] in order to accomodate multiple projectors.
Let Q be a quantum system, whose states belong to
the Hilbert space H and whose evolution is described
by the unitary operator U(t) = exp(−iHt), where H
is a time-independent lower-bounded Hamiltonian. Let
{Pn}n (PnPm = δmnPn,

∑

n Pn = 1) be a (countable)
collection of projection operators and RanPn = HPn

the
relative subspaces. This induces a partition on the to-
tal Hilbert space H =

⊕

n HPn
. Let ρ0 be the initial

density matrix of the system. We “prepare” the system
by performing an initial measurement, described by the
superoperator

P̂ρ =
∑

n

PnρPn = ρ0. (1)

The free evolution reads

Ûtρ0 = U(t)ρ0U
†(t), U(t) = exp(−iHt) (2)

and the Zeno evolution after N measurements in a time
t is governed by the superoperator

V̂ (N)
t = P̂

(

Û (t/N) P̂
)N−1

, (3)

which yields

ρ(t) = V̂ (N)
t ρ0 =

∑

n1,...,nN

V (N)
n1...nN

(t) ρ0 V (N)†
n1...nN

(t), (4)

2

where

V (N)
n1...nN

(t) = PnN
U (t/N)PnN−1

· · ·Pn2
U (t/N)Pn1

. (5)

We follow [2] and assume for each n the existence of the
strong limits (t > 0)

lim
N→∞

V (N)
n...n(t) ≡ Vn(t), lim

t→0+
Vn(t) = Pn. (6)

Then Vn(t) exist for all real t and form a semigroup [2],
and V†

n(t)Vn(t) = Pn. Moreover it is easy to show that

lim
N→∞

V (N)
n...n′...(t) = 0, for n′ "= n. (7)

Therefore the final state is

ρ(t) = V̂tρ0 =
∑

n

Vn(t)ρ0V†
n(t), (8)

with
∑

n

V†
n(t)Vn(t) =

∑

n

Pn = 1.

The components Vn(t)ρ0V†
n(t) make up a block diagonal

matrix: the initial density matrix is reduced to a mixture
and any interference between different subspaces HPn

is
destroyed (complete decoherence). In conclusion,

pn(t) = Tr (ρ(t)Pn) = Tr (ρ0Pn) = pn(0), ∀n. (9)

In words, probability is conserved in each subspace and
no probability “leakage” between any two subspaces is
possible. The total Hilbert space splits into invariant sub-
spaces and the different components of the wave function
(or density matrix) evolve independently within each sec-
tor. One can think of the total Hilbert space as the shell
of a tortoise, each invariant subspace being one of the
scales. Motion among different scales is impossible. (See
Fig. 1 in the following.) The study of the Zeno dynamics
within a given infinite-dimensional subspace is an inter-
esting problem [13] that will not be discussed here. The
original formulation of the Zeno effect is reobtained when
pn = 1 for some n, in (9): the initial state is then in one
of the invariant subspaces and the survival probability in
that subspace remains unity.
The previous theorem hinges upon von Neumann’s

projections [16]. However, as we explained in the in-
troduction, a QZE can also be obtained by performing
a continuous measurement on a system. For example,
consider the Hamiltonian

H3lev = Ωσ1 +Kτ1 =





0 Ω 0
Ω 0 K
0 K 0



 , (10)

describing two levels (system), with Hamiltonian H =
Ωσ1 = Ω(|1〉〈2| + |2〉〈1|), coupled to a third one, that
plays the role of measuring apparatus: KH meas =
Kτ1 = K(|2〉〈3|+ |3〉〈2|). This model, first considered in

[18], is probably the simplest way to include an “exter-
nal” apparatus in our description: as soon as the system
is in |2〉 it undergoes Rabi oscillations to |3〉. We expect
level |3〉 to perform better as a measuring apparatus when
the strength K of the coupling becomes larger. Indeed, if
initially the system is in state |1〉, the survival probability
reads

p(t) =
[

K2 + Ω2 cos(K1t)
]2

/K4
1

K→∞−→ 1, (11)

where K1 =
√
K2 + Ω2. This simple model captures

many interesting features of a Zeno dynamics (and will
help clarify our general approach). Many similar exam-
ples can be considered: in general [4, 17], one can include
the detector in the quantum description, by considering
the Hamiltonian

HK = H +KHmeas, (12)

where H is the Hamiltonian of the system under observa-
tion (and can include the free Hamiltonian of the appa-
ratus) and Hmeas is the interaction Hamiltonian between
the system and the apparatus.
We now prove a theorem, which is the exact analog of

Misra and Sudarshan’s theorem for a dynamical evolu-
tion of the type (12). Consider the time evolution oper-
ator

UK(t) = exp(−iHKt). (13)

We will prove that in the “infinitely strong measurement”
limit K → ∞ the evolution operator

U(t) = lim
K→∞

UK(t), (14)

becomes diagonal with respect to Hmeas:

[U(t), Pn] = 0, where HmeasPn = ηnPn, (15)

Pn being the orthogonal projection onto HPn
, the

eigenspace of Hmeas belonging to the eigenvalue ηn. Note
that in Eq. (15) one has to consider distinct eigenvalues,
i.e., ηn "= ηm for n "= m, whence the HPn

’s are in general
multidimensional.
The theorem is easily proven by recasting it in the form

of an adiabatic theorem. In the H interaction picture,

HI
meas(t) = eiHtHmease

−iHt, (16)

the Schrödinger equation reads

i∂tU
I
K(t) = KHI

meas(t)U
I
K(t). (17)

This has exactly the same form of an adiabatic evolu-
tion i∂sUT (s) = TH(s)UT (s) [21]: the large coupling
K limit corresponds to the large time T limit and the
physical time t to the scaled time s = t/T . In the
K → ∞ limit, by considering a spectral projection
P I
n(t) = eiHtPne−iHt of HI

meas(t), the limiting operator
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where  is the input power coupled to the optical mode under consideration and  its linewidth.
The system is coupled to the environment so the full treatment of the system would also include
optical and mechanical dissipation (denoted by  and  respectively) and the corresponding
noise entering the system.[16]

The standard optomechanical Hamiltonian is obtained by getting rid of the explicit time
dependence of the laser driving term and separating the optomechanical interaction from the
free optical oscillator. This is done by switching into a reference frame rotating at the laser
frequency  (in which case the optical mode annihilation operator undergoes the
transformation ) and applying a Taylor expansion on . Quadratic and higher-
order coupling terms are usually neglected, such that the standard Hamiltonian becomes

where  the laser detuning and the position operator . The first
two terms (  and ) are the free optical and mechanical Hamiltonians
respectively. The third term contains the optomechanical interaction, where 
is the single-photon optomechanical coupling strength (also known as the bare optomechanical
coupling). It determines the amount of cavity resonance frequency shift if the mechanical
oscillator is displaced by the zero point uncertainty , where  is the

effective mass of the mechanical oscillator. It is sometimes more convenient to use the
frequency pull parameter, or , to determine the frequency change per displacement of

the mirror.

For example, the optomechanical coupling strength of a Fabry–Pérot cavity of length  with a

moving end-mirror can be directly determined from the geometry to be .[1]

This standard Hamiltonian  is based on the assumption that only one optical and
mechanical mode interact. In principle, each optical cavity supports an infinite number of
modes and mechanical oscillators which have more than a single oscillation/vibration mode.
The validity of this approach relies on the possibility to tune the laser in such a way that it only
populates a single optical mode (implying that the spacing between the cavity modes needs to be
sufficiently large). Furthermore, scattering of photons to other modes is supposed to be
negligible, which holds if the mechanical (motional) sidebands of the driven mode do not
overlap with other cavity modes; i.e. if the mechanical mode frequency is smaller than the
typical separation of the optical modes.[1]
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Gross–Pitaevskii equation
The Gross–Pitaevskii equation (GPE, named after Eugene P. Gross[1] and Lev Petrovich
Pitaevskii[2]) describes the ground state of a quantum system of identical bosons using the
Hartree–Fock approximation and the pseudopotential interaction model.

A Bose–Einstein condensate (BEC) is a gas of bosons that are in the same quantum state, and
thus can be described by the same wavefunction. A free quantum particle is described by a
single-particle Schrödinger equation. Interaction between particles in a real gas is taken into
account by a pertinent many-body Schrödinger equation. In the Hartree–Fock approximation,
the total wave-function  of the system of  bosons is taken as a product of single-particle
functions :

where  is the coordinate of the -th boson. If the average spacing between the particles in a gas
is greater than the scattering length (that is, in the so-called dilute limit), then one can
approximate the true interaction potential that features in this equation by a pseudopotential. At
sufficiently low temperature, where the de Broglie wavelength is much longer than the range of
boson–boson interaction,[3] the scattering process can be well approximated by the s-wave
scattering (i.e.  in the partial-wave analysis, a.k.a. the hard-sphere potential) term alone. In
that case, the pseudopotential model Hamiltonian of the system can be written as

where  is the mass of the boson,  is the external potential,  is the boson–boson s-wave
scattering length, and  is the Dirac delta-function.

The variational method shows that if the single-particle wavefunction satisfies the following
Gross–Pitaevskii equation

the total wave-function minimizes the expectation value of the model Hamiltonian under
normalization condition  Therefore, such single-particle wavefunction describes
the ground state of the system.

GPE is a model equation for the ground-state single-particle wavefunction in a Bose–Einstein
condensate. It is similar in form to the Ginzburg–Landau equation and is sometimes referred to
as the "nonlinear Schrödinger equation".
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Figure 4.15. Quantum teleportation circuit in which measurements are done at the end, instead of in the middle of
the circuit. As in Figure 1.13, the top two qubits belong to Alice, and the bottom one to Bob.

Principle of implicit measurement: Without loss of generality, any
unterminated quantum wires (qubits which are not measured) at the end of a
quantum circuit may be assumed to be measured.

To understand why this is true, imagine you have a quantum circuit containing just
two qubits, and only the first qubit is measured at the end of the circuit. Then the
measurement statistics observed at this time are completely determined by the reduced
density matrix of the first qubit. However, if a measurement had also been performed on
the second qubit, then it would be highly surprising if that measurement could change
the statistics of measurement on the first qubit. You’ll prove this in Exercise 4.32 by
showing that the reduced density matrix of the first qubit is not affected by performing
a measurement on the second.
As you consider the role of measurements in quantum circuits, it is important to

keep in mind that in its role as an interface between the quantum and classical worlds,
measurement is generally considered to be an irreversible operation, destroying quantum
information and replacing it with classical information. In certain carefully designed cases,
however, this need not be true, as is vividly illustrated by teleportation and quantum
error-correction (Chapter 10). What teleportation and quantum error-correction have in
common is that in neither instance does the measurement result reveal any information
about the identity of the quantum state being measured. Indeed, we will see in Chapter 10
that this is a more general feature of measurement – in order for a measurement to be
reversible, it must reveal no information about the quantum state being measured!

Exercise 4.32: Suppose ρ is the density matrix describing a two qubit system.
Suppose we perform a projective measurement in the computational basis of the
second qubit. Let P0 = |0〉〈0| and P1 = |1〉〈1| be the projectors onto the |0〉 and
|1〉 states of the second qubit, respectively. Let ρ′ be the density matrix which
would be assigned to the system after the measurement by an observer who did
not learn the measurement result. Show that

ρ′ = P0ρP0 + P1ρP1 . (4.40)

Also show that the reduced density matrix for the first qubit is not affected by
the measurement, that is, tr2(ρ) = tr2(ρ′).

Exercise 4.33: (Measurement in the Bell basis) The measurement model we have
specified for the quantum circuit model is that measurements are performed only
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